新人教版八年级数学下册第20章数据的分析教案
人教版八年级下册第二十章数据的分析(教案)
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)
八年级数学下册 第二十章 数据的分析小结与复习教案 新版新人教版
第二十章 数据的分析【教学目的】 学问与技能1.复习稳固平均数、中位数、众数、极差、方差的概念与意义.2.综合运用上述学问复习解决详细问题. 过程与方法以小组探讨的形式对本章的学问进展系统梳理,总结出本章的学问点. 情感、看法与价值观归纳解决详细问题的一般过程积累数学活动的阅历,开展归纳与概括的实力. 【教学重难点】重点:用方差衡量一组数据的平均程度与波动状况.难点:利用一组数据的五组量(3个平均量和2个波动量)做出决策. 【导学过程】 【学问构造】 本章学问构造:1.加权平均数:一般说来,假如在n 个数中,1x 出现1w 次,2x 出现 2w 次,…,kx 出现k w 次,则 x ,其中1w 、2w ……k w 叫 。
2.中位数:将一组数据 排列,处于 位置的数.3.众数:一组数据中 的数据.4.极差: 的差。
5.方差:表示一组数据偏离 的状况,标准差是方差的算术平方根. 【经典例题】1.数学期末总评成果由作业分数、课堂表现分数、期末考分数三局部组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分, 期末考分数80 分,则他的总评成果为________.2. 数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________, 方差是_________.3.某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg ,20 kg ,50 kg )的大米的销售量(单位:袋)如下:10 kg 装100袋;20 kg 装220袋;50 kg 装80袋。
假如每500 g 大米的进价和销价都一样,则他最应当关注的是这些销售数据(袋数)中的( ). A.平均数 B.中位数 C.众数 D.最大值4. 甲、乙两人在一样的条件下,各射靶10次,经过计算:甲、乙的平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( ).数据的代表数据的波动平均数 中位数 众 数极差 方差用样本估计总体用样本平均数估计总体平均数 用样本方差估计总体方差A.甲、乙射中的总环数一样B.甲的成果稳定C.乙的成果波动较大D.甲、乙的众数一样5.某公司聘请职员,对甲、乙两位候选人进展了面试和笔试,面试包括形体和口才,笔试中包括专业程度和创新实力考察,他们的成果(百分制)如下表候选人面试笔试形体口才专业程度创新实力甲86 90 96 92乙92 88 95 93(1)若公司依据经营性质和岗位要求认为:形体、口才、专业程度、创新实力依据5:5:4:6的比确定,请计算甲、乙两人各自的平均成果,看看谁将被录用?(2)若公司依据经营性质和岗位要求认为:面试成果中形体占5%,口才占30%,笔试成果中专业程度点35%,创新实力点30%,那么你认为该公司会录用谁?【学问梳理】1.请你谈一谈本章学习的主要内容.2.对“如何选择适当的统计量对数据进展分析?”你有什么样的心得体会?3.请结合实例谈谈统计调查的根本步骤和留意点.【随堂练习】1.已知一组数据为0,1,5,x,7,且这组数据的中位数是5,那么x的取值为()A. x=5B. x<5C. x≥5D. x≠52.甲乙丙丁四支足球队在全国甲级联赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A.10 B.9 C.8 D.73.某生在一次考试中,语文、数学、英语三门学科的平均分为80分,物理、政治两科的平均分为85,则该生这5门学科的平均分为。
新人教版八年级数学下册《二十章 数据的分析 数学活动》教案_8
第二十章“数据的分析”数学活动教学设计一、活动内容:活动2二、活动内容解析:本活动通过小组活动测量同学每分脉搏次数,进而计算出小组数据的平均数、中位数、众数、方差,交流得出样本正常心脏心率次数,对照资料,体会用样本估计总体的思想。
本活动既巩固了样本平均数、中位数、众数、方差的计算方法,更加深学生对用样本估计总体思想的体验。
三、活动目标:通过活动,加深对数学学以致用的理解和用样本估计总体思想的应用。
同时培养学生小组合作,进一步增强计算能力。
四、课前任务:1、指导学生分组,使男、女生分配均匀,便于样本的合理性,代表性。
同时分工明确,有效开展活动。
2、指导学生学会测量自己脉搏的方法。
3、查找资料,了解心率的知识,明确正常心脏的心率次数。
五、具体活动过程:1、各小组分别测量本组同学的每分脉搏次数(统一秒表计时),组长做好记录。
2、各小组合作计算本组数据的平均数、中位数、众数、方差。
3、小组代表汇报本小组数据的平均数、中位数、众数、方差。
4、交流汇报通过样本平均数、方差估计总体平均数的方法。
5、汇报交流收集的资料,了解正常心跳范围。
6、谈谈对用样本估计总体的感受。
7.深化理解,学以致用某校八年级420名学生参加植树活动,随机调查了其中50名学生植树的数量,并根据数据绘制了如下条形统计图,估计该校八年级学生此次植树活动约植树棵.8、巩固检测某养鱼户搞池塘养鱼,头一年放养鱼20 000尾,其成活率约为70%,在秋季捕捞时,捞出10尾鱼,称得每尾鱼的重量如下:(单位:千克)0.8;0.9;1.2;1.3;0.8;0.9;1.1;1.0;1.2;0.8.(1)根据样本平均数估计这塘鱼的产量是多少千克?(2)如果把这塘鱼全部卖掉,某市场售价为每千克 4元,那么能收入多少元?除去当年的投资成本 16 000元,第一年纯收入多少元?。
八年级数学下册 第二十章 数据的分析数学活动教案 (新版)新人教版-(新版)新人教版初中八年级下册数
第二十章数据的分析【教学目标】知识与技能进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展数据分析观念;情感、态度与价值观体会统计的实际应用价值.【教学重难点】重点:结合身边素材提出统计问题,开展统计活动.难点:结合身边素材提出统计问题,开展统计活动.【导学过程】【情景导入】我们已经学习了数据的收集、整理、描述、分析等统计活动,统计与生活实际紧密联系,其实,我们身边就有大量的统计问题.请大家分组讨论,每一小组提出一个可以在课内调查的统计问题.【新知探究】活动1、请同学们合作完成下面的活动:1.全班同学一起讨论,提出5个问题对全班同学进行调查,例如全班同学的平均身高是多少?全班同学的平均体重是多少?等等;2.全班同学分成五个小组,每个小组选择一个问题进行调查,并将调查过程和结果在全班展示;3.将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.活动2、请全班同学分成几个小组,合作完成下面的活动:1. 每个小组分别测量本组同学的每分脉搏次数,得到几组数据;2.求出本组数据的平均数、中位数、众数、方差等;3.与其他小组进行交流,估计一颗“正常”心脏的每分跳动次数;4.查找资料,看看一颗“正常”心脏的每分跳动次数,与你们的调查结果进行对照,谈谈你们对用样本估计总体的感受.以“每分脉搏次数问题”为例,进行现场调查分析.统计调查的基本步骤是哪些?(1)你的小组准备采用什么方法收集数据?是全面调查方式还是抽样调查方式?(2)你的小组准备怎样整理数据和描述数据?(3)你的小组准备怎样分析数据?请各组介绍和展示统计分析过程及得到的结论:(1)介绍你所在小组的数据收集与分析过程;(2)你得出了哪些结论?依据分别是什么?【知识梳理】1.本次统计活动中,你经历了哪些环节?2.各个统计环节你是怎样做的?3.经历这次调查活动,你有什么体会?。
人教版初中八年级下册数学精品教案 第二十章 数据的分析20.3 课题学习 体质健康测试中的数据分析
20.3 课题学习体质健康测试中的数据分析做知识储备,探究点完成调查活动收集数据某校七年级有10个班,每班50人.各小组在课前收集了本校七年级部分学生的《体质健康标准登记表》(从全校七年级的各班分别抽取5名男生和5名女生),得到了部分数据.师生活动请各组展示自己得到的数据,说说是怎样得到这些数据的.收集到的原始数据能清晰地反映出本校七年级学生的体质健康状况吗?如果不能,可以用什么方式做进一步的整理?整理数据列表整理样本数据:描述数据描述数据可以用哪几种统计图?它们各有什么特点?根据各统计图的特点和你整理的数据情况,你能选择合理的统计图描述前面你得到的数据吗?分析数据计算出各组数据的平均数、中位数、众数以及方差,从计算出的各个统计量中,你能得出什么结论?撰写调查报告交流(1)介绍你所在小组的数据收集与分析过程.(2)你得出了哪些结论?依据分别是什么?(3)你对提高七年级学生的体质有什么建议?生的测试成绩(满分100分)进行统计、分析,过程如下:【收集数据】七年级:75 96 95 73 98 99 72 74 75 74 74 66 75 88 79 74 99 98 97 99八年级:79 89 93 89 77 95 86 94 94 51 89 67 66 89 79 87 89 85 92 90【整理数据】【分析数据】根据以上信息,回答下列问题:(1)填空:a=89,b=74;(2)若该校八年级共有学生500人,请估计八年级本次测试成绩不低于80分的人数;(3)你认为哪个年级的总体成绩较好?请从两个方面说明理由.(用学过的统计量加以说明)【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:本次统计活动中,你经历了哪些环节?各个统计环节中,你是怎样做的?通过这次体质健康调查,你有什么启发?【知识结构】【作业布置】《创优作业》主体本部分相应课时训练.解题方法:进行调查活动时,对于遇到的各种各样的数据或图表,要注意搜集和整理,并加以分析,从中找出规律,用不同的统计量加以评判,做出决策.(1)收集数据就是确定样本、确定抽取样本的方法;(2)整理数据就是制成统计表;(3)描述数据就是根据所收集的数据画出条形统计图、扇形统计图、折线统计图等,使得数据分布的信息能够更清楚地显现出来;(4)分析数据就是根据原始数据或画出的各个统计图表,计算各组数据的平均数、中位数、众数、方差等,通过分析图表和各种统计量得出结论.例为了解某校八年级学生一门课程的学习情况,小佳和小丽分别对八年级(1)班和(2)班本门课程的期末成绩进行了调查分析.小佳对八年级(1)班全班学生(25名)的成绩进行分析,过程如下:a.收集、整理数据(如表):b.分析数据(如表):小丽用同样的方法对八年级(2)班全班学生(25名)的成绩进行分析,数据如下:(1)已知八年级(1)班学生的成绩在80≤x<90这一组的数据为:85,87,88,80,82,85,83,85,87,85.据此将小佳的表格补全;(2)你认为哪个班级的成绩更为优异?请说明理由.解:八年级(1)班的成绩更为优异.理由如下:八年级(1)班成绩的平均数、中位数、众数都比(2)班的大,且(1)班成绩的极差、方差都比(2)班的小,成绩更为稳定,所以八年级(1)班的成绩更为优异.例综合与实践:【情境】在数学活动课上,周老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【发现】同学们随机收集香柚树、橘子树的树叶各10片,通过测量得到这些树叶的长和宽的数据后,分别计算长宽比,整理数据如表:分析数据如表:【探究】(1)上述表格中,m=3.85,n=2.0;(2)①小钱同学说:“从树叶的长宽比的方差来看,我认为香柚树叶的形状差别大.”②小曹同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现橘子树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是②;(填序号)(3)如图,现有一片长11 cm,宽5.6 cm的树叶,请判断这片树叶更可能来自香柚树、橘子树中的哪种树?并给出你的理由.解:因为一片长11 cm,宽5.6 cm的树叶,长宽比接近2,所以这片树叶更可能来自橘子树.。
人教版 八年级下册数学第二十章 数据的分析 数据的代表教案
数据的代表一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数.●在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象.●了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用.重点难点:●重点:体会平均数、中位数、众数在具体情境中的意义和应用.●难点:对于平均数、中位数、众数在不同情境中的应用.学习策略:●经历探索平均数、中位数、众数的概念的过程,学会根据数据做出总体的初步的思想、合理论证,领会平均数、中位数、众数的特征数的联系和区别.二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)调查的方式有两种:(二)总体、样本的概念(1)总体:.(2)个体:.(3)样本:.(4)样本容量:.(三)描述数据的方法有两种:和,统计图主要有统计图、统计图.(四)平均数:用一组数据的 除以这组数据的 ,所得的结果叫这组数据的平均数.知识点一:平均数用一组数据的 除以这组数据的 ,所得的结果叫这组数据的平均数,也叫 平均数.要点诠释:计算平均数的方法有三种:(1)定义法:如果有 n 个数据x 1,x 2,x 3……x n ,那么_________________________x =叫做这n 个数据x 1,x 2,x 3……x n 的平均数, x 读作 .(2)新数法:当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'____x x =+,其中a 是取接近于这组数据平均数中比较“整”的数.(3)加权法:即当x 1出现f 1次,当x 2出现f 2次,……,当x k 出现f k 次,且f 1+f 2+…f k =n ,则可根据公式: ________________________x =,求出x .注意:平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.知识点二:中位数将一组数据按照由 到 (或由大到小)的顺序排列,如果数据的个数是 ,则处于中间位置的数称为这组数据的中位数;如果数据的个数是 ,则中间两个数据的平均数称为这组数据的中位数.要点诠释:一组数据中的中位数是 的.如:一组数据1,3,2,5,4,首先按照由小到大的顺序排列为: , 因为数字 处于中间位置,所以这组数据的中位数是 .而另一组数据1,3,2,5,4,6同样按照由小到大的顺序排列为: ,因为数据的个数是 ,所以知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.请在虚线部分填写预习内容,在实线部分填写课堂学习内容.课堂笔记或者其它补充填在右栏.中间两个数据的平均数3.5为这组数据的中位数.知识点三:众数一组数据中出现次数的数据称为这组数据的众数.要点诠释:(1)众数是一组数据中出现次数最多的数据,是该组数据中的,而不是相应的次数;(2)如果数据中两个数据出现的次数相等且都最多,则这两个都是,可以有多个,如:一组数据1,2,2,3,3,4,5,这里和都出现了两次,次数最多,他们都是众数;(3)如果所有数据出现的次数都一样,那么这组数据就众数,如:一组数据1,2,3,4,5则这组数据_________众数.知识点四:平均数、中位数和众数的关系要点诠释:平均数、众数、中位数都是用来描述数据集中趋势的量.的大小与每一个数据都有关,任何一个数的波动都会引起的波动,当一组数据中有个别数据太高或太低,用来描述整体趋势则不合适,用中位数或众数则较合适.__________与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用来描述.知识点五:反映数据集中趋势的特征数要点诠释:如果要分析一组数据的平均水平,可以采用来解决;如果一组数据中个别数据与其它数据差异较大时,应考虑采用来观察这组数据的集中趋势;如果一组数据中有许多数据反复出现时,应考虑用来观察这组数据的集中趋势,其中____________应用最广泛.类型一:平均数经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.若有其它补充可填在右栏空白处.例1.从一批机器零件取出10件,称得它们的重量为210208198192218182 190200205198计算它们重量的平均值.思路点拨:以上数据都在左右波动,于是,将上面各数据同时减去得一组数值算出平均值再加上.解析:总结升华:例2.(包头市)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各测试项目测试成绩甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.思路点拨:(1)根据平均数的定义容易求出每人各项测试成绩的平均成绩.(2)要求得分按5∶3∶2的比例确定每人的成绩,需用加权法求平均数公式,即:_____________________x .解析:总结升华:举一反三:【变式1】李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)14212717182019231922据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为().A.200千克,3000元B.1900千克,28500元C.2000千克,30000元D.1850千克,27750元答案:【变式2】某次歌唱比赛,最后三名选手的成绩统计如下:测试成绩测试项目王晓丽李真林飞扬唱功989580音乐常识8090100综合知识8090100(1)若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(2)若按6∶3∶1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?☆(3)若最后排名:冠军是王晓丽,亚军是李真,季军是林飞扬,则权重可能是多少?答案:类型二:众数与中位数例3.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,15,16,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列问题(直接填在横线上):(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映乙群游客年龄特征的是.思路点拨:平均数、中位数及众数都是反映数据集中趋势的量,当一组数据的大小比较接近时(如甲群游客),平均数、中位数与众数也比较接近;当一组数据中有个别数据特大或特小时(如乙群游客),它就会影响平均数的大小,但不影响、,此时可由反映这组数据的集中趋势.解析:总结升华:例4.某公司10名销售员,去年完成的销售额情况如下表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?思路点拨:(1)平均数、众数、中位数的计算只要根据各自的概念就可得出.(2)平均数易受极大值或极小值的影响,众数有时偏离,而中位数一定处于,故应选择.解析:总结升华:举一反三:【变式1】(北京)某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65这组数据的众数和中位数分别是()A.59,63B.59,61C.59,59D.57,61答案:【变式2】(陕西省)王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是().A.2.4,2.5B.2.4,2C.2.5,2.5D.2.5,2答案:【变式3】(包头市)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.答案:三、总结与测评要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力。
人教版八年级下册第二十章数据的分析全章复习优秀教学案例
(四)反思与评价
1.引导学生对学习过程进行反思,总结自己在数据分析和统计方法应用方面的优点和不足。例如,可以让学生回顾自己在解决问题时的思考过程,总结运用所学知识的方法和技巧。
(二)过程与方法
1.通过生活实2.引导学生运用图表和统计方法对数据进行分析,培养学生解决实际问题的能力。
3.鼓励学生参与小组讨论和合作,培养学生的团队协作能力和沟通表达能力。
4.指导学生进行课后练习和自主学习,培养学生自主探索和解决问题的能力。
3.鼓励与激励:对学生的努力和进步给予肯定和鼓励,激发学生的学习兴趣和自信心。例如:“你们在讨论和解决问题时表现出了很好的团队协作能力和数据分析能力,继续加油!”
五、案例亮点
1.生活情境的引入:通过引入实际生活中的数据问题,激发学生的学习兴趣和好奇心,使学生感受到数据分析在生活中的重要性。例如,以国家人口普查数据为例,引发学生对数据分析的思考,让学生了解数据分析在了解我国人口状况方面的作用。
2.设计一系列有针对性的问题,引导学生逐步深入地探讨数据分析和统计方法的应用。例如,在分析成绩分布时,可以提出以下问题:“成绩分布呈现出怎样的形态?如何用统计量来描述这种分布?”
3.鼓励学生自主探究和解决问题,培养学生的独立思考和解决问题的能力。在学生解决问题的过程中,给予适当的指导和帮助,引导学生运用所学知识。
(三)情感态度与价值观
1.培养学生对数据分析的兴趣和好奇心,使学生感受到数据分析在生活中的重要性。
2.培养学生尊重数据、实事求是的态度,学会从数据中寻找答案和解决问题。
3.培养学生敢于面对困难和挑战的勇气,培养坚持不懈、积极进取的精神。
人教版八年级数学第20章-数据的分析-教案
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数(2课时)一、问题引入:1、一般地,对于n 个数n x x x x ......,,321,我们把 叫做这n 个数的算术平均数(mean),简称 ,记为 ,读作 .2、在实际问题中,一组数据的各个数据的 未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个 .如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的 .二、基础训练:1、数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.2、一组数据的平均数是3,将这组数据每个数都扩大2倍,则所得一组新数据的平均数是( ) A. 3 B. 5 C. 6 D. 无法确定3、如果一组数据5, -2, 0, 6, 4, x 的平均数为6,那么x 等于( ) A. 3 B. 4 C. 23 D. 64、某市的7月下旬最高气温统计如下(1)在这十个数据中,34的权是 ,32的权是______.(2)该市7月下旬最高气温的平均数是 ,这个平均数是_________平均数.5、一个班级40人,数学老师第一次统计这个班级的平均成绩为85分,在复查时发现漏记了一个学生的成绩80分,那么这个班级学生的实际平均成绩应为 ( ) A. 83分 B. 85分 C. 87分 D. 84分三、例题展示:例:小明骑自行车的速度是15km/h ,步行的速度是5km/h.(1)如果小明先骑自行车1h ,然后又步行了1h ,那么他的平均速度是 . (2)如果小明先骑自行车2h ,然后又步行了3h ,那么他的平均速度是 .四、课堂检测:1、在一次知识竞赛中,10名学生的得分如下:80,84,78,76,88,97,82,67,75,71,则他们的平均成绩为。
2、一个地区某月前两周从星期一到星期五各天的最低气温依次是(单位:℃):x1, x2, x3, x4, x5和x1+1, x2+2, x3+3, x4+4, x5+5,若第一周这五天的平均最低气温为7℃,则第二周这五天的平均最低气温为。
人教初中数学八下 第20章 数据的分析小结与复习教案 【经典教学设计合编】
第20章数据的分析主备人备课时间教出时间教案编号教学内容第20章小结与复习课型新授课时间分配教师讲授时间15min 学生活动时间25min教学目标情感态度价值观感受统计在生活和生产中的作用.知识能力1.会计算平均数、中位数、众数和方差;2.进一步理解平均数、中位数、众数和方差的统计意义,能根据问题的实际需要选择合适的量表示数据的集中趋势和波动程度.过程方法经历数据处理的基本过程,体会用样本估计总体的思想.教学重点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学难点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学资源教材,教参,备课组意见教法设计自主学习、启发引导本课重点解决问题分析数据的集中趋势和波动程度,体会样本估计总体的思想.本课学生所得课前准备学生预习准备预习课本,发现并标记问题教师教学准备研读教材、教参,分析学生学情教学后记年月日注:1.本页手写;2.“课型”栏填写新授课、练习课、活动课、复习课、等;3.其他栏均在授课前写好,“教学后记”栏在授课后写好。
教学过程(“三讲三不讲”:讲重点、难点,讲规律、拓展,讲易错、易漏、易混点;学生已会的不讲,学生自己能学会的不讲,讲了学生也不会的不讲)主备栏二次备课栏(手写)一、问题引入这是两种杨梅,我们关注杨梅甜度(糖度),如果我们在杨梅市场,怎样判断并做出选择?专业的杨梅质检员有检测杨梅糖度的仪器.质检员抽样调查各10 颗甲、乙两种杨梅的糖度,得到的结果分别如下(糖度越高,杨梅越甜):甲:10 11 11 12 12 13 13 13 14 15乙:10 10 11 11 11 12 12 13 14 16你对这两种杨梅的品质作何评价?二、想一想、理一理(1)本章我们学习了哪些统计的量?这些统计的量各有什么特点?怎样用它们做数据分析?(2)在数据分析时,我们是怎样运用样本估计总体的方法的?(3)统计一般分哪些步骤进行?请你说说本章学习的主要内容,并用合适的框图表示.数据收集—数据整理—数据描述—数据分析三、课堂练习练习1 数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为________.练习2 数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________,方差是_________.练习3 某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下:10 kg装100袋;20 kg装220袋;50 kg装80袋。
人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。
人教版八年级数学下册《20章 数据的分析 数学活动》教案_23
数学活动第二十章数据分析一、活动导入我们已经学习了数据的收集、整理、描述、分析等统计知识.其实统计与生活实际有紧密的联系.我们身边就有大量的统计问题.本节活动课我们将按课前安排的调查内容中涉及我们自身的某些数据(如数学成绩、阅读量、运动时间等)展开活动.二、活动目标(1)经历数据收集、整理、描述和分析的过程,能根据数据分析的结果做出科学的判断和预测,并在这一过程中学会统计知识和它的实际意义.(2)通过数学活动的经历,增强培养学生应用数学知识解决问题的意识,培养团结协作的精神.重点:实际数据的收集、整理、描述和分析,做出正确的判断和科学预测.难点:对获得的数据经过整理后做出正确的分析和预测.三、活动过程活动1 全班五个小组分别对全班同学五个方面的调查调查有两种方式:抽样调查和全面调查将全班分成五个小组,每个小组提出一个可以在课内调查的统计问题,五组分工如下:a.第一组对班级月考数学成绩进行调查;b.第二组对班级同学身高进行调查;c.第三组对班级同学每天用手机时间进行调查;d.第四组对班级本学期阅读课外书籍册数进行调查;e.第五组对班级每天运动时间进行调查.f.第六组对班级同学体重进行调查.活动步骤:a.各小组根据要统计的项目,组内交流设计一个合理的统计表;b.各组将记录的数据进行整理、分析、计算,然后小组交流,并讨论后得出正确结论;c.每个小组推选一名同学面向全班交流汇报,将调查过程和结果向全班介绍和展示;d.将各组统计、分析的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.e.评选最佳活动小组和个人.活动2 调查全班同学每分钟脉搏次数①按课前安排将全班同学分为五个活动小组;②每个小组分别测量本组同学的每分钟脉搏次数,得到几组数据;③求出本组数据的平均数、中位数、众数、方差等;④与其他小组进行交流,估计一颗“正常”心脏的每分钟跳动次数;⑤介绍你所在小组的数据收集与分析过程;⑥你得出哪些结论?依据是什么?⑦谈谈你对用样本估计总体的认识.随堂练习(多媒体)课堂小结谈谈本节课的收获课后作业完成练习册中的习题。
新人教版八年级数学下册第20章数据的分析教案
新人教版八年级数学下册第20章数据的分析教案第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述•组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、例习题意图分析1、教材P124的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。
在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P124的问题是•个实际问题,它照应了本节的前言一一将在实际问题情境中,进•步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P125的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P125例1的作用如下:(1)>解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式, 并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P126例2的作用如下:(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
八年级数学下册 第二十章 数据的分析说课稿 (新版)新人教版 教案
依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:
(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。
一、说教材:
1.本节课的主要内容:
探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平”相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。
2、新课:
(由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)
(1)概念介绍:
a、数据的离散程度(是相对于平均水平的偏离情况);
b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);
c、练习巩固计算极差;
(2)展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点的操作功能。
四、说教学程序:
人教版数学八年级下册第20章数据的分析数学活动教学设计
(1)小组合作:让学生分组,选择一个实际问题,进行数据收集和整理。
(2)数据处理:引导学生运用统计图表、平均数、中位数、众数等方法对数据进行处理。
(3)数据分析:指导学生从数据中发现规律,解释生活现象,提出合理建议。
4.总结与反思:让学生分享学习心得,总结数据分析的方法和技巧,反思数据分析在生活中的应用。
接着,教师简要回顾之前学过的数据收集、整理、描述、分析的基本概念,为新课的学习做好铺垫。在此基础上,教师引入本节课的教学目标,即掌握数据分析的方法及其在实际问题中的应用。
(二)讲授新知,500字
在讲授新知阶段,教师将结合课本内容,详细讲解以下知识点:
1.数据收集:介绍数据的来源、收集方法等,强调数据的真实性和准确性。
2.培养学生严谨、客观、科学的求知态度,树立正确的价值观,认识到数据分析在决策、预测等方面的重要性。
3.通过对生活实际问题的探讨,培养学生关注社会、关爱他人、服务社会的责任感。
教学设计:
1.导入:以生活中的实例导入,如学校运动会成绩、班级成绩等,让学生认识到数据分析在实际生活中的应用。
2.基本概念:讲解数据的收集、整理、描述、分析等基本概念,引导学生运用所学知识对实际问题进行处理。
(3)激励评价:注重激发学生的学习兴趣,鼓励学生积极参与,培养他们的自信心和成就感。
四、教学内容与过程
(一)导入新课,500字
在导入新课阶段,教师将运用生活实例引发学生对数据分析的兴趣。教师展示一组关于学生身高、体重的数据,并提出问题:“如何描述这组数据的集中趋势和离散程度?”引导学生思考数据背后所反映的信息。通过这个实例,让学生认识到数据分析在生活中的重要性,从而激发学生的学习兴趣。
(2)运用所学方法对数据进行整理、描述和分析,可以使用统计图表、平均数、中位数、众数等。
人教版数学八年级下册第二十章《数据的分析》教学设计
针对教学难点,采用小组合作、讨论交流等形式,让学生在合作探究中相互学习、相互启发,共同解决难点问题。教师在此过程中要关注学生的思维过程,适时给予指导和点拨。
4.实践操作,巩固知识
组织学生进行实际操作,如绘制频数分布直方图、进行概率实验等,使学生在实践中巩固所学知识,提高数据分析能力。
4.理解概率的意义,能够运用概率知识对随机事件进行简单的预测。
(二)过程与方法
1.通过小组合作、讨论交流等学习方式,培养学生独立思考、合作解决问题的能力。
2.通过对实际问题的数据收集、整理和分析,提高学生运用数学知识解决实际问题的能力。
3.利用信息技术手段,如电子表格、统计软件等,辅助学生进行数据分析,培养学生的信息素养。
2.思考并举例说明平均数、中位数、众数在实际问题中的应用和意义。
3.利用概率知识,分析一个随机事件,预测该事件发生的可能性,并简要说明预测的依据。
4.针对本节课的学习内容,撰写一篇学习心得体会,谈谈自己对数据分析的认识和感受,以及在以后的学习和生活中如何运用所学知识。
三、教学重难点和教学设想
(一)教学重点
1.数据的收集、整理、描述和分析方法的应用。
2.平均数、中位数、众数等统计量的计算及其在实际问题中的应用。
3.频数分布直方图的绘制及分析。
4.概率知识在随机事件预测中的应用。
(二)教学难点
1.数据分析方法的选择和运用。
2.统计量在实际问题中的灵活运用。
3.频数分布直方图的解读与分析。
二、学情分析
八年级下册的学生已经具备了一定的数学基础和逻辑思维能力,对数据的收集、整理和描述有初步的认识。在此基础上,学生对数据分析的学习有着较高的兴趣,但可能在以下几个方面存在困难:首先,对数据的分析方法和技巧掌握不够熟练,需要教师在教学过程中进行引导和训练;其次,学生在处理实际问题时,可能难以将所学知识灵活运用,需要加强实践操作的环节;最后,学生在团队合作中,沟通与协作能力有待提高,需要教师给予适当的指导和鼓励。因此,在本章节的教学中,教师应关注学生的个体差异,充分调动学生的主观能动性,引导他们通过实践探索,提高数据分析能力,并在合作学习中培养沟通与协作能力。
人教版八年级下数学-第二十章----数据的分析全章设计教案
第二十章数据的分析§20、1平均数(一)教学目标知识与技能1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数过程与方法经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,能运用数据信息的分析解决一些简单的实际问题。
情感态度与价值观1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系重点算术平均数,加权平均数的概念及计算。
难点加权平均数的概念及计算。
教学过程备注教学过程与师生互动第一步:引入新课:在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)第二步:讲授新课:1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X= =91(分)甲小组做得对吗?有不同求法吗?乙小组:X= ×××××××= 91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?①平均数:一般地,如果有n个数x1,x2,……,x n,那么,叫做这n个数的平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,x k出现f k次,(这里f1+f2+……+f k=n),那么,根据平均数的定义,这n个数的平均数可以表示为这样求得的平均数叫做加权平均数,其中f1,f2,……,f k叫做权。
人教版数学八年级下册第20章数据的分析数学活动优秀教学案例
本教学案例共包括五个部分:教学目标、教学重难点、教学过程、教学评价和教学反思。在教学过程中,我采用了多样化的教学手段,如多媒体演示、小组讨论、实践操作等,激发学生的学习兴趣,提高学生的参与度。在教学评价环节,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况。最后,在教学反思环节,我对教学过程进行总结,为今后的教学提供借鉴和改进的方向。
3.培养学生合作交流的意识,使其能够主动与他人分享自己的知识和经验,提高团队协作能力。
4.培养学生诚实守信的品质,使其能够在数据收集和分析过程中,遵循实事求是的原则,做到客观、公正、真实。
三、教学策略
(一)情景创设
1.生活情境:以学生熟悉的生活场景为背景,设计具有针对性的数学问题,激发学生的学习兴趣,引导学生主动参与课堂。
3.利用小组合作的机会,让学生互相交流、互相学习,促进学生的共同成长。
4.注重小组合作的评价,鼓励学生发挥个人特长,提高小组整体水平。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价和小组评价,让学生了解自己的学习情况,激发学生的学习动力。
3.注重过程性评价与终结性评价相结合,全面了解学生的学习效果,为教学提供反馈和改进的方向。
1.对本节课的主要知识点进行总结,帮助学生巩固学习内容。
2.引导学生总结自己在解决问题过程中的经验和方法,提高学生的解决问题的能力。
人教版八年级下册第二十章数据的分析全章复习教学设计
难点:引导学生正确处理个人隐私和公共数据之间的关系,以及在数据分析过程中遵循法律法规。
(二)教学设想
1.创设情境:结合生活实际,设计具有趣味性、挑战性的问题情境,让学生在实际问题中感受数据分析的重要性,激发学习兴趣。
教学策略:案例教学法、问题驱动法、小组合作法。
2.运用案例教学法,让学生在实际问题中感受数据分析的过程和方法,提高学生的数据分析能力。
3.引导学生运用信息技术手段,如电子表格软件、统计软件等,辅助数据分析,提高数据处理和分析的效率。
4.设计丰富的实践活动,让学生在实践中掌握数据分析的方法,培养学生的动手操作能力和创新思维。
5.通过评价和反馈,帮助学生了解自己的学习进度和不足,激发学生的学习兴趣和自信心。
(三)情感态度与价值观
1.培养学生对数据的敏感性和好奇心,使他们对数据充满兴趣,愿意主动去发现和探索数据背后的规律。
2.培养学生严谨、客观、理性的数据分析态度,让他们认识到数据分析在决策、解决问题等方面的重要性。
3.培养学生的团队合作精神,使他们学会倾听、尊重、沟通、协作,共同完成数据分析任务。
4.培养学生的数据伦理观念,让他们明白数据的重要性和敏感性,遵循数据保护的法律法规,尊重个人隐私。
1.重点:培养学生熟练运用数据分析的基本方法,解决实际问题,并能够对数据进行合理的解释和分析。
难点:让学生理解数据分析在不同情境下的灵活运用,以及如何处理和分析大量复杂数据。
2.重点:提高学生对数据分析结果的评价和推断能力,使他们能够根据数据做出合理的预测。
难点:培养学生运用线性回归方程进行数据拟合和预测的能力,以及对方差、标准差等统计量的深入理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、例习题意图分析1、教材P124的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。
在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P124的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P125的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P125例1的作用如下:(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P126例2的作用如下:(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?x =41(79+80+81+82)=80.5 五、例习题分析:例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单答案:1.x 小关 =79.05 x 小兵 =80 2. x =597.5小时七、课后练习:1、在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为 .2、某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶 环。
3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
已知该班平均成绩为80分,问该班有多少人? 答案:1.432143215432x x x x x x x x ++++++ 2.ba byax ++ 3.甲x =86.9 2x =96.5乙被录取 4. 39人20.1.1 平均数(第二课时)一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数三、例习题的意图分析1、教材P128探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P128的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P128利用计算器计算平均值这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。
一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。
所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。
统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入采用教材原有的引入问题,设计的几个问题如下:(1)、请同学读P128探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间2、某班40名学生身高情况如下图,请计算该班学生平均身高答案1.(1).15. (2)28. 2. 165七、课后练习:1该公司每人所创年利润的平均数是多少万元?2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元 2.约29岁 3.60.54分贝60 噪音/分贝80 70 50 40 9020.1.2 中位数和众数(第一课时)一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:1、重点:认识中位数、众数这两种数据代表2、难点:利用中位数、众数分析数据信息做出决策。
三、例习题的意图分析1、教材P130的例4的意图(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。
(因为在前面有介绍中位数求法,这里不再重述)(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P132例5的意图(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)(3)、例5也反映了众数是数据代表的一种。
四、课堂引入严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。
它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析教材P130例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。
因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P132例5,由表中第二行可以查到23.5号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
2根据表格回答问题:商店出售的各种规格空调中,众数是多少?假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?答案:1. (1)210件、210件(2)不合理。
因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2. (1)1.2匹(2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调。
七、课后练习1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()A.97、96B.96、96.4C.96、97D.98、974.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、255.请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天教学反思:20.1.2 中位数和众数(第二课时)一、教学目标:1、进一步认识平均数、众数、中位数都是数据的代表。