关于高级高中数学不等式知识点总结归纳教师版
高中数学不等式知识点总结归纳(教师版)
高中数学不等式知识点总结归纳(教师版)高中数学不等式专题教师版一、高考动态考试内容:不等式。
不等式的基本性质。
不等式的证明。
不等式的解法。
含绝对值的不等式。
考试要求:1.理解不等式的性质及其证明。
2.掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会简单地应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式│a│-│b│≤│a+b│≤│a│+│b│。
二、不等式知识要点1.不等式的基本概念1) 不等(等)号的定义:a-b>⟺a>b;a-b=⟺a=b;a-b<⟺a<b。
2) 不等式的分类:绝对不等式,条件不等式,矛盾不等式。
3) 同向不等式与异向不等式。
4) 同解不等式与不等式的同解变形。
2.不等式的基本性质1) a>XXX<a(对称性)。
2) a>b,b>c⟹a>c(传递性)。
3) a>b⟹a+c>b+c(加法单调性)。
4) a>b,c>d⟹a+c>b+d(同向不等式相加)。
5) a>b,cb-d(异向不等式相减)。
6) a>b,c>0⟹ac>bc;a<b,c<0⟹ac<bc(乘法单调性)。
7) a>b>0,c>d>0⟹ac>bd(同向不等式相乘)。
8) a>b>0,0bc(异向不等式相除)。
9) a>b,ab>0⟹a/b>b/a。
10) a>b,ab<0⟹a/b<b/a。
11) a>b>0,n>1⟹a^n>b^n(平方法则)。
12) a>b>0,n>1⟹a^(1/n)>b^(1/n)(开方法则)。
3.几个重要不等式1) 若a∈R,则|a|≥0,a^2≥0.2) 若a、b∈R+,则a^2+b^2≥2ab(当且仅当a=b时取等号)。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
完整版高中数学不等式知识点总结
完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。
本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。
一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。
当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。
在不等式中,表示关系的符号“<”和“>”称为不等号。
解不等式可以用图像法、正推反证法和直接法等方法。
图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。
正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。
直接法:对不等式进行变形、化简和运算,得出解的过程。
不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。
2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。
3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。
二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。
2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)
第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
高中数学不等式知识点总结教师版
高中数学不等式知识点总结教师版一、基本概念1.不等式的定义:不等式是数学中一种重要的关系,是一个数与另一个数之间的大小关系的表达方式。
2.不等式的性质:不等式具有传递性、对称性和加法性。
-传递性:若a>b,b>c,则a>c。
-对称性:若a>b,则b<a。
-加法性:若a>b,则a+c>b+c。
3.常见的不等式符号:>,<,≥,≤。
二、一元一次不等式1. 一元一次不等式的定义:一元一次不等式是形如 ax + b > 0 或ax + b < 0 的不等式,其中 a, b 是实数,且a ≠ 0。
2.一元一次不等式的解法:分为以下几步:-将不等式转化为等式求解,得到等式的解集。
-判断等式解集与原不等式的关系,得到不等式解集。
3.一元一次不等式的图像:可利用数轴来表示一元一次不等式的解集。
三、一元二次不等式1. 一元二次不等式的定义:一元二次不等式是形如ax² + bx + c > 0 或ax² + bx + c < 0 的不等式,其中 a, b, c 是实数,且a ≠ 0。
2.一元二次不等式的解法:-利用一元二次不等式的图像法,即通过绘制一元二次函数的图像来确定不等式的解集。
-利用一元二次不等式的求根法,即通过求解一元二次方程来确定不等式的解集。
3.一元二次不等式的图像:可利用平移、压缩、翻折等方法,通过一元二次函数的图像形状来确定其解集。
四、绝对值不等式1.绝对值不等式的定义:绝对值不等式是形如x-a,>b或,x-a,<b的不等式,其中a,b是实数,且b>0。
2.绝对值不等式的解法:-对于,x-a,>b形式的不等式,可拆分为两个一元一次不等式求解,并求得并集。
-对于,x-a,<b形式的不等式,可利用绝对值的定义,得到不等式的解集。
3.绝对值不等式的图像:可利用数轴来表示绝对值不等式的解集。
高三数学不等式知识点总结
高三数学不等式知识点总结不等式是数学中的一个重要概念,广泛应用于各个领域。
在高三数学学习中,掌握不等式的相关知识点对于理解和解决问题至关重要。
本文将对高三数学中的不等式知识点进行总结。
1. 不等式的基本性质不等式的基本性质包括:- 加法性质:如果a > b,那么a + c > b + c。
- 减法性质:如果a > b,那么a - c > b - c。
- 乘法性质:如果a > b,c > 0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 除法性质:如果a > b,c > 0,那么a/c > b/c;如果a > b,c < 0,那么a/c < b/c。
2. 不等式的解集表示法解不等式时常常需要表示出解集,常见的表示方法有:- 图形表示法:将不等式的解集在数轴上用图形表示出来,例如用方向箭头表示不等式的解集。
- 区间表示法:使用区间表示法表示解集,例如(a, b)表示开区间,[a, b]表示闭区间,(a, b]表示半开半闭区间,等等。
- 集合表示法:使用集合的符号表示解集,例如{x | a < x < b}表示大于a小于b的x的集合。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解方程类似,不同的是在解的过程中需要注意保持不等式的方向性。
- 加减法解不等式:通过加减同一个数使得不等式简化,确定不等式的方向。
- 乘除法解不等式:通过乘除同一个正数或负数使得不等式简化,确定不等式的方向。
4. 一元二次不等式一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的关键是确定二次函数的图像与x轴的位置关系。
- 求解不等式组:将二次不等式转化为不等式组的形式,通过观察二次函数的变化趋势求解。
- 图像法求解:绘制二次函数的图像,根据图像与x轴的位置关系得出解集。
关于高级高中数学不等式知识点总结归纳教师版
高中数学不等式专题教师版一、高考动向考试内容:不等式.不等式的根本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1〕理解不等式的性质及其证明.(2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3〕掌握解析法、综合法、比较法证明简单的不等式.(4〕掌握简单不等式的解法.(5〕理解不等式│ a│- │ b│≤│ a+b│≤│ a│ +│ b│?二、不等式知识要点1.不等式的根本看法〔 1〕不等〔等〕号的定义: a b 0 a b; a b 0 a b; a b 0a b.〔 2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3〕同向不等式与异向不等式 .(4〕同解不等式与不等式的同解变形 .2. 不等式的根本性质(1〕a b b a〔对称性〕〔 2〕a b, b c a c 〔传达性〕〔 3〕a b a c b c 〔加法单调性〕〔 4〕a b, c d a c b d 〔同向不等式相加〕〔 5〕 ab, c da cb d 〔异向不等式相减〕〔 6〕 a. b,c0 ac bc( 7〕 a b, c 0 ac bc 〔乘法单调性〕〔 8〕 ab 0,c d0 acbd 〔同向不等式相乘〕(9) a b 0,0cda b 〔异向不等式相除〕cd(10) a b, ab 01 1〔倒数关系〕ab〔 11〕 a ba nb n ( n Z , 且n1) 〔平方法那么〕〔 12〕 ab 0nanb(nZ ,且n 1) 〔开方法那么〕3. 几个重要不等式〔 1〕 假设 a R,那么 | a | 0,a 2〔2〕假设、R , 那么 22或 22〔当仅当 a=b 时取等号〕a ba b2ab(ab 2 | ab | 2ab)〔 3〕若是 a , b 都是正数,那么aba b. 〔当仅当 a=b 时取等号〕2极值定理:假设 x, y R , xyS, xy P, 那么:1 若是 P 是定值 , 那么当 x=y 时, S 的值最小;○○2若是 S 是定值 , 那么当 x =y 时, P 的值最大 .利用极值定理求最值的必要条件:一正、二定、三相等 .(4) 假设 a 、 b 、c R ,那么a bc3abc 〔当仅当 a=b=c 时取等号〕3(5) 假设 ab 0, 那么ba 2 〔当仅当 a=b 时取等号〕ab〔 7〕 假设a 、bR,那么 || a | | b || | a b | | a | | b |4. 几个着名不等式〔1〕平均不等式:若是 a , b 都是正数,那么2a b a 2 b 2〔当仅当1 ab2 2 .1 aba=b 时取等号〕即:平方平均≥算术平均≥几何平均≥调停平均〔a、b 为正数〕:特别地, ab (ab ) 2 a 2b 2〔当 a = b 时, ( ab ) 2 a 2 b 2ab 〕2222幂平均不等式: a 12a 22...a n 21(a 1 a 2 ... a n ) 2n注:比方: (acbd ) 2 ( a 2 b 2 )(c 2 d 2 ) .常用不等式的放缩法:①1111 1 11n n 1n(n 1)pn 2pn( n 1) n 1n ( n2)② n 1 n1 p 1 p1nn 1(n 1)nn2 nnn11〔 2〕柯西不等式:假设 a 1 ,a 2 , a 3 , , a n R,b 1 ,b 2 ,b 3 , b n R;那么a 2 a 2)(b bb 2 b 2 )〔 a b a b a 3 b 3 a n b )2 (a 2 a 2 2 21 12 2n1 2 3n1 2 3 n当且仅当 a 1 a 2 a 3 an 时取等号b 1 b 2 b 3 b n〔 3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数 f(x), 关于定义域中任意两点x 1, x 2 ( x 1 x 2 ), 有那么称 f(x)为凸〔或凹〕函数 .5. 不等式证明的几种常用方法比较法、综合法、解析法、换元法、反证法、放缩法、构造法.6. 不等式的解法〔 1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例① 一元一次不等式 ax >b 解的谈论;②一元二次不等式 ax 2 +bx +c >0( a ≠ 0) 解的谈论 .( 2〕分式不等式的解法:先移项通分标准化,那么 ( 3〕无理不等式:转变成有理不等式求解 ( 4〕 . 指数不等式:转变成代数不等式 ( 5〕对数不等式:转变成代数不等式( 6〕含绝对值不等式○1应用分类谈论思想去绝对值;○2 应用数形思想;○3应用化归思想等价转变注:常用不等式的解法举例〔 x 为正数〕:① x(1 x) 21 2x(1 x)(1 x) 1(2) 3 422327② yx(1x 2 )y 2 2 x 2 (1 x 2 )(1 x 2 ) 1(2)34y2 32 2 3279近似于 ysin x cos 2x sin x(1 sin 2x) ,③ | x 1 | | x | | 1 | ( x 与 1同号,故取等 ) 2xx x三、利用均值不等式求最值的方法均值不等式abab (a 0,b 0, 当且仅当 a = b 时等号成立〕 是一个重要2的不等式,利用它可以求解函数最值问题。
高三不等式必背知识点总结
高三不等式必背知识点总结高中数学学科中,不等式是一个重要的内容,也是学习中的重点和难点之一。
在高三阶段,不等式的掌握和运用变得更加关键,它是解析几何、数列等各种数学内容的基础。
下面将对高三不等式的必背知识点进行总结与归纳。
一、基本的不等式关系在不等式学科中,最基础、最重要的关系就是大小关系。
通常使用的符号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
大于号和小于号用于表示严格的大小关系,大于等于号和小于等于号则包含了等于的情况。
二、绝对值不等式绝对值不等式是高三阶段需要掌握的一个重要知识点。
对于任意的实数a,绝对值不等式可以分为三种情况:1. 当a > 0时,|x| > a的解集为(-∞,-a)∪(a,+∞);2. 当a = 0时,|x| > a的解集为全体实数集R;3. 当a < 0时,|x| > a的解集为空集。
绝对值不等式的求解需要根据以上三种情况进行分类讨论。
三、一元一次不等式一元一次不等式是最基础的一类不等式之一,在高三阶段需要非常熟练地掌握。
一元一次不等式的求解大致可以分为以下几个步骤:1. 将不等式两边的式子整理为一个多项式,注意保持不等式的方向不变;2. 描述不等式的解集,可以通过解析法或图像法等方式确定解集的范围。
四、二次不等式二次不等式在高三学习中也是一个重点,它的解集常常与多项式的图像、方程的根等有关。
1. 解二次不等式需要先将二次不等式整理为标准形式,即要使得二次项系数大于0。
2. 利用二次不等式的图像特点,以及平方的非负性质,确定解集的范围。
五、分式不等式分式不等式是高三学习中较为复杂的一类不等式,求解分式不等式的一般步骤如下:1. 找到分式不等式的定义域,即分母不能为0的条件;2. 利用分式的性质化简不等式,使其变为分子和分母均不为0的形式;3. 对分子和分母分别进行讨论,找出使得不等式成立的范围。
六、不等式的基本性质在高三学习中,还需要深入了解不等式的一些基本性质,这些性质在解决不等式问题时起到了重要的指导作用。
高一不等式性质知识点总结
高一不等式性质知识点总结在高中数学中,不等式是一个重要且常见的概念。
不等式性质是解不等式以及进行数学推理的基础。
在高一学习阶段,学生需要掌握一些基本的不等式性质,并能够运用它们解决问题。
本文将对高一不等式性质进行总结和归纳,帮助学生更好地理解和运用相关知识。
一、基本的不等式性质1. 加减性质:如果a>b,那么a+c>b+c,a-c>b-c。
这个性质表示不等式两边同时加(减)相同的数时,不等关系保持不变。
2. 倍数性质:如果a>b,且c>0,那么ac>bc。
这个性质表示不等式两边同时乘以正数时,不等关系保持不变。
3. 倒数性质:如果a>b,且c<0,那么ac<bc。
这个性质表示不等式两边同时乘以负数时,不等关系改变。
4. 等价性质:如果a>b,并且c是一个正数,那么ac>bc;如果c是一个负数,那么ac<bc。
这个性质可以用于推导和证明不等式。
二、不等式的求解方法1. 基于图形的方法:对于简单的一元一次不等式,可以通过在数轴上绘制相关函数的图像来直观地找到解。
2. 基于性质的方法:利用不等式的性质进行数学推理和变形,以求得解的范围。
3. 基于代数的方法:对于复杂的不等式,可以利用代数的方法进行推导和解答。
常用的方法包括因式分解、配方法、平方根法等。
三、常见的不等式类型1. 一元一次不等式:形如ax+b>0的不等式,其中a和b是已知的实数,x是未知数。
通过代数的方法解题,可以得到解的范围。
2. 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b 和c是已知的实数,x是未知数。
解一元二次不等式的方法包括图像法、配方法和因式分解等。
3. 绝对值不等式:形如|ax+b|<c的不等式,其中a、b和c是已知的实数,x是未知数。
解绝对值不等式的方法包括分情况讨论和代数方法等。
4. 分式不等式:形如f(x)>g(x)的不等式,其中f(x)和g(x)是已知的分式函数,x是未知数。
高中不等式知识点总结
高中不等式知识点总结一、学问点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:abba②传递性:ab,bcac③可加性:aba+cb+c④可积性:ab,c0acbc;ab,c0acbc;⑤加法法则:ab,cda+cb+d⑥乘法法则:ab0,cd0acbd⑦乘方法则:ab0,anbn(n∈N)⑧开方法则:ab0,2.算术平均数与几何平均数定理:(1)假如a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)假如a、b∈R+,那么(当且仅当a=b时等号)推广:假如为实数,则重要结论1)假如积xy是定值P,那么当x=y时,和x+y有最小值2;(2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;遇到肯定值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,依据不等式的性质推导出欲证的不等式。
综合法的放缩常常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过查找不等式成立的充分条件,逐步将欲证的不等式转化,直到查找到易证或已知成立的结论。
4.不等式的解法(1)不等式的有关概念同解不等式:两个不等式假如解集相同,那么这两个不等式叫做同解不等式。
同解变形:一个不等式变形为另一个不等式时,假如这两个不等式是同解不等式,那么这种变形叫做同解变形。
提问:请说出我们以前解不等式中常用到的同解变形去分母、去括号、移项、合并同类项(2)不等式axb的解法①当a0时不等式的解集是{x|xb/a};②当a0时不等式的解集是{x|x③当a=0时,b0,其解集是R;b0,其解集是ф。
(3)一元二次不等式与一元二次方程、二次函数之间的关系(4)肯定值不等式|x|0)的解集是{x|-aoo-a 0 a|x|a(a0)的解集是{x|x-a或xa},几何表示为:oo-a0a小结:解肯定值不等式的关键是-去肯定值符号(整体思想,分类讨论)转化为不含肯定值的不等式,通常有下列三种解题思路:(1)定义法:利用肯定值的意义,通过分类讨论的方法去掉肯定值符号;(2)公式法:|f(x)|af(x)a或f(x)-a;|f(x)|a-a(3)平方法:|f(x)|a(a0)f2(x)a2;|f(x)|a(a0)f2(x)a2;(4)几何意义。
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
专题05 一元二次不等式与其他常见不等式解法(教师版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】1高中数学53个题型归纳与方法技巧总结篇专题05一元二次不等式与其他常见不等式解法、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅2、分式不等式(1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为11(m n ,,即关于x 的不等式02>++a bx cx 的解集为11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,.3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推.4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法题型二:含参数一元二次不等式的解法题型三:一元二次不等式与韦达定理及判别式题型四:其他不等式解法题型五:二次函数根的分布问题【典例例题】题型一:不含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为()A .{2}x x <-∣B .{1}x x >∣C .{21}x x -<<∣D .{2∣<-xx 或1}x >【答案】D 【解析】【分析】结合一元二次不等式的解法求得正确答案即可.【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >,故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为()A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-【答案】D 【解析】【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式.【详解】当2x =时,()220255154f a a -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-.故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是()A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得答案.【详解】函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,可得x ≥0,()f x 递增;当x <0时,()f x 递增;且x =0时函数连续,所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞).故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是()A .m <B .m >C .0m >D .m >或m <【答案】B 【解析】【分析】根据该不等式是否为二次不等式,分情况讨论.【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立;当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为()A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.()f x 定义域为R ,()()()2233x x f x x x f x --=+-=+=,()f x ∴为定义在R 上的偶函数,图象关于y 轴对称;当0x ≥时,()23x f x x =+,又3x y =,2y x 在[)0,∞+上均为增函数,()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5.故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为()A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】【分析】根据一元二次不等式的解法即可求解.【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a--≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a.故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为()A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【解析】【分析】当1a <-时,根据开口方向及根的大小关系确定不等式的解集.【详解】因为1a <-,所以1()0a x a x a ⎛⎫--< ⎪⎝⎭等价于1()0x a x a ⎛⎫--> ⎪⎝⎭,又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭.故选:A .【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m <<)的解集为()A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解.【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m <<所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-【答案】D 【解析】【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<,当1a >时,不等式的解集为1x a <<,当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.【答案】()(),22,∞∞--⋃+【解析】【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x a a ==+120,0x x <>,当0a >时,解集{}{}12||A x x x x x x =<> ,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x <,即12a <,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R.(1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.【答案】(1)答案见解析(2)能;2k =-,B ={-3,-2,-1,0,1,2,3}【解析】【分析】(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A .(2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案.(1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+};当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}.(2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集.因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号,所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围【答案】12ln2(,]43-【解析】【分析】将不等式转化为22ln 2(1)x xm x ->+,构造函数22ln ()=2(1)x x f x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x xm x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--,3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,u (1)10=-<,u (2)104ln20=+>.因此存在1(1,2)x ∈,使得1()0u x =,因此函数()f x 在1(0,)x 内单调递减,在1(x ,) +单调递增.f (1)14=,f (2)2ln23-=. 关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为()A .2-B .1C .2D .8【答案】C 【解析】【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值.【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b+=+≥,当且仅当4b =时取“=”,故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是()AB.CD.【答案】D 【解析】【分析】一元二次不等式解集转化为一元二次方程的解,根据韦达定理求出124x x a +=,2123x x a =,再用基本不等式求出最值【详解】22430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦当且仅当143a a -=-即a =时,等号成立,所以1212a x x x x ++的最大值为故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则()A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞【答案】ABD 【解析】【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确;且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误;不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确.故选:ABD .例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.【答案】{}23x x <<【解析】【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可.【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,故6a =,则不等式303x a x -<-即3603x x -<-等价于3(2)(3)0x x --<,不等式3(2)(3)0x x --<的解集为{}23x x <<,则不等式303x ax -<-的解集为{}23x x <<,故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --<的解集是________.【答案】{|23}x x <<【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答.【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()(23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<,所以不等式20x bx a --<的解集是{|23}x x <<.故答案为:{|23}x x <<【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换.题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______.【答案】10,2⎛⎫⎪⎝⎭【解析】【分析】由12x >可得120x->,结合分式不等式的解法即可求解.【详解】由12x >可得120x ->,整理可得:120x x ->,则()210x x -<,解可得:102x <<.所以不等式是12x >的解集为:10,2⎛⎫⎪⎝⎭.故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________.【答案】()1,0-【解析】【分析】根据分式不等式的解法进行求解.【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++,故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________.【答案】02xx <-【解析】【分析】由题意根据分式不等式的解法,得出结论.【详解】一个解集为()0,2的分式不等式可以是02xx <-,故答案为:02xx <-.(答案不唯一)例21.(2022·上海·高三专题练习)关于x230≥的解集为_________.【答案】[4,5)【解析】【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++,23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩,2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5).【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题.例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法:解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-.参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____.【答案】()()3,11,2 --.【解析】【分析】关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得不等式1011kx bx ax cx ++<++的解集.【详解】若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃.故解集为:()()3,11,2 --.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理.2.根式不等式绝对值不等式平方处理.题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是()A .()0,1B .()0, +C .()1,+∞D .(),0-∞【答案】C 【解析】【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围.【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为()A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭【答案】B 【解析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得5534a -≤≤-,所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值()A .196B .3C .103D .92【答案】AC 【解析】【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可.【详解】解:∵322()13f x x x ax =-+-,∴2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=即22230m m a -+-=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩,解得:732a <<,所以a 的取值可能为196,103.故选:AC.【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+.【解析】根据一元二次方程根的分布建立不等式组,解之可得答案.【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证:(Ⅰ)0a >且21ba-<<-;(Ⅱ)方程()0f x =在(0,1)内有两个实根.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得;(Ⅱ)根据(0),(1)()3bf f f a-的符号可得.【详解】(Ⅰ)因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>.故21ba-<<-.(Ⅱ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a --,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22(0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3b a -上单调递减,在(,1)3ba-上单调递增,所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别各有一实根.【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B x x ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=()A .{}22x x -≤≤B .{}42,3x x x -≤≤≠-C .{}34x x ≤≤D .{}34x x -<≤【答案】D 【解析】【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解.【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤,故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】【分析】2,20x x x a ∃∈-+<R ,列出不等式,求出1a <,从而判断出答案.【详解】2,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件.故选:B3.(2022·陕西·模拟预测(理))已知集合 234|0A x x x ,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D 【解析】【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(【答案】C 【解析】【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求解即可.【详解】()()ππln ln 2cos ln 2ln cos(π)0)2()(22f x f x x x x x x x ----+----=+= ,()f x ∴图象关于点(1,0)成中心对称,又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos2y x y x y x ==--=-在(0,2)上单调递增知,()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +< ,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t <,所以01t <<.故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】【分析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为()A .[1,3]-B .75,22⎡⎤-⎢⎥⎣⎦C.[1,-D.[1,【答案】A【分析】令1sin ,[,1]2t x t =∈,则||2t t k -≤.对k 进行讨论,即可求出答案.【详解】令1sin ,[,1]2t x t =∈,则||2t t k -≤.(1)当12k <时,则2()220t t k t kt -≤⇒--≤,令2()2g t t kt =--,max ()(1)101g t g k k ==--≤⇒≥-.故112k -≤<.(2)当1k >时,则2()220t k t t kt -≤⇒-+≥,令2()2g t t kt =-+①当12k<时,212k k <⇒<<,则22min ()()201242k k k g t g k ==-+≥⇒<≤②当12k≥时,2k ≥,则min ()(1)120323g x g k k k ==-+≥⇒≤⇒≤≤故13k <<(3)当112k ≤≤时,则||2t t k -≤在1[,1]2t ∈上恒成立,故112k ≤≤.综上所述:[1,3]k ∈-故选:A.7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b +=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是()A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A【分析】首先判断0,0a b >>,再化简()214224a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求解.【详解】解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>.又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”),由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-.故选:A .8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C 【解析】【分析】把不等式看作是关于a 的一元一次不等式,然后构造函数()2(2)44f a x a x x =-+-+,由不等式在[1-,1]上恒成立,得到(1)0(1)0f f ->⎧⎨>⎩,求解关于a 的不等式组得x 得取值范围.【详解】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩,整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x 的取值范围为()(),13,-∞⋃+∞.故选:C .9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .4【答案】ABC 【解析】【分析】利用换元法令sin t x =,不等式可整理为220t at -+≥在(]0,1t ∈上恒成立,即2a t t ≤+,即min2a t t ⎛⎫≤+ ⎪⎝⎭,求函数的最小值即可得解.【详解】设sin t x =,0,2x π⎛⎤∈ ⎥⎝⎦,(]0,1t ∴∈则不等式2sin sin 20x a x -+≥对任意0,2x π⎛⎤∈ ⎥⎝⎦恒成立,即转化为不等式220t at -+≥在(]0,1t ∈上恒成立,即转化为222t a t t t +≤=+在(]0,1t ∈上恒成立,由对勾函数知2y t t =+在(]0,1t ∈上单减,min 2131y =+=,3a ∴≤故选:ABC 【点睛】关键点点睛:本题主要考查不等式恒成立问题,利用换元法结合对勾函数的单调性求出函数的最值是解题的关键,考查学生的转化与化归能力,属于一般题.10.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有()A .0a <B .0c >C .20cx bx a ++>的解集为11x x n m ⎧⎫<<⎨⎬⎩⎭D .20cx bx a ++>的解集为{1x x n <或}1x m>【答案】AC 【解析】由一元二次不等式的解法,再结合根与系数的关系逐个分析判断可得答案【详解】解:因为不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,所以0a <,,m n 是方程20ax bx c ++=的两个根,所以A 正确;所以b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,解得()b m n a c mna =-+⎧⎨=⎩,因为0m >,m n <,所以0n >,又由于0a <,所以0c mna =<,所以B 错误;所以20cx bx a ++>可化为2()0mnax m n ax a -++>,即2()10mnx m n x -++<,即(1)(1)0mx nx --<,因为0n m >>,所以11n m<,所以不等式20cx bx a ++>的解集为11x x n m ⎧⎫<<⎨⎬⎩⎭,所以C 正确,D 错误,故选:AC 【点睛】关键点点睛:此题考查一元二次不等式的解法的应用,解题的关键由一元二次不等式的解法可知0a <,且,m n 是方程20ax bx c ++=的两个根,再利用根与系数的关系得b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,再求得()b m n a c mna =-+⎧⎨=⎩,从而可求解不等式20cx bx a ++>,考查转化思想,属于中档题11.(2022·全国·高三专题练习)已知函数()222f x x mx m =--,则下列命题正确的有()A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x 【答案】BC 【解析】对于A ,分0m >和0m <时求解不等式;对于B ,根据函数的单调性可判断;对于C ,根据函数的单调性,任取两点,根据数形结合的方式可判断;对于D ,构造函数()()(0)f x g x x x=>,看作()y f x =在y 轴右侧图象上的点与原点所在直线的斜率,数形结合可判断单调性,即可得出结果.对于A ,由2220x mx m --<得()(2)0x m x m -+<,当0m >时,原不等式的解集为|2m x x m ⎧⎫-<<⎨⎬⎩⎭;当0m <时,原不等式的解集为|2m x m x ⎧⎫<<-⎨⎩⎭,故A 错误;对于B ,1m =时,2219()212(48f x x x x =--=--在[)1+∞,上是增函数,则1212()()0f x f x x x ->-,即()[]1212()()0x x f x f x -->,故B 正确;对于C.()f x 在1,4⎛⎤-∞ ⎥⎝⎦m 上单调递减,当121,4x x m ⎛⎤∈-∞ ⎥⎝⎦,时,设11(,())A x f x 、()22,()B x f x ,则AB 的中点C 1212()(),22x x f x f x ++⎛⎫⎪⎝⎭,又设1212,22x x x D f x ⎛⎫⎛++⎫ ⎪ ⎪⎝⎭⎝⎭,数形结合可知,点D 位于点C 的下方,即1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故C正确;对于D ,设()()(0)f x g x x x=>,则()g x 表示()y f x =在y 轴右侧图象上的点与原点所在直线的斜率,数形结合可知,()g x 是增函数,当120x x <<时,12()()<g x g x ,则1212()()f x f x x x <,即2112()()x f x x f x <,故D 错误.故选:BC.关键点睛:本题考查二次函数性质的综合应用,对于CD 选项的判断,关键是根据函数的单调性,利用数形结合的方法进行判断.12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是()A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]-D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞【答案】BC 【解析】【分析】(1,3)f 和(3,1)f 的值直接代入即可求得,1(,)4f a a ≤转化为求二次函数最大值的问题,若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立转化为关于x 的二次函数与x 轴至多有一个交点的问题,若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立转化为关于a 的一次函数在0a >内恒大于等于零恒成立的问题.【详解】对于选项A ,()(1,3)1132f =⨯-=-,()(3,1)3110f =⨯-=,即(1,3)(3,1)f f ≠,则A 选项错误;对于选项B ,()22211111(,)144244f a a a a a a a a a ⎛⎫⎛⎫=-=-=--++=--+≤ ⎪ ⎪⎝⎭⎝⎭,则B 选项正确;对于选项C ,()()()2(,)114f x a x x a x x a x a a -=--=-++-≤-+恒成立,即()2140x a x -++≥恒成立,则()21160a ∆=+-≤,解得53a -≤≤,即实数a 的取值范围是[5,3]-,则C选项正确;对于选项D ,()2140x a x -++≥恒成立,令()24 0y ax x x a =-+-+>,当0x >时,该函数看成关于a 的一次函数,函数单调递减,不可能恒大于0,当0x =时,40y =≥成立,当0x <时,该函数看成关于a 的一次函数,函数单调递增,当0a =时,24y x x =-+211544x x =-++2115024x ⎛⎫=-+> ⎪⎝⎭,则实数x 的取值范围是(],0-∞,则D 选项错误;故选:BC .三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y【答案】[0,1]【解析】根据不等式的解集可知一元二次不等式所对应的一元二次方程的根,利用韦达定理可求出a ,c 的值,再根据复合函数求单调区间的方法,得出单调递增区间.【详解】由题知-2和1是210ax x c a++=的两根,由根与系数的关系知-2+1=21a -,−2×1=c a,由不等式的解集为{|21}x x -<<,可知0a <,12a c ∴=-=,,则y ==因为函数y =[]0,2x ∈,令()22g x x x =-+则该函数的增区间为(],1-∞所以y =[]0,1故答案为:[]0,1.14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________.【答案】()5,7【解析】【分析】首先解一元二次不等式,求出不等式的解集,再根据解集中整数的情况,得到不等式组,解得即可;【详解】解:因为2(3)16x b -<,所以()()34340x b x b -+--<,解得4433b b x -+<<,所以原不等式的解集为44|33b b x x -+⎧⎫<<⎨⎬⎩⎭,又解集中的整数有且仅有1,2,3,所以40134343b b -⎧<⎪⎪⎨+⎪<⎪⎩ 解得:57b <<,即()5,7b ∈,故答案为:()5,7.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范【答案】()(],13,4-∞ 【解析】【分析】先解带有参数的一元二次不等式,再对a 进行分类讨论,使得恰有1个正整数解,最后求出a 的取值范围【详解】不等式()2220x a x a -++->等价于()2220x a x a -++<.令()2220x a x a -++=,解得2x =或x a =.当2a >时,不等式()2220x a x a -++<的解集为()2,a ,要想恰有1个正整数解,则34a < ;当2a =时,不等式()2220x a x a -++<无解,所以2a =不符合题意;当2a <时,不等式()2220x a x a -++<的解集为(),2a ,则1a <.综上,a 的取值范围是()(],13,4-∞ .故答案为:()(],13,4-∞ 16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++ ,则a b c ++的最大可能值为__.【答案】3【解析】【分析】可先通过赋值0x =,判断1c ≤,再令1,0c b =-=,结合二次函数最值,可得所求最大值.【详解】任意满足1x 的实数x ,都有21ax bx c ++ ,若0x =,则1c ,可取1c =-,0b =,可得211ax - ,即22ax ≤恒成立,由于201x ,可得a 最大取2,可得3a b c ++ ,即有a b c ++的最大可能值为3.故答案为:3.四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2).(1)求()f x 的解析式;(2)求不等式()21f x x <+的解集.【答案】(1)2()1f x x =+;。
高中数学一元二次不等式知识点总结
高中数学一元二次不等式知识点总结一元二次不等式知识点总结(人教版)一、一元二次不等式的基本形式。
1. 定义。
- 一元二次不等式的一般形式为ax^2+bx + c>0或ax^2+bx + c<0(a≠0),其中a、b、c是实数。
- 例如x^2-3x + 2>0,这里a = 1,b=-3,c = 2。
二、一元二次方程与一元二次不等式的关系。
1. 一元二次方程ax^2+bx + c = 0(a≠0)的根与一元二次不等式解集的联系。
- 当Δ=b^2-4ac>0时,一元二次方程ax^2+bx + c = 0(a≠0)有两个不同的实根x_1,x_2(x_1。
- 对于不等式ax^2+bx + c>0(a>0),其解集为{xx或x>x_2};对于不等式ax^2+bx + c<0(a>0),其解集为{xx_1。
- 当Δ=b^2-4ac = 0时,一元二次方程ax^2+bx + c = 0(a≠0)有两个相同的实根x_0=-(b)/(2a)。
- 对于不等式ax^2+bx + c>0(a>0),其解集为{xx≠ x_0};对于不等式ax^2+bx + c<0(a>0),其解集为varnothing。
- 当Δ=b^2-4ac<0时,一元二次方程ax^2+bx + c = 0(a≠0)没有实根。
- 对于不等式ax^2+bx + c>0(a>0),其解集为R;对于不等式ax^2+bx +c<0(a>0),其解集为varnothing。
三、一元二次不等式的解法。
1. 因式分解法(当二次三项式容易因式分解时)- 例如解不等式x^2-3x + 2>0。
- 先将二次三项式因式分解为(x - 1)(x - 2)>0。
- 则有x - 1>0 x - 2>0或x - 1<0 x - 2<0。
- 解x - 1>0 x - 2>0得x>2;解x - 1<0 x - 2<0得x<1。
数学高中不等式知识点有哪些数学知识点
数学高中不等式知识点_有哪些数学知识点高中数学不等式知识点总结1.用符号〉,=,〈号连接的式子叫不等式。
2.性质:①如果xy,那么yz;如果yy;(对称性) p=""②如果xy,yz;那么xz;(传递性)③如果xy,而z为任意实数或整式,那么x+zy+z;(加法原则,或叫同向不等式可加性)④如果xy,z0,那么xzyz;如果xy,z0,那么xzyz;(乘法原则) p=""⑤如果xy,mn,那么x+my+n;(充分不必要条件)⑥如果xy0,mn0,那么xmyn;⑦如果xy0,那么x的n次幂y的n次幂(n为正数),x的n次幂y的n次幂(n为负数)。
p=""或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.不等式考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集注:不等式两边相加或相减同一个数或式子,不等号的方向不变。
(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。
(相当系数化1,这是得正数才能使用)不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)高中数学不等式:柯西不等式一、一般形式((ai))((bi)) aibi)等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
高中数学知识点总结(不等式选讲 第一节 绝对值不等式)
不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点二绝对值不等式性质的应用[解题技法]绝对值不等式性质的应用利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|a-c|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.考点三绝对值不等式的综合应用[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||;③利用零点分区间法.。
(完整版)高中数学不等式知识点总结
(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。
不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。
在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。
下面我将为大家总结一下高中数学中关于不等式的知识点。
一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。
2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。
- 小于:表示前面的数比后面的数要小,如a<b。
- 大于等于:表示前面的数比后面的数大或相等,如a≥b。
- 小于等于:表示前面的数比后面的数小或相等,如a≤b。
二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。
- 若a>b,则a+c>b+c。
- 若a>b,则ac>bc(当c为正数时)。
- 若a>b,则ac<bc(当c为负数时)。
- 若a>b,且c>0,那么a/c>b/c。
- 若a>b,且c<0,那么a/c<b/c。
2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。
- 减法规则:若a>b,则a-c>b-c。
- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。
- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。
- 对称性:若a>b,则-b<-a。
三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。
- 开区间:解集中的数不包括端点。
- 闭区间:解集中的数包括端点。
2. 不等式的性质应用举例:- 若a>0,则-1/a<0。
不等式高中数学知识点
不等式高中数学知识点不等式高中数学知识点1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或 a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当时,取等号)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5.含绝对值不等式的性质:6.不等式的恒成立,能成立,恰成立等问题(1)恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(2)能成立问题(3)恰成立问题数学考试答题技巧按部作答,争取每一分这里的按部作答主要是指学生在考试的过程中解答大题的时候。
对于一些比较复杂,难懂的题目,我们可以庖丁解牛,一步一步的解答。
这样一来。
我们可以可能将这道题解答出一半或者是四分之三,我们都知道现在的判题规则是按部给分也就是说学生列出了式子或者是解答对了一半都会得到相应的分数。
这就要求各位老师和同学们一定要注意暗部作答。
不要因为题目的难易程度而盲目的选择放弃,毕竟一道大题十分,做出来一半也就得到了五分到对于学生成绩来说五分还是非常重要的。
小编,建议在我们做大题时一定要注重按部作答这一规则。
因为我们在解答的过程中,如果分不清可以便于我们后期的检查以及教师的教师阅卷,使阅卷时清晰明了一目了然。
高一不等式知识点归纳总结
高一不等式知识点归纳总结高一阶段学习数学,不等式是一个重点知识点,也是数学建模等应用题的常见考点。
在高中阶段,学生需要对不等式的性质、解集的表示和不等式的应用等方面进行深入学习。
本文将对高一阶段的不等式知识点进行归纳总结。
一、不等式的性质1. 不等式的传递性:如果a<b,b<c,那么a<c。
这个性质在证明不等式的过程中经常会用到。
2. 不等式的加减性:如果a<b,那么a±c<b±c。
即不等式两侧同时加(或减)一个常数,不等号的方向保持不变。
3. 不等式的乘法性:如果a<b,且c>0,那么ac<bc。
如果a<b,且c<0,那么ac>bc。
也就是说,不等式两侧同时乘以一个正数(或负数),则不等号的方向保持不变;若乘以一个负数,不等号的方向则反向。
4. 不等式的倒数性:如果a<b,且ab≠0,那么1/b<1/a。
当不等式两侧取倒数后,不等号的方向发生改变。
二、不等式解集的表示1. 不等式解的表示方式:不等式解集通常用区间表示,包括开区间、闭区间和无穷区间。
- 开区间:表示不包含某一值的解集,一般用(a, b)表示,表示a<b 之间的所有数但不包括a和b。
- 闭区间:表示包含某一值的解集,一般用[a, b]表示,表示a≤x≤b 之间的所有数。
- 无穷区间:表示解集没有上下界的情况,分为无穷大区间和无穷小区间。
2. 解不等式的步骤:解不等式的主要步骤有:移项、消项、分析正负、绘制数轴和表示解集。
三、不等式的类型1. 一元一次不等式:形如ax+b>0或ax+b<0的不等式,其中a和b 为已知实数,x为未知数。
- 解一元一次不等式的步骤:先将不等式化简为ax>c或ax<c的形式,然后根据a的正负情况进行讨论,最后找出解集。
2. 一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,x为未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学不等式专题教师版一、高考动态考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│二、不等式知识要点1.不等式的基本概念(1)不等(等)号的定义:.-=<⇔a<⇔=>-⇔>-ba0ba;;baabbab(2)不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3)同向不等式与异向不等式.(4)同解不等式与不等式的同解变形.2.不等式的基本性质(1)a⇔>(对称性)a<bb(2)c⇒>a>>,(传递性)acbb(3)c+⇒>(加法单调性)a+>cabb(4)d>+⇒a+>,(同向不等式相加)>cbabcd(5)d-⇒>,(异向不等式相减)a-<>cbabdc(6)bc>0,.>accba>⇒(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除)11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则)(12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈aa R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号)0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么2112a ba b ++(当仅当a=b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数):特别地,222()22a b a b ab ++≤≤(当a = b时,222()22a b a b ab ++==)⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd abcd +≤++.常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n n n n n n-==-≥++--p p1)n ==≥pp(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b ab a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有 则称f(x)为凸(或凹)函数. 5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法. 6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则 (3)无理不等式:转化为有理不等式求解 (4).指数不等式:转化为代数不等式 (5)对数不等式:转化为代数不等式 (6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()22327x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x xxx+=+≥与同号,故取等三、利用均值不等式求最值的方法均值不等式a bab a b +≥>>200(,,当且仅当a =b 时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。
对于有些题目,可以直接利用公式求解。
但是有些题目必须进行必要的变形才能利用均值不等式求解。
下面是一些常用的变形方法。
一、配凑 1. 凑系数例1. 当04<<x 时,求y x x =-()82的最大值。
解析:由04<<x 知,820->x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2828x x +-=()为定值,故只需将y x x =-()82凑上一个系数即可。
当且仅当282x x =-,即x =2时取等号。
所以当x =2时,y x x =-()82的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知x <54,求函数f x x x ()=-+-42145的最大值。
解析:由题意知450x -<,首先要调整符号,又()42145x x --·不是定值,故需对42x -进行凑项才能得到定值。
∵x x <->54540, ∴f x x x x x()()=-+-=--+-+42145541543≤---+=-+=2541543231()x x ·当且仅当54154-=-x x,即x =1时等号成立。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离例3. 求y x x x x =+++-271011()≠的值域。
解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当x +>10,即x >-1时y x x ≥+++=214159()·(当且仅当x =1时取“=”号)。
当x +<10,即x <-1时y x x ≤-++=521411()·(当且仅当x =-3时取“=”号)。
∴y x x x x =+++271011()≠-的值域为(][)-∞+∞,,19Y 。
评注:分式函数求最值,通常化成y mg x Ag x B A m =++>>()()()00,,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
二、整体代换例4. 已知a b a b >>+=0021,,,求t a b=+11的最小值。
解法1:不妨将11ab+乘以1,而1用a +2b 代换。
当且仅当2b a a b =时取等号,由22121122b a ab a b a b =+=⎧⎨⎪⎩⎪=-=-⎧⎨⎪⎩⎪,得 即a b =-=-⎧⎨⎪⎩⎪21122时,t a b =+11的最小值为322+。
解法2:将11a b+分子中的1用a b +2代换。
评注:本题巧妙运用“1”的代换,得到t b a a b =++32,而2b a 与ab的积为定值,即可用均值不等式求得t a b=+11的最小值。
三、换元例5. 求函数y x x =++225的最大值。
解析:变量代换,令t x =+2,则x t t y t t =-≥=+222021(),则当t =0时,y =0 当t >0时,y t tt t=+≤=121122124·当且仅当21t t=,即t =22时取等号。
故x y =-=3224时,max 。
评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。
四、取平方例6. 求函数y x x x =-+-<<21521252()的最大值。
解析:注意到2152x x --与的和为定值。
又y >0,所以022<≤y 当且仅当2152x x -=-,即x =32时取等号。
故y max =22。
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
高中数学一轮复习专讲专练(教材回扣+考点分类+课堂内外+限时训练):基本不等式一、选择题1.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( )A.14B .1C .4D .8 解析:由a >0,b >0,ln(a +b )=0,得⎩⎪⎨⎪⎧a +b =1,a >0,b >0.故1a +1b =a +b ab =1ab≥1⎝ ⎛⎭⎪⎫a +b 22=1⎝ ⎛⎭⎪⎫122=4.当且仅当a =b =12时,上式取等号.答案:C2.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x+a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .9D .16解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+x y ·a +yx +a .∵x >0,y >0,a >0,∴1+ax y +yx+a ≥1+a +2a .由9≤1+a +2a ,得a +2a -8≥0, ∴(a +4)(a -2)≥0.∵a >0,∴a ≥2,∴a ≥4,∴a 的最小值为4. 答案:B3.已知函数f (x )=lg ⎝ ⎛⎭⎪⎫5x +45x +m 的值域为R ,则m 的取值范围是( )A .(-4,+∞) B.[-4,+∞) C .(-∞,-4) D .(-∞,-4]解析:设g (x )=5x+45x +m ,由题意g (x )的图像与x 轴有交点,而5x+45x ≥4,故m ≤-4,故选D.答案:D4.当点(x ,y )在直线x +3y -2=0上移动时,表达式3x+27y+1的最小值为( ) A .3 B .5 C .1D .7解析:方法一:由x +3y -2=0,得3y =-x +2. ∴3x +27y +1=3x +33y +1=3x +3-x +2+1 =3x +93x +1≥23x ·93x +1=7.当且仅当3x=93x ,即3x =3,即x =1时取得等号.方法二:3x +27y +1=3x +33y +1≥23x ·33y +1=232+1=7. 答案:D5.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C.92D.112解析:∵2xy =x ·(2y )≤⎝⎛⎭⎪⎫x +2y 22, ∴原式可化为(x +2y )2+4(x +2y )-32≥0.又∵x >0,y >0,∴x +2y ≥4.当x =2,y =1时取等号. 答案:B6.(2013·苍山调研)已知x >0,y >0,lg2x +lg8y =lg2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:由lg2x +lg8y =lg2,得lg2x +3y =lg2.∴x +3y =1,1x +13y =⎝ ⎛⎭⎪⎫1x +13y (x +3y )=2+x 3y +3yx≥4.答案:C 二、填空题7.设x 、y ∈R ,且xy ≠0,则⎝⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为__________.解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=1+4+4x 2y 2+1x 2y 2≥1+4+24=9.当且仅当4x 2y 2=1x 2y 2时等号成立,即|xy |=22时等号成立.答案:98.(2013·台州调研)若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)(b +2)的最小值为__________.解析:∵ab -4a -b +1=0, ∴b =4a -1a -1,ab =4a +b -1.∴(a +1)(b +2)=ab +2a +b +2=6a +2b +1 =6a +4a -1a -1·2+1 =6a +[4a -1+3]×2a -1+1=6a +8+6a -1+1=6(a -1)+6a -1+15.∵a >1,∴a -1>0.∴原式=6(a -1)+6a -1+15≥26×6+15=27.当且仅当(a -1)2=1,即a =2时等号成立. ∴最小值为27. 答案:279.(2013·聊城质检)经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:y =920vv 2+3v +1 600(v >0),在该时段内,当车流量y最大时,汽车的平均速度v =__________千米/小时.解析:∵v >0, ∴y =920v +1 600v+3≤9202v ·1 600v+3=92080+3≈11.08, 当且仅当v =1 600v,即v =40千米/小时时取等号.答案:40 三、解答题10.已知x >0,y >0,z >0,且x +y +z =1. 求证:1x +4y +9z≥36.解析:∵x >0,y >0,z >0,且x +y +z =1,∴1x +4y +9z =(x +y +z )⎝ ⎛⎭⎪⎫1x +4y +9z =14+⎝ ⎛⎭⎪⎫y x +4x y +⎝ ⎛⎭⎪⎫z x +9x z +⎝ ⎛⎭⎪⎫4z y+9y z ≥14+2y x ·4xy +2 z x ·9xz+2·4z y ·9yz=14+4+6+12=36.当且仅当x 2=14y 2=19z 2,即x =16,y =13,z =12时等号成立.∴1x +4y +9z≥36.11.某学校拟建一块周长为400 m 的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽.解析:设中间矩形区域的长,宽分别为x m ,y m , 中间的矩形区域面积为S m 2, 则半圆的周长为πy 2m.∵操场周长为400 m ,所以2x +2×πy 2=400, 即2x +πy =400(0<x <200,0<y <400π). ∴S =xy =12π·(2x )·(πy )≤12π·⎝ ⎛⎭⎪⎫2x +πy 22=20 000π. 由⎩⎨⎧ 2x =πy ,2x +πy =400,解得⎩⎨⎧ x =100,y =200π.∴当且仅当⎩⎨⎧ x =100,y =200π时等号成立.即把矩形的长和宽分别设计为100 m 和200πm 时,矩形区域面积最大. 12.已知x ,y 都是正实数,且x +y -3xy +5=0.(1)求xy 的最小值;(2)求x +y 的最小值.解析:(1)由x +y -3xy +5=0,得x +y +5=3xy .∴2xy +5≤x +y +5=3xy .∴3xy -2xy -5≥0.∴(xy +1)(3xy -5)≥0.∴xy ≥53,即xy ≥259,等号成立的条件是x =y . 此时x =y =53,故xy 的最小值是259. (2)方法一:∵x +y +5=3xy ≤3·⎝⎛⎭⎪⎫x +y 22=34(x +y )2, ∴34(x +y )2-(x +y )-5≥0. 即3(x +y )2-4(x +y )-20≥0.即[(x +y )+2][3(x +y )-10]≥0.∴x+y≥103.等号成立的条件是x=y,即x=y=53时取得.故x+y的最小值为103.方法二:由(1)知,x+y+5=3xy,且(xy)min=259,∴3(xy)min=253.∴(x+y)min=253-5=103,此时x=y=53.。