5.三元一次方程组
三元一次方程组课件ppt
5x-4y-29z=0
5.已知
并且Z≠0,求x:y的值.
X-3y+3z=0
解:把字母z当成已知数,则原方程可变形为 5x-4y=29z x-3y=-3z
x=9z 解这个方程组,得
y=4z
∴x:y=9:4
6.己知:
3x - 4y - 5z x + 2y -15z
= =
0 0
(x , y , z?0)
②
x+y+z=17
③
x-y=2
①
y-z=3
②
x+y+z=17
③
②+③,得
x+2y=20 ④
①与④组成方程组
x-y=2
x+2y=20
解这个方程组,得
x=8 y=6
x=8
∴ y=6
z=3
把y=6代入②,得 6-z=3
所以z=3
解三元一次方程组的步骤:
①利用代入法或加减法,消去一个未知数, 得出一个二元一次方程组;
x + y + z = 33 x - y = 2 2x + z - y = 24
三元一次方程组 消元
二元一次方程组
消元 一元一次方程
代入消元法和加减消元法
x + y + z = 33 ①
x - y = 2
②
2x y 2 ④
把④代入①得: y 2 y z 33
x + y + z = 30 化简,得 x = 5z
y = 4z
解这个方程组,得
x = 15 y = 12 z = 3
答:甲种零件生产15天,乙种零件生产 12天,丙种零件生产3天.
x(x + y + z) = 9
三元一次方程组的解法举例
5.4 三元一次方程组的解法举例第二课时一、素质教育目标(一)知识教学点1.会解三个方程都含三元的三元一次方程组.2.掌握解三元一次方程组的思路.(二)能力训练点1.培养学生的分析能力和计算能力.2.训练学生的解题技巧.(三)德育渗透点渗透消元的思想,培养学生的学习兴趣.(四)美充渗透点通过本节课的学习,渗透方程组的解的奇异美.二、学法引导1.教学方法:观察法、讲练结合法、尝试指导法.2.学生学法:应选择方程组中未知数前的系数最简的先消元,而解三元一次方程组消元的办法仍是代入法和加减法两种.三、重点·难点·疑点及解决办法(一)重点三元一次方程组的解法.(二)难点选择简捷的解法.(三)疑点如何消元,判断先消哪个元.四、课时安排一课时.五、教具学具准备微机或投影仪,自制胶片.六、师生互动活动设计1.通过复习,回顾如何通过消元解较简单的三元一次方程组,让学生在不知不觉中理解并熟练掌握解题的思想与方法.2.通过教师的提问,师生共同探索解较复杂三元一次方程组的解题方法及一般解题步骤.3.通过变题的综合训练,培养学生综合解题的能力.七、教学步骤(一)明确目标本节课主要学习解三个方程中都含三元的三元一次方程组.(二)整体感知解三元一次方程组的基本思想仍是消元,重点应掌握先消哪个未知数及采用哪一种方法解,当然应优先选择消去系数最简单的元.(三)教学过程1.复习导入,明确目标(1)解三元一次方程组的基本思想是化______________元为_____________元或___________元,基本方法有____________法和______________法.(2)观察下列方程组中每个未知数的系数,若用加减法解三元一次方程组,先消哪个元比较简单?为什么,如何消元?①⎪⎩⎪⎨⎧=+-=-=++182126z y x y x z y x ②⎪⎩⎪⎨⎧=+-=+-=++115536443z y z y x z y x③⎪⎩⎪⎨⎧=+-=-=-12212625z x z y y x ④⎪⎩⎪⎨⎧=+-=-=+13347525x z z y y x解三元一次方程组的关键在于消元,这就要求我们认真观察各方程中未知数的系数,选取比较简单的进行消元,这节课,我们接着学习三元一次方程组的解法举例.【教法说明】这组习题不是让学生解方程组,而是通过观察、分析,确定消元的对象,明确解法.这样做,既节省时间,又能突出检查上节课的重点,并且其分析方法对本节课的教学仍然适用.2.探索新知,讲授新课例2 解方程组⎪⎩⎪⎨⎧=-+=++=++)3(1222)2(72)1(1323z y x z y x z y x 分析:(1)比较此三元一次方程组与以前学过的有什么不同?(三个方程都含三元)(2)三个方程中哪个未知数的系数最简单?(z )(3)考虑用加减法消z ,消z 的方案有哪几种?(方案:①+③;②+③×2;①×2-②)我们选择最简单的两种方案①+③和②+③×2,消同一个未知数z ,就可以得到关于x 、y 的二元一次方程组.学生活动:独立解例2,一个学生板演.教师巡视进行纠正、指导.解:①+③,得 2555=+y x ④②+③×2,得 3175=+y x ⑤④与⑤组成⎩⎨⎧=+=+31752555y x y x 解这个方程组,得⎩⎨⎧==32y x把2=x ,3=y 代入①,得133223=+⨯+⨯z∴1=z∴⎪⎩⎪⎨⎧===132z y x此题用代入法消元,如何进行?学生活动:思考、说出思想,选择系数最简单的方程③变形后代入①和②.此题用加减法比用代入法简单,我们在解三元一次方程组时,要认真观察题目特点,选取恰当的方法进行消元,而且一定要选准消元对象.【教法说明】以提问的形式分析例题,能让学生充分展开思维活动,既突出了本节课的重点,又对难点有所突破,培养了学生分析问题、解决问题的能力,体会到解方程组时“消元”思想的重要性.3.尝试反馈,巩固知识练习:P30(2).分析:第二个方程组中哪个未知数的系数最简单?(y )为什么?(y 的系数绝对值成倍数关系),最佳消元方案是什么?(①+②×2,②×3-③)学生活动:回答问题后,解方程组,把两个学生的解题过程在投影仪上显示,解完后同桌相互检查.教师说明:练习前提出问题,可使学生思维走向正轨,少走弯路;同时,这个问题给学生指明了解三元一次方程组的思路,把复杂的问题转化成简单的问题,能引起学生浓厚的兴趣.4.变式训练,培养能力(1)解方程组⎪⎩⎪⎨⎧=-+=-+=-+)3(1(2)5(1)11y x z x z y z y x (2)一个三位数,个位、百位上的数的和等于十位上的数,百位上的数的7倍比个位、十位上的数的和大2,个位、十位、百位上的数的和是14,求这个三位数.【教法说明】①第(1)题的技巧性较强,把其中每两个方程相加,就可以求出一个未知数的值.这道题能增强学生的学习兴趣,培养学生善于发现规律、总结规律的能力.②第(2)题能培养学生分析问题的能力和运用所学知识解决实际问题的能力,能使学生体会到数学知识的实用性.(四)总结、扩展1.学生自由发言,这节课我们应该掌握哪些知识?2.教师归纳总结:①解三元一次方程组的基本方法是代入法和加减法,其中加减法比较常用.②解三元一次方程组的基本思想是消元,关键也是消元,我们一定要根据方程组的特点,选准消元对象,定好消元方案.③解完后要代入原方程组的三个方程中进行检验.3.考点剖析:中考命题中,单纯考查解三元一次方程组的题目非常少,但将解三元一次方程组融入求二次函数解析式的综合性命题中则比较常见,尤其是代入消元法和加减消元法的应用在很多问题中都有所体现,同学们必须熟练掌握,并能灵活运用.八、布置作业(一)必做题:P31 A 组2.(二)选做题:解方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-++=+++4226u z y x u z y xu z y x u z y x(三)思考题:自己想一个两位数或三位数,编一道应用题,列出方程组解答.(四)预习:下节课内容.【教法说明】必做题巩固了这节课所学的知识;选做题和思考题供学有余力的学生选做,可以培养学生的兴趣和能力,使之认识到学习是永无止境的.。
三元一次方程组
三元一次方程组定义:我们把含有三个未知数,并且含未知数的想的次数都是1的方程,叫做三元一次方程。
含有三个未知数,并且含未知数的项的次数都是1的方程组,叫做三元一次方程组。
三元一次方程组中各方程的公共解叫做这个三元一次方程组的解。
方法:提示:可以比较二元一次方程组的解法X+y+z=5 1x-y-5z=1 22x-3y+z=14 3解法:将1×5+2,再用3-1,消去未知数z,得到一个二元一次方程组,再求解。
解析:解三元一次方程组的关键是把三元一次方程组转化为二元一次方程组,在求解,所以,必须消去一个未知数,而本题是一个例子,将含有相同未知数的项的次数转化为一样的,再通过加减消去一个未知数。
x-z=4 1x-y+z=1 22x+3y+2z=17 3解法:由1得出z=x-4,再将z代入另外两个方程,得出一个含有z,y的二元一次方程组,求出z,y的值后将z,y代入,求出x。
解析:第二种消去一个未知数的方法就是将一个未知数用另外的未知数表示,然后再代入,从而得出一个二元一次方程组。
还有要注意,不能代入得出结论的方程,要代入另外两个方程。
三元一次方程组的应用若│3a+4b-c│+1/4(c-2b)²=0,则a:b:c=?答案:-2:3:6解析:绝对值和平方都有一个特性,就是非负数,而他们的和为0,所以说明了他们里面的数的和为0.根据此,由(c-2b)²得出c=2b。
已知c=2b,将c代入│3a+4b-c│中,得出│3a+2b│=0,又可以得出3a=2b,则a=2/3b.这三个未知数都表示成了b,所以比的时候可以吧b消去,再去分母,得出答案。
已知方程组2x+3y=n ,的解x,y的和为12,求n的值。
3x+5y=n+2答案:14解析:这个方程看似解不出来,但是,根据题意可以再得出一个方程:x+y=12,再联系题中方程组,得出一个简单的三元一次方程组,再解出来就可以了。
第一章完。
三元一次方程组的解法
实例三:应用题中的方程组解决
总结词
在解决实际应用问题时,通常需要建立 相应的数学模型,并通过解方程组得到 问题的解。
VS
详细描述
以追及问题为例,可以通过建立两个方程 组来表示两个人行走的距离和时间的关系 ,然后通过解方程组得到两个人的相遇地 点和时间;再比如解决利润问题时,可以 通过建立方程组来表示商品的进价、售价 和利润之间的关系,进而求得商品的进货 量。
电磁学
在电磁学中,三元一次方程组被用来描述电流、电场和磁场之间的 关系。
在经济中的应用
供需关系
在经济学中,三元一次方程组可以用来描述商品的供应、需求和价格之间的关系。例如,在垄断市场分析中,三元一次方程组可以用来描述企业的利润、市场 的供应和需求以及商品价格之间的关系。
投资组合优化
在投资组合理论中,三元一次方程组可以用来确定最优的投资组合,即在给定风险水平下获得最大收益或在给定收益水平下风险最小。
重要性
三元一次方程组是数学中一个重要的概念,它在实际生活中 有着广泛的应用,如求解空间几何中的点坐标、解决物理问 题中等。掌握三元一次方程组的解法对于理解和应用数学知 识具有重要意义。
三元一次方程组的特点
三个未知数
三元一次方程组包含三个未知数,通常用x、y、z表示。
三个方程式
每个未知数都由一个方程式来描述,因此总共有三个方程式。每个方程式都是 一次方程,形式为Ax+By+Cz=D,其中A、B、C和D是常数。
02
解三元一次方程组的步骤
整理方程组
整理三元一次方程组,将其转化为标准形式,即每个方程都包含未知数的最高次 数为一次。
将三元一次方程组的系数矩阵用数学公式表示,并确定方程组的未知数个数。
三元一次方程组含答案
三元一次方程组含答案三元一次方程组1.解方程组:�2xx +yy +3zz =113xx +2yy −2zz =114xx −3yy −2zz =4.2.解方程组:�aa +bb +cc =0aa −bb +cc =−44aa +2bb +cc =5.3.解方程组:�xx +yy +zz =26xx −yy =12xx −yy +zz =18.4.解方程组:�4xx +yy −3zz =135xx −yy +zz =7xx −2zz =4.5.解方程组:�xx +yy =3xx −3yy +zz =−2−3xx +yy +zz =−6.6.解方程组:�3xx +2yy +5zz =2xx −2yy −zz =64xx +2yy −7zz =30..7.解方程组:�xx −2yy +zz =02xx +yy −zz =13xx +2yy −zz =4..8.解方程组:�2xx +3yy =42xx −yy +2zz =−4xx +2yy −2zz =3.三元一次方程组含答案9.解方程组:�xx +yy +zz =23xx −yy =12xx +yy −zz =20.10.解方程组:�3xx −yy +zz =42xx +3yy −zz =12xx +yy +zz =6.11.解方程组:�xx +2yy +zz =13xx +yy +zz =−3xx −2zz =3.12.解方程组:�3xx +2yy +zz =13xx +yy +2zz =72xx +3yy −zz =12.13.解方程组:�xx +2yy =42xx +5yy −2zz =113xx −5yy +2zz =−1.14.解方程组:�3xx −yy +zz =42xx +3yy −zz =12xx +yy +zz =615.解方程组:�3xx +4yy +zz =14xx +5yy +2zz =172xx +2yy −zz =3.16.解方程组:�2xx −3yy +4zz =12xx −yy +3zz =44xx +yy −3zz =−2.17.解方程组:�xx −yy +zz =04xx +2yy +zz =325xx +5yy +zz =60.三元一次方程组含答案18.解方程组:�xx +yy +zz =102xx +3yy +zz =173xx +2yy −zz =8.19.解方程组:�−2xx +3yy =−63yy +2zz =04xx −3zz =5.20.解方程组:�aa −bb +cc =0aa +bb +cc =−49aa +3bb +cc =0.21.解方程组:�3xx +2yy −zz =11xx +yy +zz =62xx −yy +zz =2.22.解方程组:⎩⎨⎧xx +yy =−2xx +zz =32xx +13yy +2zz =123.解方程组:�4xx +3yy +2zz =76xx −4yy −zz =62xx −yy +zz =1.24.解方程组:�3aa −bb +cc =72aa +3bb =−2aa +bb +cc =−1.25.解方程组�xx −4yy +zz =−32xx +yy −zz =18xx −yy −zz =7.三元一次方程组含答案26.解方程组:�3xx −2yy =82yy +3zz =1xx +5yy −zz =−4.27.解方程组:�xx +yy −zz =02xx −3yy +2zz =5xx +2yy −zz =3.28.解方程组:�xx +yy +zz =26xx −yy =12xx +zz −yy =18.29.解方程组:�xx +yy +zz =62xx +yy −zz =1yy =xx +1.30.解方程组:�2xx +yy +3zz =113xx +2yy −2zz =114xx −3yy −2zz =4.31.解方程组:�xx +yy +zz =42xx −yy +zz =3−xx +2yy −zz =−1.32.解方程组:�xx −yy +zz =04xx +2yy +zz =325xx +5yy +zz =60.33.解方程组:�aa −2bb +4cc =123aa +2bb +cc =14aa −cc =7.34.解方程组:�aa +bb +cc =63aa −bb +cc =42aa +3bb −cc =12.三元一次方程组含答案35.解方程组:�3xx +4zz =72xx +3yy +zz =95xx −9yy +7zz =8.36.解方程组:�2aa +bb =4aa +bb +cc =−22aa +3bb −cc =13.37.解方程组:�xx −4yy +zz =−3,2xx +yy −zz =18,xx −yy −zz =7.38.解方程组:�2xx −yy +2zz =−34xx +5yy −zz =1xx +yy +zz =0.39.解方程组:�xx +2yy −zz =13xx −3yy +zz =22xx +3yy +zz =7.40.解方程组:�2xx −3yy +5zz =53xx +yy −2zz =95xx −2yy +zz =12.三元一次方程组含答案三元一次方程组参考答案一.解答题(共40小题) 1.�xx =3yy =2zz =1;2.�aa =1bb =2cc =−3; 3.�xx =10yy =9zz =7; 4.�xx =2yy =2zz =−1; 5.�xx =2yy =1zz =−1;6.�xx =4yy =0zz =−2;7.�xx =1yy =2zz =3;8.�xx =−1yy =2zz =0; 9.�xx =9yy =8zz =6.; 10.�xx =2yy =3zz =1;11.�xx =−1yy =2zz =−2; 12.�xx =2yy =3zz =1; 13.�xx =2yy =1zz =−1; 14.�xx =2yy =3zz =1.; 15.�xx =1yy =2zz =3;16.⎩⎪⎨⎪⎧xx =25yy =−9625zz =−225;17.�xx =3yy =−2zz =−518.�xx =3yy =2zz =5;19.�xx =2yy =−23zz =1; 20.�aa =1bb =−2cc =−3;21.�xx =2yy =3zz =1; 22.�xx =1yy =−3zz =12; 23.�xx =32yy =1zz =−1; 24.�aa =2bb =−2cc =−1; 25.�xx =7yy =2zz =−2; 26.�xx =2yy =−1zz =1; 27.�xx =2yy =3zz =5; 28.�xx =10yy =9zz =7; 29.�xx =1yy =2zz =3.; 30.�xx =3yy =2zz =1;31.�xx =1yy =1zz =2; 32.�xx =3yy =−2zz =−5; 33.�aa =2bb =−3cc =1; 34.�aa =2bb =3cc =1; 35.�xx =5yy =13zz =−2;36.�aa =1bb =2cc =−5; 37.�xx =7yy =2zz =−2; 38.�xx =−1yy =1zz =0; 39.�xx =1yy =1zz =2; 40.�xx =3yy =2zz =1;。
初中数学 三元一次方程组的解的表示方式有哪些
初中数学三元一次方程组的解的表示方式有哪些三元一次方程组是由三个未知数的一次项和常数项组成的方程组。
对于三元一次方程组,我们可以通过不同的方式来表示它的解。
下面我们将介绍三元一次方程组的解的表示方式。
1. 唯一解:如果三元一次方程组有且只有一个解,那么这个解被称为唯一解。
唯一解可以表示为一个有序三元组(x, y, z)。
2. 无解:如果三元一次方程组没有解,那么它被称为无解。
在数学上,我们用符号∅表示无解。
3. 无穷解:如果三元一次方程组有无限个解,那么它被称为无穷解。
无穷解可以表示为一个参数方程组,其中参数可以取任意实数。
例如,一个无穷解的表示方式可以为:x = ty = 2t + 1z = 3t - 2其中t 是任意实数。
4. 参数方程组:如果三元一次方程组有多个解,那么它们可以表示为一个参数方程组。
参数方程组是一个含有参数的方程组,其中参数可以取任意实数。
例如,一个参数方程组的表示方式可以为:x = 2t - 1y = 3t + 2z = t其中t 是任意实数。
5. 齐次方程组:如果三元一次方程组所有方程中的常数项都为零,那么它被称为齐次方程组。
齐次方程组的解有两种情况:- 只有零解,即(0, 0, 0)。
- 有非零解,且所有非零解都可以表示为一个参数方程组。
6. 非齐次方程组:如果三元一次方程组至少有一个方程中的常数项不为零,那么它被称为非齐次方程组。
非齐次方程组的解可以表示为一个特解加上齐次方程组的解。
特解是一个满足方程组所有方程的解,齐次方程组的解可以表示为一个参数方程组。
以上是三元一次方程组的解的常用表示方式。
根据具体的方程组和解的特点,选择适合的表示方式。
理解和掌握这些表示方式可以帮助我们更好地解决三元一次方程组的问题,并将其应用到实际生活中的数学问题中。
三元一次方程组解法
三元一次方程组解法
一、知识点
1.三元一次方程的概念:
三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程.
2.三元一次方程组的概念:
一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组.
三元一次方程组的一般形式是:
3.三元一次方程组的解法
(1)解三元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.
(2)怎样解三元一次方程组?
二、经典例题
1.解方程组
2.解方程组
3.解方程组
4.解方程组
三、总结:解三元一次方程组的一般步骤:
1.利用代入法或加减法,把方程组中的某一个未知数消去,得到关于另外两个未知
数的二元一次方程组;
2.解这个二元一次方程组,求出这两个未知数的值;
3.将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个
一元一次方程;
4.解这个一元一次方程,求出最后一个未知数的值;
5.将求得的三个未知数的值用“{”合写在一起,即可.
练习:
1.解方程组
2.解方程组
3.已知方程组的解使代数式x-2y+3z的值等于-10,求a的值.。
三元一次方程组及实际问题知识讲解
三元一次方程组及实际问题三元一次方程组的解法1、三元一次方程的概念三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。
2、三元一次方程组的概念一般地,由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组。
3、三元一次方程组的解法(1)三元一次方程组与二元一次方程组同属于一次方程组,解二元一次方程组基本思想是消元,通过代入法或加减法使二元化成一元,未知转化为已知,受它的启发,解三元一次方程组也通过代入或加减消元,使三元化为二元或一元,转化为我们已经熟悉的问题。
(2)三元一次方程组解题的基本步骤:①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组。
②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
典例剖析:[例1]解方程组 [例2][例3][例4][例5]训练题:解下列方程组(1)275322344y xx y zx z=-⎧⎪++=⎨⎪-=⎩(2)491232137544x yy zx z⎧⎪+=⎪-=⎨⎪⎪+=⎩(3)3743225x yy zx z-=-⎧⎪+=⎨⎪-=-⎩(4)491731518232x zx y zx y z-=⎧⎪++=⎨⎪++=⎩(5)76710020320x y zx y zx y z++=⎧⎪-+=⎨⎪+-=⎩(6)2439325115680x y zx y zx y z++=⎧⎪-+=⎨⎪++=⎩(7)3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩(8)26363127343411x y zx y zx y z++=⎧⎪-+=-⎨⎪-+=⎩(9)::1:2:32315x y zx y z=⎧⎨+-=⎩(10)123x yy zz x+=⎧⎪+=⎨⎪+=⎩实际问题与二元一次方程:1.利用二元一次方程组解决问题的基本过程:2.实际问题向数学问题的转化:3.设未知数有两种设元方法——直接设元、间接设元.当直接设元不易列出方程时,用间接设元.在列方程(组)的过程中,关键寻找出“等量关系”,根据等量关系,决定直接设元,还是间接设元4. 列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.5.常见题型有以下几种情形:(1)和、差、倍、分问题。
解三元一次方程组的方法
解三元一次方程组的方法三元一次方程组是指含有三个未知数的一次方程组,通常形式为:a1x + b1y + c1z = d1。
a2x + b2y + c2z = d2。
a3x + b3y + c3z = d3。
解三元一次方程组的方法主要有消元法、代入法和矩阵法。
下面将分别介绍这三种方法的具体步骤。
一、消元法。
消元法是解三元一次方程组常用的方法之一,其基本思想是通过加减消元将方程组化简为二元一次方程组,然后逐步求解。
具体步骤如下:1. 选择一个方程,通过乘以适当的系数使得其系数与另一个方程中对应未知数的系数相等,然后将两个方程相加或相减,消去该未知数的项。
2. 重复以上步骤,逐步消去另外两个未知数的项,最终得到一个二元一次方程组。
3. 解二元一次方程组,得到一个未知数的值。
4. 将求得的未知数的值代入原方程组中,求解出另外两个未知数的值。
二、代入法。
代入法是另一种解三元一次方程组的常用方法,其基本思想是通过将一个方程中的一个未知数用另外两个未知数的表达式代入另外两个方程中,从而化简为一个二元一次方程组。
具体步骤如下:1. 选择一个方程,将其中一个未知数用另外两个未知数的表达式代入另外两个方程中,得到一个包含两个未知数的方程。
2. 解得一个未知数的值。
3. 将求得的未知数的值代入原方程组中,求解出另外两个未知数的值。
三、矩阵法。
矩阵法是利用线性代数中矩阵的性质来解三元一次方程组的方法,其基本思想是将方程组写成矩阵的形式,通过矩阵运算来求解未知数的值。
具体步骤如下:1. 将方程组写成增广矩阵的形式。
2. 通过行变换将增广矩阵化简为阶梯形矩阵或行最简形矩阵。
3. 根据化简后的矩阵,逐步求解得到未知数的值。
以上就是解三元一次方程组的方法,消元法、代入法和矩阵法是三种常用的解法,可以根据具体情况选择合适的方法来求解三元一次方程组。
希望本文可以帮助到您。
三元一次方程
三元一次方程(组)1.三元一次方程的定义三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
如032,1=+-=-+c b a z y x 等都是三元一次方程 2.三元一次方程组的定义方程组中含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组,如⎪⎩⎪⎨⎧-=-+=++=+-3423103292z y x z y x z y x 是三元一次方程组。
注:①三元一次方程组必须满足:a 方程组中有且只有三个未知数;b 含未知数的项的次数都是1.②每个方程中不一定都含有三个未知数。
3.三元一次方程组的解一般地,使三元一次方程等号两边的值相等的三个未知数的值,叫做三元一次方程的解。
三元一次方程组的三个方程的公共解,叫做三元一次方程组的解。
4.解三元一次方程组的一般步骤(1)用代入消元法解三元一次方程组的步骤:①利用代入法消去一个未知数,得出一个二元一次方程组; ②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求三元一次方程组的解。
(2)用加减消元法解三元一次方程组的步骤:①利用加减的方法消去一个未知数,得出一个二元一次方程组; ②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求的三元一次方程组的解。
例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标。
解法1:代入法,消x.把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解.类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
数学六年级下册第八章-三元一次方程组的解法-课件与答案
①+③得 3x+2y=43④,
= ,
解得ቊ
= .
= ,
= ,
把ቊ
代入①,得z=6, 故原方程组的解为ቐ = ,
=
= .
8.4
数学
+ + = , ①
(2)൞ + + = , ②
+ + = . ③
七年级 下册
配RJ版
第八章
2.(2022·南京模拟)解方程组ቐ + − = ,如果要使运
− + = ,
算简便,那么消元时最好 ( B )
A.先消去x
B.先消去y
C.先消去z
D.先消常数项
数学
知识点1 解三元一次方程组
【例题1】解方程组:
+ = ,
(1)ቐ + = ,
+ = ;
甲、乙、丙三个数分别是10,15,10.
数学
七年级 下册
配RJ版
第八章
8.4
【变式2】现有1角、5角、1元三种硬币共14枚,总面值是5
元7角,其中1角硬币比5角硬币多3枚.三种硬币各有几枚?
解:设1角硬币有x枚,5角硬币有y枚,1元硬币有z枚.
依题意,有
+ + = ,
= ,
ax2+bx+c的值是
-3
.
数学
+ + = ,
4.解方程组:ቐ − = −,
+ − = .
= −,
ቐ = ,
= .
七年级 下册
配RJ版
三元一次方程组解法大全
.三元一次方程组的概念: 含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组. 例如: 都叫做三元一次方程组. 注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数. 熟练掌握简单的三元一次方程组的解法会叙述简单的三元一次方程组的解法思路及步骤. 思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值; ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解. 灵活运用加减消元法,代入消元法解简单的三元一次方程组. (如果真的不会做,那就一定要学会消元法。
)例如:解下列三元一次方程组分析:此方程组可用代入法先消去y,把①代入②,得,5x+3(2x-7)+2z=2 5x+6x-21+2z=2 解二元一次方程组,得: 把x=2代入①得,y=-3 ∴例2. 分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单. 解:①+②得,5x+y=26④①+③得,3x+5y=42⑤④与⑤组成方程组: 解这个方程组,得把代入便于计算的方程③,得z=8 ∴注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次. 能够选择简便,特殊的解法解特殊的三元一次方程组. 例如:解下列三元一次方程组分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程的两边分别相加解决较简便. 解:①+②+③得:2(x+y+z)=30 x+y+z=15④再④-①得:z=5 ④-②得:y=9 ④-③得:x=1 ∴分析:根据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,∴z=×2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z 的值. 解:由①设x=3k,y=2k 由②设z=y=×2k=k 把x=3k,y=2k,z=k分别代入③,得3k+2k+k=66,得k=10 ∴x=3k=30 y=2k=20 z=k=16。
函数与方程中的三元一次方程组与解法
函数与方程中的三元一次方程组与解法在数学中,方程组是由一组方程组成的集合。
而三元一次方程组是一个具有三个变量和一次项的方程组。
解决三元一次方程组的方法可以帮助我们求解复杂的问题,因此在数学学习中具有重要意义。
本文将介绍函数与方程中的三元一次方程组的基本概念和解法。
一、三元一次方程组的定义三元一次方程组由三个方程组成,每个方程中都有三个变量,并且每个变量都具有一次项。
一般地,三元一次方程组可以表示为:a₁x + b₁y + c₁z = d₁a₂x + b₂y + c₂z = d₂a₃x + b₃y + c₃z = d₃其中,a₁、b₁、c₁等表示系数,x、y、z表示变量,d₁、d₂、d₃表示方程组的常数项。
二、三元一次方程组的解法解决三元一次方程组可以使用多种方法,下面将介绍几种常用的解法。
1. 代入法代入法是一种简单而直观的解方程组方法。
具体步骤如下:- 选择其中一个方程,将其中一个变量表示为其他变量的函数。
- 将得到的表达式代入到另外两个方程中,从而得到只涉及两个变量的二元一次方程组。
- 使用二元一次方程组的解法求解该方程组。
- 将求得的解代入到任意一个原方程中,求解第三个变量的值。
2. 消元法消元法是一种通过对方程组进行线性变换,使得变量之间的系数出现特殊关系,从而简化求解过程的方法。
具体步骤如下:- 通过线性变换,将方程组化为三个方程,其中每个方程只包含两个变量。
- 使用二元一次方程组的解法求解该方程组。
- 将求得的解代入任意一个原方程中,求解第三个变量的值。
3. 矩阵法矩阵法是一种利用矩阵运算求解方程组的方法。
具体步骤如下:- 将三元一次方程组的系数写成矩阵形式,即系数矩阵。
- 对系数矩阵进行行变换,化为行简化阶梯形矩阵。
- 根据行简化阶梯形矩阵,得出方程组的解。
三、例题下面通过一个例题来展示如何使用上述方法解决三元一次方程组:例题:求解方程组2x + y + z = 63x - y + z = 4x + 2y - z = 1解法:1. 代入法选择第一个方程,将 z 表示为其他变量的函数:z = 6 - 2x - y将 z 代入到第二、第三个方程中,得到一个二元一次方程组:3x - y + (6 - 2x - y) = 4x + 2y - (6 - 2x - y) = 1化简上述方程组,得到:x - 2y = -13x - 2y = 1解二元一次方程组,得到:x = 1, y = 1将 x 和 y 值代入任意一个原方程,求解 z 值:2(1) + 1 + z = 6z = 32. 消元法通过线性变换,将方程组化为三个方程,其中每个方程只包含两个变量:2x + y + z = 63x - y + z = 4x + 2y - z = 1化简第三个方程:x + 2y = 1 + z替换第一个和第二个方程中的 x 和 y 值:2(1 + z) - y + z = 63(1 + z) - y + z = 4化简上述方程组,得到:-2z + y = 4-2z + y = 1可以看出上述方程组无法满足,因此该方程组无解。
《三元一次方程组》例题与讲解
《三元一次方程组》例题与讲解1.三元一次方程及三元一次方程组(1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程.(2)三元一次方程组:①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如:⎩⎨⎧ x +y =1,y +z =3,x -2z =5,⎩⎨⎧x +3y +2z =2,3x +2y -4z =3,2x -y =7等都是三元一次方程组.②拓展理解:a.构成三元一次方程组中的每一个方程都必须是一次方程;b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数.【例1】 下列方程组中是三元一次方程组的是( ).A.⎩⎨⎧x 2-y =1,y +z =0,xz =2B.⎩⎪⎨⎪⎧1x +y =1,1y +z =2,1z +x =6C.⎩⎨⎧a +b +c +d =1,a -c =2,b -d =3D.⎩⎨⎧m +n =18,n +t =12,t +m =0解析:A ,B 选项中有的方程不是三元一次方程,C 中含有四个未知数,只有D 符合三元一次概念内涵,故选D.答案:D2.三元一次方程组的解(1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,叫做三元一次方程的解.和二元一次方程一样,一个三元一次方程也有无数个解.(2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数.(3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解.释疑点 检验三元一次方程组的解三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解.【例2】 判断⎩⎨⎧x =2,y =-3,z =-3是不是方程组⎩⎨⎧x +y -2z =5,2x -y +z =4,2x +y -3z =10的解.答:__________(填是或不是).解析:把⎩⎨⎧x =2,y =-3,z =-3代入方程组的三个方程中检验,能使三个方程的左右两边都相等,所以是方程组的解.答案:是3.三元一次方程组的解法(1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程.(2)步骤:①观察方程组中每个方程的特点,确定消去的未知数;②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;③解二元一次方程组,求出两个未知数的值;④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;⑤写出三元一次方程组的解. (3)注意点:①三元一次方程组的解法多种多样,只要逐步消元,解出每一个未知数即②解三元一次方程组时,每一个方程都至少要用到一次,否则解出的结果也不正确.【例3】 解方程组⎩⎨⎧ x +3y +2z =2,3x +2y -4z =3,2x -y =7.①②③分析:观察方程组中每个方程的特征可知,方程③不含有字母z ,而①,②中的未知数z 的系数成倍数关系,故可用加减消元法消去字母z ,然后将所得的方程与③组合成二元一次方程组,求这个方程组的解,即可得到原方程组的解.解:①×2+②,得5x +8y =7,④ 解③,④组成的方程组 ⎩⎨⎧2x -y =7,5x +8y =7.解这个方程组,得⎩⎨⎧x =3,y =-1.把x =3,y =-1代入①,得z =1,所以原方程组的解为⎩⎨⎧x =3,y =-1,z =1.4.运用三元一次方程组解实际问题(1)方法步骤:①审题:弄清题意及题目中的数量关系; ②设:设三个未知数;③列:找出实际问题中的已知数和未知数,分析它们之间的数量关系,用式子表示,列出三个方程,组成三元一次方程组;④解:解这个方程组,并检验解是否符合实际; ⑤答:回答说明实际问题的答案. 析规律 列三元一次方程组同二元一次方程组的实际应用相类似,运用三元一次方程组解决实际问题要设三个未知数,寻找三个等量关系,列出三个一次方程,组成三元一次方程【例4】 某个三位数是它各位数字和的27倍,已知百位数字与个位数字之和比十位数字大1,再把这个三位数的百位数字与个位数字交换位置,得到一个新的三位数,新三位数比原三位数大99,求原来的三位数.解:设百位数字为a 、十位数字为b ,个位数字为c ,则这个三位数为100a +10b +c ,由题意,得⎩⎨⎧a +c =b +1,27a +b +c =100a +10b +c ,100a +10b +c +99=100c +10b +a .化简,得⎩⎨⎧a -b +c =1,-73a +17b +26c =0,a -c =-1.解这个方程组,得⎩⎨⎧a =2,b =4,c =3.答:原来的三位数是243. 5.三元一次方程组的解法技巧解三元一次方程组的基本思路是消元,即化三元为二元,从而转化为二元一次方程组求解,在这里关键是消元,若能根据题目的特点,灵活地进行消元,则可把方程组解得又准确又快捷,下面介绍几种常见的消元策略供参考.(1)先消系数最简单的未知数,这样可以减少运算量,简化过程.如:⎩⎨⎧3x -y +2z =3,2x +y -3z =11,x +y +z =12中,y 的系数较简单,先消y 简单.(2)先消某个方程中缺少的未知数.若方程组中某个方程缺少某个元,把另外两个方程结合,消去这个元,转化为二元一次方程求解.如:⎩⎨⎧4x -9z =17, ①3x +y +15z =18, ②x +2y +3z =2. ③因为方程①中缺少y ,所以由②,③组合先消去y 比较简单.(3)先消去系数的绝对值相等(或成倍数关系)的未知数,如:⎩⎨⎧2x +4y +3z =9,3x -2y +5z =11,5x -6y +7z =13,三个方程中y 的系数成倍数关系,因此先消去y 比较简单. (4)整体代入消元,如:⎩⎨⎧x +y +z =26, ①x -y =1, ②2x +z -y =18. ③将方程③左边变形为(x +y +z )+(x -y )-y =18,作整体代入便可消元求解.(5)整体加减消元:如:⎩⎨⎧3x +2y +z =13, ①x +y +2z =7, ②2x +3y -z =12, ③在三个方程中,根据未知数x ,z 的系数特点,可用②+③-①整体加减消元法来解得y 的值.再逐步求解.【例5-1】 解方程组⎩⎨⎧3x +4z =7,①2x +3y +z =9, ②5x -9y +7z =8. ③分析:因为方程①中缺少未知数y 项,故而可由②,③组合先消去y ,再求解.解:②×3+③,得11x +10z =35,④解由①,④组成的方程组⎩⎨⎧ 3x +4z =7,11x +10z =35.解得⎩⎨⎧x =5,z =-2.⑤ 把⑤代入②,得y =13, 所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =13,z =-2.【例5-2】 解方程组⎩⎨⎧5x -15y +4z =38,①x -3y +2z =10, ②7x -9y +14z =58. ③分析:经观察发现①中的5x -15y =5(x -3y ),这就与②有了联系,因此,①可化为5(x -3y +2z )-6z =38,把②整体代入该方程中,可求出z 的值,从而易得x 与y 的值.解:由①,得5(x -3y +2z )-6z =38,④ 把②整体代入④,得5×10-6z =38. 解这个方程,得z =2, 把z =2分别代入①,②中,得 ⎩⎨⎧5x -15y =30,7x -9y =30.⑤ 解⑤,得⎩⎨⎧x =3,y =-1.所以原方程组的解是⎩⎨⎧x =3,y =-1,z =2.【例5-3】 解方程组⎩⎨⎧x +y -z =11,①y +z -x =5, ②z +x -y =1. ③分析:方程组中每个未知数均出现了三次,且含各未知数的项系数和均为1,故可采用整体相加的方法.解:①+②+③,得x +y +z =17,④再由④分别减去①,②,③各式,分别得z =3,x =6,y =8.所以原方程组的解是⎩⎨⎧x =6,y =8,z =3.6.三元一次方程组的应用归类三元一次方程组的应用和二元一次方程组的应用类似,也主要包括两类: (1)构造方程组,通过解方程组解决问题.主要有以下几种情况.①根据某些数学概念构造方程组,如:2x 4m y 16-5n 与x 3n +6y 2m 是同类项,根据同类项定义列方程求未知数m ,n .②运用非负数的性质构造方程组.如:如果(x +y -2)2+|y +z -4|+|x -y +2|=0,那么x =__________,y =__________,z =__________.根据题意列出三元一次方程组求解.③已知方程的解的情况求未知系数.如:关于x ,y 的二元一次方程组⎩⎨⎧x +2y =3m ,x -y =9m 的解,也是方程3x +2y =17的解,则m 的值是?根据题意构造一个以x ,y ,m 为未知数的三元一次方程组求解. 点评:这类问题的实质是变相的解方程组问题.(2)列方程解应用题,根据实际生活中的情景,列方程组解决实际问题. 【例6-1】 如果方程组⎩⎨⎧3x +5y =m +2,2x +3y =m 中,x 与y 的和为2,则m 的值是( ).A.16B.4C.2D.8解析:方法一:因为x 与y 的和为2,即x +y =2,所以与⎩⎨⎧3x +5y =m +2,2x +3y =m ,组成一个三元一次方程组⎩⎨⎧3x +5y =m +2,2x +3y =m ,x +y =2.解这个方程组,求出m =4.方法二:也可以先解⎩⎨⎧3x +5y =m +2,2x +3y =m .求出x ,y 的值(含m ),再把解得的x ,y 的值代入x +y =2中,求出m .方法三:把x =2-y 代入⎩⎨⎧3x +5y =m +2,2x +3y =m ,解含y ,m 的二元一次方程组.答案:B【例6-2】 如果|x -2y +1|+|z +y -5|+(x -z -3)2=0,那么x =________,y =__________,z =__________.解析:根据非负数的和为0,各式都为0,列出三元一次方程组⎩⎨⎧x -2y +1=0,z +y -5=0,x -z -3=0.化简,得⎩⎨⎧x -2y =-1,z +y =5,x -z =3.解这个方程组,得x =5,y =3,z =2.答案:5 3 27.运用三元一次方程组求代数式的值解三元一次方程组是对消元思想和方法的综合的、全面的运用,另一方面是将来学习二次函数的必备知识,在本章中,经常出现一类求代数式值的问题,如:已知代数式ax 2+bx +c ,当x 分别取1,0,2时,式子的值分别是0,-3,-5,求当x =5时,代数式ax 2+bx +c 的值.解法:分别将x =1,0,2代入代数式ax 2+bx +c 中,得到一个三元一次方程组⎩⎨⎧a +b +c =0,c =-3,4a +2b +c =-5.解这个三元一次方程组,求出系数a ,b ,c 的值,再将x =5回代,再求出当x =5时,式子ax 2+bx +c 的值.【例7-1】 已知x +2y +3z =54,3x +2y +2z =47,2x +y +z =31,那么代数式x +y +z 的值是( ).A.17B.22C.32D.132解析:将三个三元一次方程组成方程组,⎩⎨⎧x +2y +3z =54,3x +2y +2z =47,2x +y +z =31.整体求法,将三个式子相加,得6x +6y +6z =132,两边都除以6,解,得x +y +z =22.B 正确,故选B.答案:B【例7-2】 在等式y =ax 2+bx +c 中,当x 分别取1,2,3时,y 的值分别为3,-1,15.则a =__________,b =______,c =______;当x 取4时,y 的值为______.解析:把x =1,2,3分别代入y =ax 2+bx +c 中,得三元一次方程组⎩⎨⎧a +b +c =3,4a +2b +c =-1,9a +3b +c =15.解这个三元一次方程组得⎩⎨⎧a =10,b =-34,c =27.所以等式是y =10x 2-34x +27,把x =4代入y =10x 2-34x +27中,得y =51.答案:10 -34 27 51 8.含比例方程的方程组的解法三元一次方程组中,有一类方程,含有比例式子,如⎩⎨⎧x ∶y =3∶2, ①y ∶z =5∶4, ②x +y +z =66. ③这类方程组的解法有两种方式,一是把方程组根据比例的性质进行化简,化为一般的三元一次方程组,按常规思路进行解决;二是设参数法,如在上面的方程组中设每一份为k ,则x =3k ,y =2k ,z =1.6k ,把它们分别代入③中,得3k +2k +1.6k =66.即 6.6k =66,解得k =10,所以x =30,y =20,z =16.从而解出方程组.【例8】 解方程组⎩⎪⎨⎪⎧ x 3=y 4=z 5,7x +3y -5x =16.①②分析:方法一:将①化简成两个方程和②组成三元一次方程组,解这个三元一次方程组;方法二:因是比例式,所以设x 3=y 4=z5=t ,则x =3t ,y =4t ,z =5t ,代入②中即可求出t 的值,解出方程组.解:设x 3=y 4=z5=t ,则x =3t ,y =4t ,z =5t ,将它们都代入方程②,得 7×3t +3×4t -5×5t =16,解得t =2.所以x =6,y =8,z =10. 所以原方程组的解是⎩⎨⎧x =6,y =8,z =10.。
(完整版)三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2。
三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标. 解法1:代入法,消x 。
把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解。
根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z ,因此利用①、②消z ,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤ 由③、⑤得⎩⎨⎧=+=⑤③38344y x yx解得8,2.x y =⎧⎨=⎩把x=8,y=2代入①得z=2。
∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解。
根据方程组的特点,可归纳出此类方程组为: 类型二:缺某元,消某元型.例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x 分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组",可采取求和作差的方法较简洁地求出此类方程组的解。
5.8三元一次方程组(教案)
(4)对于部分学生来说,求解过程可能会觉得繁琐,需要培养学生耐心、细致的计算习惯。
举例:在消元过程中,可能需要进行多次代入和计算,学生需保持专注,避免因粗心大意而出错。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“三元一次方程组”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决三个未知数的问题?”(例如:三个朋友分别买了不同数量的苹果、香蕉和橙子,总共花费了一定金额。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三元一次方程组的奥秘。
5.增强学生的问题解决能力,使学生能够运用所学知识解决实际问题,从而培养学生的创新意识和实践能力。
三、教学难点与重点
1.教学重点
(1)掌握三元一次方程组的定义及其标准形式,理解方程组中各个方程之间的关系。
举例:如方程组:
\[
\begin{cases}
a_1x + b_1y + c_1z = d_1 \\
学生小组讨论环节,整体来说进行得还不错。但在引导与启发学生思考问题时,我发现自己的提问方式可能还不够开放,导致学生的回答较为局限。在今后的教学中,我将尝试提出更多具有启发性的问题,激发学生的思维。
总之,通过这次教学反思,我认识到了自己在教学过程中的一些不足。在今后的工作中,我将努力改进教学方法,关注每位学生的学习情况,提高他们的学习效果。同时,我也将不断学习,提升自己的教育教学水平,为学生们提供更好的教学服务。
五、教学反思
在上完这节课后,我对自己教学过程中的优点和不足进行了反思。首先,我觉得在导入新课环节,通过提问方式引起学生的兴趣和好奇心,这一点做得还不错。学生们在回答问题时,积极参与,课堂氛围较为活跃。然而,我也发现了一些需要改进的地方。
三元一次方程组的解法举例
三元一次方程组的解法举例在数学中,三元一次方程组是由三个含有三个未知数的一次方程组成的。
解决这种方程组可以帮助我们找到未知数的值,使得所有方程都成立。
在本文中,我们将介绍三种常见的解三元一次方程组的方法。
方法一:代入消元法代入消元法是解三元一次方程组最常用的方法之一。
它的基本思想是将方程组中的一个未知数用其他未知数的表达式代入其他方程中,从而减少未知数的数量,从而简化方程组。
以下是一个具体的例子:假设我们有三元一次方程组:2x + 3y + 4z = 103x + 2y + z = 5x + 2y + 3z = 7我们可以使用代入消元法来解决这个方程组。
首先,我们可以从第一个方程中解出x的表达式:x = (10 - 3y - 4z)/2将这个表达式代入第二个方程中得到:3((10 - 3y - 4z)/2) + 2y + z = 5化简这个方程,我们可以解出y的表达式:y = (39 - 10z)/11将这个表达式代入第三个方程中得到:(10 - 3((39 - 10z)/11) - 4z)/2 + 2((39 - 10z)/11) + 3z = 7化简这个方程,我们可以解出z的表达式:z = 1将z的值代入y的表达式,然后再代入x的表达式,我们可以得到:x = 2y = 3z = 1所以方程组的解为x = 2,y = 3,z = 1。
方法二:矩阵消元法矩阵消元法是解三元一次方程组的另一种常用方法。
它的基本思想是将方程组表示为矩阵的形式,然后通过一系列行变换将矩阵化简成行最简形,从而得到方程组的解。
以下是一个具体的例子:假设我们有三元一次方程组:2x + 3y + 4z = 103x + 2y + z = 5x + 2y + 3z = 7我们可以将这个方程组表示为矩阵的形式:[2 3 4 | 10][3 2 1 | 5][1 2 3 | 7]接下来,我们通过一系列行变换将矩阵化简成行最简形。
具体的步骤如下:1.将第一个方程乘以3,第二个方程乘以2,第三个方程乘以1,并进行相减:[6 9 12 | 30][6 4 2 | 10][1 2 3 | 7]2.将第二行乘以1/2,得到:[6 9 12 | 30][3 2 1 | 5][1 2 3 | 7]3.将第一行减去两倍的第二行,得到:[0 5 10 | 20][3 2 1 | 5][1 2 3 | 7]4.将第一行乘以1/5,得到:[0 1 2 | 4][3 2 1 | 5][1 2 3 | 7]5.将第二行减去三倍的第一行,将第三行减去一倍的第一行,得到:[0 1 2 | 4][3 -1 -2 | -7][1 0 1 | 3]6.将第二行乘以-1,得到:[0 1 2 | 4][-3 1 2 | 7][1 0 1 | 3]7.将第一行加上三倍的第二行,得到:[0 0 8 | 25][-3 1 2 | 7][1 0 1 | 3]8.将第三行减去一倍的第二行,得到:[0 0 8 | 25][-3 1 2 | 7][1 0 1 | 3]9.将第一行乘以1/8,得到:[0 0 1 | 25/8][-3 1 2 | 7][1 0 1 | 3]10.将第二行加上三倍的第一行,第三行减去第一行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 1 | 3]11.将第三行减去一倍的第二行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 1 | 3]12.将第三行减去五倍的第二行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 0 | -2/8]最后得到了行最简形的矩阵,通过回代法可以求得方程组的解:x = -1/4y = 23/8z = 25/8所以方程组的解为x = -1/4,y = 23/8,z = 25/8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1, ∴ y 2, 是原方程组的解. z 7.
x y z 111 ① 典型例题举例:解方程组 y : x 3 : 2 ② y : z 5 : 4 ③
分析 1:观察此方程组的特点是方程②、③中未知项间存在着比例关系,由 例 3 的解题经验,学生易选择将比例式化成关系式求解,即由②得 x = ③得 z=
一、三元一次方程组之特殊型
① x y z 12 例 1:解方程组 x 2 y 5 z 22 ② x 4 y ③
分析:方程③是关于 x 的表达式,通过代入消元法可直接转化为二元一次方 程组,因此确定“消 x”的目标。 解法 1:代入法,消 x.
5 y z 12 ④ 把③分别代入①、②得 6 y 5 z 22 ⑤
③
x 1, ∴ y 2, 是原方程组的解. z 7.
分析 2:由以往知识可知遇比例式时,可设一份为参数 k ,因此由方程① x:y:z=1:2:7,可设为 x=k,y=2k,z=7k.从而也达到了消元的目的,并把三元通 过设参数的形式转化为一元,可谓一举多得。 解法 2:由①设 x=k,y=2k,z=7k,并代入②,得 k=1. 把 k=1,代入 x=k,得 x=1; 把 k=1,代入 y=2k,得 y=2; 把 k=1,代入 z=7k,得 z=7.
③ x 4 y 由③、⑤得 4 x 3 y 38 ⑤
x 8, 解得 y 2.
把 x=8,y=2 代入①得 z=2.
x 8, ∴ y 2, z 2.
是原方程组的解.
根据方程组的特点,由学生归纳出此类方程组为: 类型二:缺某元,消某元型.
x 30, ∴ y 45, 是原方程组的解. z 36.
根据方程组的特点,由学生归纳出此类方程组为: 类型四:遇比例式找关系式,遇比设元型. 二、三元一次方程组之一般型
3x y z 4, 例 4:解方程组 x y z 6, 2 x 3 y z 12. ① ② ③
2
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
消元的方法有两种: 代入消元法 三元一次方程 三元一次方程:含有三个未知数的一次方程 三元一次方程组:由几个一元一次方程组成并含有三个未知数的方程组叫做三元一 次方程组 三元一次方程组的解:利用消元思想使三元变二元,再变一元 方程是初等代数中的重要内容,方程的知识在生产实践中有广泛应用。 定义:方程组有三个未知数,每个方程的未知项的次数都是 1,并且一共有三个方程, 这样的方程组就是三元一次方程组. 解题思路:三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次 方程组转化为二元一次方程组,再转化为一元一次方程. 加减消元法
2 x y z 15 例 2:解方程组 x 2 y z 16 x y 2 z 17 ① ② ③
分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数 之和也相等,即系数和相等。具备这种特征的方程组,我们给它定义为“轮换方 程组” ,可采取求和作差的方法较简洁地求出此类方程组的解。
4 y .从而利用代入法求解。 5
6
2 y; 由 3
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
解法 1:略. 分析 2:受例 3 解法 2 的启发,有的学生想使用设参数的方法求解,但如何 将②、③转化为 x:y:z 的形式呢?通过观察发现②、③中都有 y 项,所以把它作 为桥梁,先确定未知项 y 比值的最小公倍数为 15,由②×5 得 y:x=15:10 ,由③ ×3 得 y:z=15:12,于是得到 x:y:z=10:15:12,转化为学生熟悉的方程组形式,学生 就会解决了。 解法 2:由②、③得 x:y:z=10:15:12. 设 x=10k,y=15k,z=12k,并代入①,得 k=3. 把 k=3,代入 x=10k,得 x=30; 把 k=3,代入 y=15k,得 y=45; 把 k=3,代入 z=12k,得 z=36.
1
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
移项时别忘记了要变号。 4合并同类项 将原方程化为AX=B[A不等于0]的形式 5系数化1 方程两边同时除以未知数的系数,得出方程的解 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程 方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方 程是同解方程 2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程 列一元一次方程解应用题的一般步骤:1认真审题 2分析已知和未知的量 3找一个等量关系 4解方程 5检验 6写出答,解 二元一次方程 二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个方 程就叫做二元一次方程,有无穷个解。 二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一 次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一 次方程的解 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解 消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想
(明确消 z,并在方程组中体现出来——画线) ①+③ 得 5x+2y=16, ②+③ 得 3x+4y=18, ④ ⑤ (体现第一次使用在①③后做记号√) (体现第二次使用在②③后做不同记号△)
5 x 2 y 16, 由④、⑤得 3x 4 y 18.
x 2, 解得 y 3.
④ ⑤
把 x=2 ,y=3 代人②,得 z=1.
x 2, ∴ y 3, 是原方程组的解. z 1.
2 x 4 y 3z 9, 典型例题举例:解方程组 3x 2 y 5 z 11, 5 x 6 y 7 z 13. ① ② ③
4
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
解:由①+②+③得 4x+4y+4z=48, 即 x+y+z=12 .④ ①-④得 x=3, ②-④得 y=4, ③-④得 z=5,
x 3, ∴ y 4, z 5.
分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消 元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎 么才能做到“目标明确,消元不乱” ,为此归纳出: (一) 消元的选择
7
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
1.选择同一个未知项系数相同或互为相反数的那个未知数消元; 2.选择同一个未知项系数最小公倍数最小的那个未知数消元。 (二) 方程式的选择 采取用不同符号标明所用方程,体现出两次消元的过程选择。
3x y z 4 解: x y z 6 2 x 3 y z 12 ① ② ③
y 2, 解得 z 2.
把 y=2 代入③,得 x=8.
3
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
x 8, ∴ y 2, z 2.
是原方程组的解.
根据方程组的特点,由学生归纳出此类方程组为: 类型一:有表达式,用代入法型. 针对上例进而分析,方程组中的方程③里缺 z,因此利用①、②消 z,也能达 到消元构成二元一次方程组的目的。 解法 2:消 z. ①×5 得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤
铮满分,吴压力!学而思网校 _初中数学吴铮老师_QQ 答疑群:246440018_验证信息:快乐铮满分
专题:三元一次方程及其解法
序言:方程 含有未知数的等式叫方程等式的基本性质1:等式两边同时加[或减]同一个数或 同一个代数式,所得的结果仍是等式 用字母表示为:若A=B,C为一个数或一个代数式。则: [1]A+C=B+C [2]A-C=B-C 等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是 等式 3若 a=b,则 b=a(等式的对称性) 4若 a=b,b=c 则 a=c(等式的传导性) 方程:含有未知数的等式叫做方程 方程的解:使方程左右两边相等的未知数的值叫做方程的解 解方程:求方程的解的过程叫做解方程 移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移 项,根据是等式的基本性质1。 一元一次方程 一共只有一个未知数且次数是一的方程叫一元一次方程,通常形式是 ax+b=0(a,b 为常数,a 不等于零) 1去分母 方程两边同时乘各分母的最小公倍数 2去括号 一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率 3移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边
根据方程组的特点,由学生归纳出此类方程组为: 类型三:轮换方程组,求和作差型.
x : y : z 1 : 2 : 7 例 3:解方程组 2 x y 3z 21
① ②
分析 1: 观察此方程组的特点是未知项间存在着比例关系, 根据以往的经验, 学生看见比例式就会想把比例式化成关系式求解,即由 x:y=1:2 得 y=2x; 由 x:z=1:7 得 z=7x. 从 而 从 形 式 上 转 化 为 三 元 一 次 方 程 组 的 一 般 形 式 , 即
是原方程组的解.
x y 20, 典型例题举例:解方程组 y z 19, x z 21.
① ② ③