数形结合的典型例题
三年级数形结合案例
三年级数形结合案例数形结合是指将数学知识与几何图形相结合,通过几何图形的形状、大小、位置等特征来解决数学问题。
三年级是学习数学和几何的关键阶段,以下是符合要求的一些数形结合案例:1. 小明家里有一块长方形的花坛,他想要在花坛的四周铺上一圈石子,用来美化花坛。
他测量了花坛的长和宽,发现长是5米,宽是3米。
他需要计算一下需要多少块石子才能够铺满整个花坛的四周。
2. 小红正在学习面积的概念,她拿着一个正方形的纸板,边长是4厘米。
她想要知道这个正方形的面积是多少,并用纸板上的方格来计算。
3. 小明和小红正在进行一个游戏,他们需要分别画一个正三角形和一个正方形,然后比较它们的面积。
小明画的正三角形的底边长是6厘米,高是4厘米;小红画的正方形的边长是5厘米。
他们需要计算一下谁画的图形面积更大。
4. 小明正在学习周长的概念,他拿着一个长方形的纸板,长是8厘米,宽是3厘米。
他需要计算一下这个长方形的周长是多少,并用纸板上的方格来计算。
5. 小红家里有一个圆形的花坛,她想要在花坛中间种一棵树,并围上一个圆形的栅栏,用来保护树苗。
她测量了花坛的直径,发现直径是10米。
她需要计算一下围栅栏需要多长的铁丝。
6. 小明正在学习体积的概念,他拿着一个正方体的木块,边长是4厘米。
他想要知道这个正方体的体积是多少,并通过拼装小木块的方式来计算。
7. 小红和小明正在进行一个游戏,他们需要分别画一个长方形和一个正三角形,然后比较它们的周长。
小红画的长方形的长是7厘米,宽是3厘米;小明画的正三角形的底边长是5厘米,高是4厘米。
他们需要计算一下谁画的图形周长更大。
8. 小明正在学习体积的概念,他拿着一个长方体的木块,长是6厘米,宽是3厘米,高是2厘米。
他想要知道这个长方体的体积是多少,并通过拼装小木块的方式来计算。
9. 小红正在学习面积的概念,她拿着一个长方形的纸板,长是7厘米,宽是4厘米。
她想要知道这个长方形的面积是多少,并用纸板上的方格来计算。
数形结合的典型例题初中
数形结合的典型例题初中示例文章篇一:哎呀,一提到数形结合,这可真是初中数学里超级有趣又超级重要的一部分呢!就说那次,老师在黑板上出了一道题:已知一个二次函数图像经过点(1,0)、(3,0)和(0,3),求这个二次函数的解析式。
我一开始看着题目直发懵,心里想着:“这可咋整啊?”同桌小明倒是很快有了思路,他悄悄跟我说:“你看,这几个点不就是关键线索嘛!”我还是一脸茫然。
老师看到大家都有点不知所措,就笑着说:“同学们,咱们来画画图呀,这不就是数形结合嘛!”于是,我们在纸上画出了坐标系,把那几个点标了上去。
这一标,我好像突然开窍了!这不就像是在地图上找宝藏的标记一样嘛,这些点就是我们寻找函数解析式这个“宝藏”的线索。
我赶紧和旁边的小红讨论起来:“你说,这几个点连起来像不像一个三角形?”小红白了我一眼说:“别瞎想啦,咱们得正经解题。
”经过一番琢磨,我发现通过这几个点的位置关系,可以设出二次函数的一般式y = ax² + bx + c ,然后把点的坐标代进去,就能算出a、b、c 的值啦!这就好像是搭积木,每个点就是一块积木,我们得把它们巧妙地组合起来,才能搭出完整的“函数大厦”。
还有一次,有道题是比较两个数的大小,一个是根号5,一个是2。
这可把我难住了,这两个数看起来没啥直接的联系呀!这时候,老师又提醒我们:“画画图呀!”我恍然大悟,在数轴上把根号5 的大概位置标了出来,一下子就看出来它比2 大啦!数形结合就像是给我们开了一扇神奇的窗户,让原本抽象的数学变得清晰可见。
它能让我们在数学的世界里畅行无阻,就像有了导航一样,再也不怕迷路啦!总之,数形结合在初中数学里可太重要啦,它能帮我们轻松解决好多难题,让数学变得有趣又简单,难道不是吗?示例文章篇二:哎呀,说到数形结合,这在咱们初中数学里可太重要啦!就比如说,有这么一道题,让咱们求一个函数图象与坐标轴围成的面积。
光看数字和公式,是不是觉得脑袋都大啦?可要是把数和形结合起来,那就完全不一样喽!老师在黑板上画出那个函数图象的时候,就好像给我们打开了一扇神奇的大门。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
高中数学数形结合思想经典例题(含解析)
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
高考数学复习----《数形结合》典型例题讲解
高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。
初一数形结合的典型例题
初一数形结合的典型例题
例题1,一个正方形的边长为5cm,求它的周长和面积。
解答,正方形的周长等于四条边的长度之和,即周长 = 5cm +
5cm + 5cm + 5cm = 20cm。
正方形的面积等于边长的平方,即面积
= 5cm × 5cm = 25cm²。
例题2,一个长方形的长为12m,宽为8m,求它的周长和面积。
解答,长方形的周长等于两倍的长加两倍的宽,即周长= 2 × 12m + 2 × 8m = 40m。
长方形的面积等于长乘以宽,即面积 = 12m × 8m = 96m²。
例题3,一个圆的半径为3cm,求它的周长和面积(取π ≈
3.14)。
解答,圆的周长等于2πr,其中r为半径,即周长= 2 ×
3.14 × 3cm ≈ 18.84cm。
圆的面积等于πr²,即面积 = 3.14
× 3cm × 3cm ≈ 28.26cm²。
例题4,一个三角形的底边长为6cm,高为4cm,求它的面积。
解答,三角形的面积等于底边乘以高再除以2,即面积 = 6cm × 4cm ÷ 2 = 12cm²。
这些例题涵盖了常见的数形结合题型,通过计算周长和面积,能够帮助我们理解几何形状的特征和计算方法。
当然,在实际应用中,还有更多复杂的数形结合问题需要解决,但这些例题可以作为初步的练习和基础知识的巩固。
希望这些例题能对你有所帮助。
一元一次方程数形结合的例题
一元一次方程数
形结合的例题
例题:一列火车匀速行驶,经过一条长300米的隧道需要20秒,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求火车的速度。
一、分析:
1.火车完全经过隧道的时间是20秒,所以火车在这段时间里行驶的距离是火车的长度加上隧道的长度,即300米+ 火车的长度。
2.灯光照在火车上的时间是10秒,这段
时间里火车行驶的距离是隧道的长度,即300米。
二、用数学方程表示:
1.火车在20秒内行驶的距离= 300米+ 火车的长度
2.火车在10秒内行驶的距离= 300米
由于火车是匀速行驶的,所以我们可
以设火车的速度为v 米/秒。
1.根据速度的定义,速度= 距离/ 时间。
2.根据上面的分析,我们可以得到以下方程:
(20 ×v) = 300 + 火车的长度
(10 × v) = 300
现在我们要来解这个
方程组,找出v 和火车的长度的值。
计算结果为:[{v: 30, length: 300}]
所以,火车的速度为:30米/秒。
数形结合高中数学例题
例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么?
分析:原方程变形为2x 2-3x =2k 后可转化为函数
y =2x 2-3x 。
和函数y =2k 的交点个数问题.
解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛
物线,随着k 的变化,易知2k =-8
9或-1≤2k <5时只有一个公共点.∴ k =-169或-21≤k <2
5. 点拨解疑:方程(组)解的个数问题一般都是通过相
应的函数图象的交点问题去解决.这是用形(交点)解决
数(实根)的问题.
例题3.已知s =
1
322+-t t ,则s 的最小值为 。
分析:等式右边形似点到直线距离公式.
解:|s |=1
|32|2+-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y
-3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t
-3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.
点拨解疑:由数的形式联想到数的几何意义也即形,从而以形辅数解决问题.类似地如n bx m ay --联想到斜率,1cx d b
++联想到定比分点公式,(x -a )2+(y -b )2
联想到距离,|z 1-z 2|联想到两点间距离等.。
小学数学总结_数形结合【范本模板】
数形结合总结 数形结合之规律【典型例题】 例1 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321========……用你所发现的规律写出20043的末位数字是__________。
例2 观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯……请你将猜想得到的式子用含正整数n 的式子表示来__________.例4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3-4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。
……(1)将下表填写完整(2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。
例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算: =+++++++25611281641321161814121 例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是例8.观察下列图形并填表。
①②③11周长 5 8 11 14…例9.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。
如果在表的另外的地方,也用正方形围住另外的9个数。
(1) 当正方形左上角的数是100时,这9个数的和是多少? (2) 当正方形中9个数的和是1557时,最大的数是多少?20019919819719619528272625242322212019181716151413121110987654321例10.将1至1001个数如下图的格式排列。
四年级数学数形结合经典题
数形结合是一种重要的数学思想,通过将抽象的数学语言与直观的图形相结合,可以帮助学生更好地理解数学概念和解决问题。
以下是一些适合四年级学生的数形结合经典题目:
1.小明用棋子摆成一个正方形实心方阵,最外边的一层共用96个棋子。
小明摆这个方
阵共用了多少个棋子?
2.小军用棋子摆成了一个空心方阵,最外边的一层共用棋子80个。
最里边的一层共用
棋子48个。
这个空心方阵共有几层?
3.小丽用棋子摆成了一个三角形实心方阵,最外边的一层共用72个棋子。
小丽摆这个
方阵共用了多少个棋子?
4.小华用棋子摆成一个空心三角形,最外边的一层共用96个棋子。
最里边的一层共用
24个棋子。
这个空心三角形共有几层?
5.小明用棋子摆成一个长方形实心方阵,最外边的一层共用88个棋子。
如果最外边一
边有n个棋子,那么这个长方形方阵共有多少个棋子?
这些题目需要学生通过观察图形,理解数形结合的思想,并运用数学公式和推理方法来解决问题。
初二数形结合练习题
初二数形结合练习题1. 矩形ABCDEF中,AB = 6 cm,BC = 4 cm。
在AE边上取一点G,连接GC,使得GC ⊥ AE,并且GC = 3 cm。
求矩形的面积。
解析:首先,可以根据题意将矩形ABCDEF画出来,标记出AB = 6 cm,BC = 4 cm的边。
然后,在AE边上取一点G,连接GC并使之垂直于AE。
由于GC = 3 cm,我们可以利用它来找出矩形的面积。
解答:根据已知条件,我们可以得到以下图形:A _______B| || |D |_______| E|||C首先,连接AE和GC,连接DB和GC。
由于GC ⊥ AE,所以△AGE 和△GCD 是相似三角形。
根据相似三角形的性质可知:AE:DC = AG:GC,即 6:4 = (6 + x):3,其中x表示CG的长度。
解方程,得到 x = 1.5 cm。
所以,CG = 1.5 cm。
矩形的面积可以使用公式 S = l × w 来计算,其中 l 和 w 分别表示矩形的长和宽。
根据题意,矩形的长为 AB = 6 cm,宽为 BC = 4 cm。
所以,矩形的面积 S = 6 cm × 4 cm = 24 cm²。
所以,矩形的面积为 24 平方厘米。
2. 用初中以上水平解决下列问题:已知长方形的长为 3n 厘米,宽为 2n 厘米,其中 n 为正整数,且周长小于 100 厘米。
试求长方形的周长和面积的值。
解析:题目给出了长方形的长为 3n 厘米,宽为 2n 厘米,并且周长小于100 厘米。
我们需要根据这些条件来求解长方形的周长和面积。
解答:设长方形的长为 L,宽为 W。
根据题目的已知条件,可以列出以下方程:2L + 2W < 100 (周长小于 100 厘米)L = 3nW = 2n代入 L = 3n 和 W = 2n,得到:2(3n) + 2(2n) < 1006n + 4n < 10010n < 100n < 10由于 n 是正整数,所以 n 的取值范围为1 ≤ n < 10。
数形结合练习题及答案小学
数形结合练习题及答案小学数形结合练习题及答案小学在小学数学教学中,数形结合是一种常用的教学方法。
通过将数学知识与几何图形相结合,可以帮助学生更好地理解和掌握数学概念。
下面将给出一些数形结合的练习题及答案,帮助小学生巩固数学知识。
1. 题目:一个正方形的周长是12cm,求正方形的面积。
解答:设正方形的边长为a,则周长为4a。
根据题意可得4a=12cm,解得a=3cm。
正方形的面积为a²=3²=9cm²。
2. 题目:一个长方形的周长是16cm,宽是3cm,求长方形的面积。
解答:设长方形的长为a,宽为b,则周长为2a+2b。
根据题意可得2a+2b=16cm,且b=3cm。
解方程可得a=5cm。
长方形的面积为a*b=5cm*3cm=15cm²。
3. 题目:一个圆的半径是5cm,求圆的面积和周长。
解答:圆的面积公式为πr²,周长公式为2πr。
根据题意可得半径r=5cm。
圆的面积为π*5²=25π cm²,周长为2π*5=10π cm。
4. 题目:一个三角形的底边长是8cm,高是4cm,求三角形的面积。
解答:三角形的面积公式为底边长乘以高的一半,即面积=底边长*高/2。
根据题意可得面积=8cm*4cm/2=16cm²。
5. 题目:一个梯形的上底长是6cm,下底长是10cm,高是5cm,求梯形的面积。
解答:梯形的面积公式为上底长加下底长乘以高的一半,即面积=(上底长+下底长)*高/2。
根据题意可得面积=(6cm+10cm)*5cm/2=40cm²。
通过以上练习题,可以看出数形结合的重要性。
通过将数学知识与几何图形相结合,可以帮助学生更好地理解和应用数学概念。
在解题过程中,学生需要将所给的数值代入相应的公式中,进行计算。
这种练习可以培养学生的逻辑思维和解决问题的能力。
除了以上的练习题,还可以通过其他形式的数形结合练习来巩固数学知识。
数形结合解题五例
数形结合解题五例“数形结合”是一门研究两类问题之间相互联系的学科,它是数学和几何学的实践性结合。
一个经典的数形结合解题模型是,利用数学分析的方法来解答具有几何关系的问题。
在这种情况下,解决问题的核心是发现数学模型,以及数学和几何知识之间的关系。
以下将介绍五个典型的数形结合解题案例。
第一个案例是:一只蚊子被困在圆柱形水桶内,现在要让它自由起飞,需要给桶中加多少水?这是一道数形结合案例,我们可以使用几何知识来解答这个问题。
首先,由于蚊子被困在圆柱形水桶内,我们可以确定桶的容积公式:容积=πr^2 h,其中r是桶的半径,h是桶的高度。
现在,我们需要确定桶中有多少水,因此需要求出桶中水的容积。
由于蚊子不能跨越水面,因此桶中水的容积必须超过蚊子跳过水面所需的高度,那么桶中水的容积就是h高度加上空气高度,因此总容积就是πr^2 (h+空气高度),空气高度可以根据蚊子跳出水面所必须的高度来计算。
最后,我们只需将总容积减去桶内现有水的容积,就可以得到桶中需要加的水的容积。
第二个案例是:在XY平面上,有一直角三角形ABC,AB=3,BC=4,求角A的大小。
这是一道解三角形的数形结合问题,我们可以使用勾股定理来解答,即a^2 + b^2 = c*2。
由此可知,a=3,b=4,那么角A的大小就是A=cos--1((a*2 - b*2)/2ab)=cos--1(-5/24)=90°-cos--1(5/24)。
通过以上的运算,可以知道 ABC的三角中,角A的大小是90°-cos--1(5/24)。
第三个案例是:以圆心A为原点,有一个半径为R的完整圆,两个圆心分别为B、C,B和C的距离为d,要求确定BC两点的坐标和圆心A的半径R。
这是一道数形结合问题,我们首先要求出圆心A的半径R,首先可以使用勾股定理求出R=√(d2-d2A)可以求得圆心A的半径R。
然后确定圆心B和C在XY平面上的坐标,我们需要知道圆心A的坐标,以及两个圆心B和C之间的夹角α,也就是两个圆心所在线段的切线夹角。
六年级数形结合的典型例题
六年级数形结合的典型例题
数形结合是数学中一个重要的概念,通过将数学问题与几何形状相结合,可以帮助学生更好地理解和应用所学知识。
以下是一些六年级数形结合的典型例题,旨在帮助学生进一步巩固和拓展他们的数学能力。
例题1:一个长方形花坛的长度是12米,宽度是8米。
如果一包草
籽足够播种4平方米的面积,那么这个长方形花坛最多可以播种多少包草籽?
解析:这个题目涉及到长方形的面积和乘法运算。
首先,我们可以计算出这个花坛的面积是12米乘以8米,等于96平方米。
然后,我们将96平方米除以每包草籽能够播种的面积4平方米,得到答案24。
所以,这个长方形花坛最多可以播种24包草籽。
例题2:一个正方形的边长是5厘米,如果将它分成4个小正方形,每个小正方形的边长是多少?
解析:这个题目涉及到正方形的边长和分割。
首先,我们知道正方形的四条边都是相等的,所以这个正方形的边长是5厘米。
然后,我们需要将正方形分成4个小正方形,所以每个小正方形的边长应该相等。
通过观察,我们可以将正方形垂直和水平地分割成4个相等的小正方
形,所以每个小正方形的边长是2.5厘米。
通过上述例题,我们可以看到数形结合在解决数学问题中的重要性。
它不仅让学生能够将抽象的数学概念具体化,还能够培养学生的空间想象力和逻辑思维能力。
在六年级的数学学习中,数形结合的例题可以帮助学生更好地理解和掌握各种数学概念,为他们将来的学习打下坚实的基础。
三年级数形结合的典型例题
三年级数形结合的典型例题
一、例题
1. 用小棒摆正方形,摆1个正方形需要4根小棒,摆2个正方形需要7根小棒,摆3个正方形需要10根小棒,按照这样的规律,摆n个正方形需要多少根小棒?
二、题目解析
1. 首先我们来分析小棒数量与正方形个数之间的关系:
摆1个正方形时,需要4根小棒,可表示为公式。
摆2个正方形时,我们可以看作第一个正方形用4根小棒,第二个正方形与第一个正方形共用1根小棒,所以只需要再用3根小棒,总共需要公式根小棒,也可表示为公式。
摆3个正方形时,第一个正方形4根小棒,后面两个正方形每个都与前面的正方形共用1根小棒,也就是每个只需3根小棒,总共公式根小棒,同样可表示为公式。
2. 然后我们可以总结出规律:
摆n个正方形时,除了第一个正方形用4根小棒,后面公式个正方形每个都只需3根小棒。
所以总共需要的小棒数量就是公式,化简这个式子:公式。
所以摆n个正方形需要公式根小棒。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析例题1:已知直角三角形ABC中,\angle B=90^\circ, AB=3, BC=4.过点B画高BD交AC于点D,求\bigtriangleup ABD的面积。
解析:在解决这个问题时,我们可以通过数形结合的思想来进行分析。
我们可以通过勾股定理知道AC=5。
然后我们可以通过计算直角三角形ABC的面积,S_{\bigtriangleup ABC}=\frac{1}{2}\times 3\times 4=6。
接着,我们可以通过计算直角三角形ABC在AC上的高BD,可以用\frac{1}{2}AB\times BC=6可以得到BD=1.5。
接下来,我们可以计算\bigtriangleup ABD的面积,S_{\bigtriangleup ABD}=\frac{1}{2}\times 3\times 1.5=2.25。
\bigtriangleup ABD的面积为2.25。
通过这个例题我们可以看到,通过数形结合的思想,我们可以用较为简洁的步骤来解决这个问题,使得我们更清晰地理解题目,找到更加直观的解法。
例题2:已知f(x)=x^2+bx+c是一个以x为自变量的二次函数,且f(2)+f(3)=26,f(4)=19,求b,c的值。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
我们可以通过函数值的计算得到f(2)=4+2b+c,f(3)=9+3b+c,f(4)=16+4b+c。
由f(2)+f(3)=26可得13+5b+2c=26,所以5b+2c=13。
由f(4)=19可得16+4b+c=19,所以4b+c=3。
通过解这个方程组可以得到b=5,c=3。
例题3:已知椭圆的离心率为\frac{1}{2},长轴的长为8,求其短轴的长。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
椭圆的离心率定义为e=\frac{\sqrt{a^2-b^2}}{a},其中a为长轴的长,b为短轴的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想
、数学结合思想
所谓的数形结合思想,就是根据数与形之间的对应关系,通过数与形的相
互转化来解决数学问题的思想。
数学结合思想的应用包括以下几个方面:
(1)“以形助数”把,某些抽象的数学问题直观化、生动化,变抽象思维有形象思维,
提示数学问题的本质;
(2)“以数助形”,把直观图形数量化,使形更加精确。
二、运用数形结合需要熟练掌握“数”、“形”及其相互转化:
1.“数”:主要是指数和数量关系。
中学阶段的“数”有以下几类:
(1)复数;(2)代数式;(3)函数;(4)不等式;(5)方程;(6)向量。
2.“形”:主要是指图形,有点、线、面、体等。
中学阶段的“形”有以下几类:
(1)数轴;(2)Venn 图;(3)函数图象;( 4)单位圆;(5)方程的曲线;(6)平面几
何的图形;(7)立体几何图形;(8)可行域;
三、数形结合思想应用的关键:
1 .由“数”联想到“;形2”.由“图”想“。
数”
四、数形结合思想解决的问题类型:
1.运用数轴、Venn 图解决不等(组)的解集、
集合的运算问题;
2.运用平面直角坐标系和函数的图象解决
函数问题、不等式问题、方程问题; 3.三角函数与解三角形问题; 4 .立体几何问题; 5.可行域求最优解问题; 6.数列问题;
7 .方程曲线与曲线方程等解析几何问题; 8.复数冋题。
数形结合思想的典型试题 以形助数探索解题思路
sin7ix(0 < X < 1)
例6 :(改编题)已知函数f(x)斗'
',若a,b,c 互不相等,且
Iog 2011 x(x >1)
f (a) = f (b) = f (c),则 a +b +c 的取值范围是(C )
例7 .设0<X 1 <X 2吒兀,试比较a =沁和b=Sn Z 2的大小. 为 X 2
【分析及解】 由式子 沁的结构可知,沁的的几何意义是连接两点 0(0,0 ) x x T(x,si nx )的直线的斜率,于是,可以画出y=s in x 的图象,研究两点Ax 1,si n 为)和 Bx 2,sinx 2 )与O(O,O )连线的斜率,由图象可知,k OA Ak oB ,即a Ab.
A . (1,2011)
B . (1,2012)
C . (2,2012)
D . [2,2012]
O a /b1
► x
2011
X 2
x
5
例8: (1)下列四个函数图象,只有一个是符合y =|k i x+b, | + |k 2x + b 2 ITk s x+b s I (其中
k i ,k 2,k 3为正实数,b i ,b 2,b 3为非零实数)的图象,则根据你所判断的图 象,k
1
, k 2
/
斗可一定成立的关系是
>x
变式: 已知函数f(x) =sn ^
x
(1)给出下列三个命题,其中真命题是
①②
①f(x)偶函数;②fg ;③当xp 时,f(x)取得极小值。
O
O
A . k t + k^ = k s
B . k t
= k^ =
k 3 C . k t + k 2》k 3 D . k t 中 k 2 吒 k 3
可行域与最值问题
例9.(周末练习7)设f (X)是定义在R 上的增函数,且对于任意的
X 都有
f(1^x +f (1片 X =0 恒成立.
「f(m 2-6m + 23 ) + f(n 2-8n)<0
2
2
如果实数m n 满足不等式组4 (
)(
丿,那么m 2 + n 2的取
m 〉3
值范围是()
解析:由已知可得f (X )的图象关于点(1,0)对中心对称,于是由
f(m 2 —6 m +23) + f(n 2 —8 n) c 0 可知:m 2—6 m + 23+n 2—8 n c 2
即(m -3)2 +(n -4)2 •<4,又由m >3,可得可行域如图: 答案:D
借助图形巧求参数的范围(值) 例 10.已知 m 忘 R ,函数 f(x) =x 2 +2(m 2 +1)x + 7,g(x) = —(2m 2 -m+2)x + m 。
(1)设函数p(x) = f (X )+g(x),如果p(x) =0在(1,5)内有解但无重根,求实数 m 的取值范围;
A.(3, 7)
B.(9, 25)
C. (9, 49)
D. (13, 49)
fy
⑵函数h(x^J
f(x),^
,是否存在m ,对于任意非零实数a ,总存在 ig(x),x c0
唯一非零的实数b(bHa),使得h(a)=h(b)成立,若存在,求m 的值, 若不存在,请说明理由。
⑵由题意得,当x>0时,h(x)=x 2 +2(m 2 +1)x + 7,h(x)在x>0时单调递增, 且值域A =[7,畑),当X c O 时,h(x) = -(2m 2 -m +2)x + m 在x c 0时单调递减, 且值域B =(m,畑)
解析:(1) T p(x)=f(x) + g(x) =x 2 +mx +7+m ,令 p (x)=0,①
因为方程①在(1,5)内有
实数解,且没有重根,由p(x) = 0得
m = -x
^ =2-(X +1)-£,寫 x-(1,5),
X +1 X +1
+6
令t =x +1,2 C t c 6,
8
从而原问题转化为函数y =2-1-8
(2<心6) 与直线y = m 有
交点但不相切。
如图,-16 < m
3
但m =2 -4血 时有两个相等的根, 2-442
2-4^2
<2-442 16 3
>x
6。