摩擦磨损与润滑

合集下载

摩擦、磨损与润滑概述

摩擦、磨损与润滑概述

1、摩擦是引起能量损耗的主要原因。
2、摩擦是造成材料失效和材料损耗的主要原因。
3、摩擦学:
关于摩擦、磨损与润滑的学科(Tribology)
4、润滑是减小摩擦和磨损的最有效的手段。
§4-2 摩 擦
一、摩擦的概念:
正压力作用下,相互接触的两物体受切向外力的影 响而发生相对位移,或有相对滑动的趋势时,在接触 表面上就会产生抵抗滑动的阻力-摩擦。
Ff Ar B
Ar Ari A a b
干摩擦理论:
机械理论: 摩擦力是两表面凸峰的机械啮合力的总和。
分子理论: 产生摩擦的原因是表面材料分子间的吸引力作用。
分子-机械理论: 摩擦力是由两表面凸峰的机械啮合力和表
面分子相互吸引力两部分组成。
粘附理论:
阿蒙顿摩擦定律:
第一定律:摩擦力与法向载荷成正比。
R —0.4两粗糙面3.的0 综合不平混度合摩擦
3~4
流体摩擦
( 1 时,不平度凸峰为总载荷的30%)
流体摩擦:
1、定义:
当两摩擦面间的油膜厚度大到足以将两表面的不平凸峰完全 分开,这种摩擦叫液体摩擦。
2、特点:
3~4
①、油分子大都不受金属表面的吸附作用的支配,而能完全移动。
件上。润滑脂还可以用于简单的密封。
常用的润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
二、间歇润滑装置
§4-5 流体润滑原理简介
英国的雷诺于1886年继前人观察到的流体动压现象流,体润总滑1 结出流体动压润滑理 论。20世纪50年代普遍应用电子计算机之后,线接触弹性流体动压润滑的理论开 始有所突破。

摩擦、磨损和润滑

摩擦、磨损和润滑

摩擦、磨损和润滑§1 摩擦在一定的压力下,表面间摩擦阻力的大小与两表面间的摩擦状态有密切关系,不同摩擦状态下,产生摩擦的物理机理是不同的。

一、摩擦状态按摩擦状态,即表面接触情况和油膜厚度,可以将滑动摩擦分为四大类,干摩擦、边界摩擦(润滑)、液体摩擦(润滑)和混合摩擦(润滑),如图所示。

1.干摩擦两摩擦表面间无任何润滑剂或保护膜的纯净金属接触时的摩擦,称为干摩擦。

在工程实际中没有真正的干摩擦,因为暴露在大气中的任何零件的表面,不仅会因氧气而形成氧化膜,且或多或少也会被润滑油所湿润或受到"污染",这时,其摩擦系数将显著降低。

在机械设计中,通常把不出现显著润滑的摩擦,当作干摩擦处理。

2.边界摩擦两摩擦表面各附有一层极薄的边界膜,两表面仍是凸峰接触的摩擦状态称为边界摩擦。

与干摩擦相比,摩擦状态有很大改善,其摩擦和磨损程度取决于边界膜的性质、材料表面机械性能和表面形貌。

3.液体摩擦两摩擦表面完全被液体层隔开、表面凸峰不直接接触的摩擦。

此种润滑状态亦称液体润滑,摩擦是在液体内部的分子之间进行,故摩擦系数极小。

这时的摩擦规律已有了根本的变化,与干摩擦完全不同。

关于液体摩擦(液体润滑)的问题,将在滑动轴承中进一步讨论。

4.混合摩擦两表面间同时存在干摩擦、边界摩擦和液体摩擦的状态称为混合摩擦。

二、干摩擦理论干摩擦理论主要有:(1)机械理论认为摩擦力是两表面凸峰的机械啮合力的总和,因而可解释为什么表面愈粗糙,摩擦力愈大;(2)和表面分子相互吸引分子-机械理论认为摩擦力是由表面凸峰间的机械啮合力F1两部分组成,因而这一理论可解释为什么当接触表面光滑时,摩擦力也会力F2很大。

但上述两种理论不能解释能量是如何被消耗的;(3)粘着理论;(4)能量理论等。

a) 结点b) 界面剪切c) 软金属剪切a) 结点b) 界面剪切c) 软金属剪切大量的试验表明,工程表面的实际接触面积约为名义接触面积的10-2~10-3,这样接触区压力很高,使材料发生塑性变形,表面污染膜遭到破坏,从而使基体金属发生粘着现象,形成冷焊结点(如图a 所示)。

《机械设计》第三节-摩擦-磨损-润滑

《机械设计》第三节-摩擦-磨损-润滑

t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体

混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2

机械零件的摩擦磨损和润滑

机械零件的摩擦磨损和润滑

流体静力润滑
流体润滑 流体动力润滑

弹性流体动力润滑
滑 边界润滑
混合润滑
§0-3 机械零件旳摩擦、磨损和润滑
1、流体润滑 (1)流体静力润滑是利用外部供油系统
将 高压油强行输入摩擦副表面之间,依托 静压承载油膜把两表面完全隔开,从而取 得流体润滑。
§0-3 机械零件旳摩擦、磨损和润滑
2、流体动力润滑是借助于相对速度而产生旳粘性流体 膜将摩擦副旳两摩擦表面完全隔开,由润滑油本身产 生旳压力来平衡外载荷。
§0-3 机械零件旳摩擦、磨损和润滑
(4)腐蚀磨损 接触表面受到腐蚀性旳气体、液体旳侵
蚀而产生旳表面破坏,如化工行业制酸、 碱设备旳零件损坏是因为酸碱腐蚀反应而 造成旳。所以一般化工企业采用不锈钢材 料作为机器旳零件 。
§0-3 机械零件旳摩擦、磨损和润滑
2、磨损过程
任何相对运动,虽然润滑条件再好,也不可防止地 会出现正常旳磨损。磨损分为三个阶段:即阶段磨合、 稳定磨损阶段和剧烈磨损阶段。经过机械加工后旳表面, 不论其表面粗糙度值很小,也达不到磨合后旳原则,所 以相对运动旳表面必然要经过正常旳磨合阶段。 如新出厂汽车旳磨合期为2023km,表白2023km之后,各 运动表面进入正常磨损阶段,该阶段旳长短标志着机器 旳使用寿命。机器旳质量越高,其稳定磨损阶段越长, 使用旳寿命越长。
§0-4本课程旳学习任务和要求
一、学习任务
1、掌握机械基本知识和技能; 2、为学习专业技术知识作准备; 3、养成严谨、敬业旳工作作风。
二、学习要求
1、能对构件作受力分析,判断基本变形; 2、了解常用材料旳性能、牌号、特点; 3、熟悉机构旳构造、特征; 4、熟悉常用零件旳特点,读懂精度旳标注; 5、熟悉气、液压传动旳特点,读懂元件苻号、基本回 路。 6、理论联络实践。

摩擦磨损润滑之间的关系

摩擦磨损润滑之间的关系

摩擦磨损润滑之间的关系1. "同学们,今天咱们来聊个有趣的话题!"老王拿起两块小木板,"摩擦、磨损和润滑,这三个家伙就像是一个江湖故事里的主角。

"2. "你们看啊,"老王搓着两块木板,"摩擦就像两个人打架,非得较劲。

这两个表面碰在一起,就会产生阻力,这就是摩擦力。

"3. "老师,那磨损是啥意思啊?"小明举手问道。

"哈,磨损就是摩擦打架的后果!"老王笑着说,"就像两个人打架会受伤一样,两个表面摩擦久了,表面就会受伤,变得坑坑洼洼的。

"4. "摩擦和磨损就像是一对难兄难弟,"老王继续说,"哪里有摩擦,哪里就会有磨损。

就像你们天天穿的鞋底,走得多了就会磨薄,这就是摩擦导致的磨损。

"5. "那润滑又是干啥的呢?"小红好奇地问。

"润滑就像是和事佬!"老王拿出一瓶油,"它在两个打架的表面之间加一层'缓冲',让它们不那么剧烈地打架。

"6. "你们想想汽车发动机,"老王说,"里面的零件天天转啊转的,要是没有机油润滑,那些零件早就'打得头破血流'了。

润滑油就像个调解员,让零件们和平相处。

"7. "所以说啊,这三个家伙的关系可有意思了,"老王在黑板上画着,"摩擦会引起磨损,磨损会加剧摩擦,它们互相影响。

而润滑就像救火队员,哪里摩擦严重就去哪里救火。

"8. "生活中的例子可多了,"老王说,"你们写字的时候,笔尖和纸面摩擦,墨水就是润滑剂。

要是没有墨水,笔尖可能就把纸划破了。

"9. "还有你们的自行车链条,"老王接着说,"不上油的时候骑起来'吱吱呀呀'响,上了油后就顺滑多了,这就是润滑的功劳。

摩擦学中的磨损和润滑研究

摩擦学中的磨损和润滑研究

摩擦学中的磨损和润滑研究一、引言摩擦学是研究摩擦、磨损和润滑等问题的一门重要学科,其涉及到材料学、力学、化学、电子学等多个学科领域。

磨损和润滑是摩擦学研究的关键问题,其研究对于提高机械设备的使用寿命、降低能源消耗、提高生产效率等方面具有重要意义。

本文将重点阐述摩擦学中磨损和润滑的研究现状及未来发展方向。

二、磨损与磨损机理磨损是指摩擦双体之间的材料表面损伤和材料的松散、脱落等现象,它会对机械设备的寿命和性能产生严重影响。

磨损机理包括磨粒磨损、微动磨损、疲劳磨损等。

其中磨粒磨损主要是由于磨粒在摩擦过程中撞击表面而造成的局部磨损。

微动磨损是由微观结构上的相对位移和相互接触引起的。

疲劳磨损是由于表面应力加载和循环变化引起的。

三、润滑与润滑机理润滑是指在两个表面之间形成液体或膜层,降低摩擦系数和磨损的现象。

润滑机理主要分为液体润滑、固体润滑和气体润滑。

液体润滑是指在两个表面之间形成液体膜层,减少表面间的接触和摩擦;固体润滑是指添加固体润滑剂,形成在表面上的保护膜层,减少表面间的接触及摩擦;气体润滑是指利用高压气体形成气体薄层,以减少表面间接触,减轻摩擦力和磨损。

四、研究现状1. 磨损研究在磨损方面,目前的研究主要集中在材料的选择和改性上,包括表面改性、材料合成和涂层技术。

表面改性的方法包括化学改性、物理改性和机械改性等。

化学改性主要是通过表面处理等方法,改变材料表面化学性质以提高耐磨性和耐腐蚀性能。

物理改性是利用离子注入、电子束强化等方法改变材料的物理性能;机械改性主要是通过表面处理、高温等方式增强材料的硬度和韧性。

2. 润滑研究在润滑方面,目前的研究主要集中在润滑剂的开发和润滑机理的研究上。

润滑剂的研究主要包括传统的润滑油和润滑脂的改进,以及新型的润滑剂的研究和应用。

润滑机理的研究主要是将摩擦、粘度、黏度、液态密度等多个参数综合考虑,构建一个更为科学合理的润滑理论体系。

五、未来发展方向未来的磨损和润滑研究将更加注重材料的基础性能和提高材料防磨损和润滑性能。

摩擦、磨损、润滑概述

摩擦、磨损、润滑概述
t
Et
粘温特性
• 定义:粘度随温度变化的特性
图1-5 几种国产油液粘温图
润滑油粘度对温度的变化十分敏感,温度升高,粘度快速 下降。
2.油性
• 是指润滑油中极性分子湿润或吸附于摩擦表面形成边 界油膜的性能。 • 吸附能力越强,油性越好
3.闪点和燃点
• 闪点又叫闪燃点,是指可燃性液体表面上的蒸汽和空气的混 合物与火接触而初次发生闪光时的温度。 • 燃点又叫着火点,是指可燃性液体表面上的蒸汽和空气的混 合物与火接触而发生火焰能继续燃烧不少于5s时的温度。
2)运动粘度ν • 定义:动力粘度μ与密度ρ之比

• 由于ν的单位中只有运动学要素,故称为 法定计量单位为m2/s,以前沿用St(斯)和cSt 运动粘度。 1 m2/s=104St= 106 cSt (厘斯) • 液压油的粘度等级就是以其40º C时运动 粘度的某一平均值来表示,如L-HM32液 压油的粘度等级为32,则40º C时其运动 粘度的平均值为32mm2/s
2)边界摩擦:表面间被极薄的润 滑膜所隔开,且摩擦性质与润滑剂 的粘度无关而取决于两表面的特性 和润滑油油性的摩擦,摩擦系数约 在0.01~0.1
3)流体摩擦:表面间的润滑膜把摩 擦副完全隔开,摩擦力的大小取决 于流体分子内部摩擦力的摩擦, 摩擦系数可达0.001~0.008
4、混合摩擦:摩擦副处于干摩擦、 边界摩擦和流体摩擦混合状态时的摩 擦
4.倾点
• 倾点是指油品在规定的试验条件下,被冷却的式样能够流动 的最低温度。


润滑脂的主要性能指标分类:
• 1.锥入度:
锥入度指在25℃下,将一定质量的锥体从锥入度计上释 放,锥体在5秒内下落后刺入待测样品的深度。锥入度 的最小单位为0.1mm。

摩擦磨损润滑之间的关系

摩擦磨损润滑之间的关系

摩擦磨损润滑之间的关系《摩擦、磨损与润滑的奇妙关系》嘿,朋友们!咱今天来聊聊摩擦、磨损和润滑这三个家伙的事儿。

你看啊,摩擦这玩意儿,就像生活中的小麻烦,无处不在。

你走路的时候,鞋底和地面有摩擦;你拿东西的时候,手和物体有摩擦。

有时候这摩擦还挺让人头疼的,就像你着急赶路,可脚却被地面拖住了似的。

而磨损呢,那就是摩擦带来的后果呀。

就好比你总穿一双鞋去爬山,时间长了,鞋底不就变薄了嘛,这就是磨损啦。

东西用久了会坏,机器零件运转久了也会出毛病,都是磨损在搞鬼。

这时候润滑就闪亮登场啦!润滑就像是摩擦和磨损的克星。

想象一下,要是你在那鞋底和地面之间涂点油,是不是走起来就顺畅多啦?润滑就是这样,能让那些相互摩擦的东西变得和和气气,减少磨损。

我记得有一次,家里的门开关的时候总是嘎吱嘎吱响,特别烦人。

后来我爸找了点润滑油,往门轴那里一抹,嘿,立马就安静了,开关门也轻松多了。

这就是润滑的神奇之处呀。

在很多机器里,润滑也是至关重要的。

没有良好的润滑,那些零件很快就会被磨损得不行,机器也就没法正常工作啦。

就好像人没有了润滑油,骨头之间干磨,那还不得疼死呀。

摩擦、磨损和润滑,它们就像三个小伙伴,有时候会闹点别扭,但只要润滑这个和事佬在,就能让它们和谐相处。

咱生活中也是一样啊,遇到些小摩擦别着急上火,想想办法润滑一下,也许事情就变得顺利多啦。

比如说和别人意见不合的时候,咱就心平气和地沟通,这就相当于给关系上了点润滑油。

总之呢,摩擦磨损润滑这三者的关系可太紧密啦。

我们要认识到它们的存在,利用好润滑这个好帮手,让我们的生活和工作都能更加顺畅,减少那些不必要的麻烦和损耗。

让我们与摩擦和谐共处,用润滑让生活更美好!。

机械零件的摩擦、磨损和润滑

机械零件的摩擦、磨损和润滑
滚动摩擦是物体表面之间的滚动接触导致的摩擦力,滑动摩擦是物体表面之间的滑动接触 导致的摩擦力。
磨损的原因和影响因素
1 表面间相对运动
表面间相对运动会导致 磨损,特别是在高压和 高温环境下。
2 材料硬度差异
硬度差异大的材料更容 易磨损,以及表面光滑 度和润滑情况。
3 外部环境条件
外部环境条件,如温度、 湿度和污染物等,也会 影响磨损。
磨损和材料选择
合理选择磨损较小的耐磨材料 可以减少零件磨损和更好地保 护机械零件。
常见的机械零件摩擦、磨损和润滑问题
1
齿轮磨损
齿轮因长时间高速运动摩擦会导致磨
轴承润滑
2
损,需要定期润滑和维护。
轴承需要良好的润滑来减少摩擦和磨
损,保持稳定的工作状态。
3
链条润滑
链条需要适量的润滑剂以减少链环之 间的摩擦和磨损。
机械零件的摩擦、磨损和润滑
在机械工程中,摩擦、磨损和润滑是至关重要的概念。了解它们的定义、原 因和方法可以帮助我们更好地设计和维护零件。
摩擦的定义和类型
摩擦定义
摩擦是指两个物体之间因接触而产生的阻碍相对运动的力。
静摩擦和动摩擦
静摩擦是物体相对静止时的摩擦力,动摩擦是物体相对运动时的摩擦力。
滚动摩擦和滑动摩擦
是机械零件不可避免的现象,要注意减少磨 损并延长零件使用寿命。
是最常用的减少摩擦和磨损的方法,选择适 当的润滑剂和方式很关键。
有效减少摩擦、磨损和提高润滑的技巧 和方法
正确润滑
选择适合的润滑剂和方法, 根据工作条件和需求进行定 期润滑。
பைடு நூலகம்
合理设计
在设计阶段考虑摩擦和磨损 因素,合理选择材料和结构。

机械设计中的摩擦磨损和润滑

机械设计中的摩擦磨损和润滑

机械设计中的摩擦磨损和润滑摩擦磨损和润滑是机械设计中的重要方面,这两个因素对机械设备的性能和寿命有着重要影响。

本文将探讨摩擦磨损和润滑在机械设计中的作用和常见应用。

一、摩擦磨损的概念和分类摩擦磨损是指两个物体之间相对运动时由于接触表面之间的摩擦而引起的材料的消耗和表面损伤现象。

摩擦磨损可以分为磨损、疲劳磨损和腐蚀磨损三种类型。

1. 磨损:磨损是两个物体之间的相对运动导致因摩擦产生的材料表面的剥落,导致机械件的尺寸变化和表面的形貌改变。

2. 疲劳磨损:疲劳磨损是指由于周期性或反复相对运动引起的机械件表面的微裂纹,最终导致疲劳断裂。

3. 腐蚀磨损:腐蚀磨损是在润滑条件不良的情况下,湿润介质中的化学腐蚀作用导致的磨损。

二、机械设计中的摩擦磨损控制方法为了减少机械设备的摩擦磨损,降低机械件的磨损速率,保证设备的正常工作和寿命,需要使用合适的摩擦磨损控制方法。

1. 表面处理:通过表面处理,如材料表面的加工硬化、表面喷涂、镀层和涂层等,可以增加机械件的硬度和降低磨损。

2. 润滑:润滑是减少摩擦磨损的有效方法,通过在接触面上形成润滑膜,可以降低摩擦系数和磨损率。

常见的润滑方式有干润滑、液体润滑和混合润滑等。

3. 选用合适材料:在设计中选择抗磨材料,如高硬度材料、耐磨合金材料等,可以有效减少磨损。

三、润滑在机械设计中的应用润滑在机械设计中起着至关重要的作用,它可以降低机械设备的能量损耗和磨损,提高机械传动效率和使用寿命。

1. 润滑油:润滑油是机械润滑的一种常用方式,润滑油能够在机械件接触面形成润滑膜,降低表面之间的摩擦和磨损。

根据使用条件和要求的不同,可选用润滑油、润滑脂和固体润滑剂等。

2. 润滑系统:润滑系统是机械设计中常见的应用之一,它可以在机械运行过程中持续提供润滑油或润滑脂,并保持一定的油膜厚度,减少磨损,并实时监测润滑状态。

3. 润滑剂选择:在机械设计中,润滑剂的选择十分关键。

根据使用条件和要求,需考虑润滑剂的温度范围、粘度、氧化安定性等特性,以确保润滑剂的良好性能。

第四章-摩擦磨损和润滑概述

第四章-摩擦磨损和润滑概述
二、摩擦的分类 内摩擦
1、按摩擦机理不同分为: 外摩擦
内摩擦:在物质的内部发生的阻碍分子之间相对运动的现象。 外摩擦:在相对运动的物体表面间发生的相互阻碍作用现象。
静摩擦 2、按运动的状态不同分为:
动ቤተ መጻሕፍቲ ባይዱ擦
滑动摩擦 3、按运动的形式不同分为:
滚动摩擦
干摩擦
4、滑动摩擦按润滑状态不同分为: 边界摩擦 流体摩擦
二、磨损的分类:
磨损类型
按磨损机理分
按磨损表面外 观可分为
磨粒磨损 粘附磨损 疲劳磨损 冲蚀磨损 腐蚀磨损 微动磨损
点蚀磨损 胶合磨损 擦伤磨损
三、磨损的机理:
磨粒磨损
磨损类型:
粘附磨损 疲劳磨损 冲蚀磨损
腐蚀磨损
微动磨损
磨粒磨损—也简称磨损,外部进入摩擦面间的游离硬颗粒(如 空气中的尘土或磨损造成的金属微粒)或硬的轮廓峰尖在软材 料表面上犁刨出很多沟纹时被移去的材料,一部分流动到沟纹 两旁,一部分则形成一连串的碎片脱落下来成为新的游离颗粒, 这样的微粒切削过程就叫磨粒磨损。
三、磨损的机理:
磨粒磨损
磨损类型:
粘附磨损 疲劳磨损 冲蚀磨损
腐蚀磨损
微动磨损
粘附磨损—也称胶合,当摩擦表面的轮廓峰在相互作用的各点 处由于瞬时的温升和压力发生“冷焊”后,在相对运动时,材 料从一个表面迁移到另一个表面,便形成粘附磨损。严重的粘 附磨损会造成运动副咬死。
三、磨损的机理:
磨粒磨损
磨损类型:
(1)润滑是减小摩擦、减小磨损的最有效的方法; (2)合理选择摩擦副材料; (3)进行表面处理; (4)注意控制摩擦副的工作条件等。
§4-3 润滑剂、添加剂和润滑方法
润滑:在两个摩擦表面之间加入润滑剂,以减小摩擦和磨损。 此外,润滑还可起到散热降温,防锈、防尘,缓冲吸振等作 用一。、 润滑剂 凡是能减小摩擦阻力,减小磨损的物质都可作为润滑剂。 1、润滑剂的分类

第04章 摩擦

第04章  摩擦
一、流体动力润滑 流体动力润滑是指两个作相对运动物体的摩擦表面,借助于相对速度而产 生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷。
流体润滑1



流体动力润滑形成的必要条件: 楔形空间; 相对运动(保证流体由大口进入); 连续不断地供油。
(动画)
流体润滑原理简介
二、弹性流体动力润滑
返回目录
干摩擦特点:摩擦系数一般在f干=0.1数量级,阻力大、 磨损重、发热高、易胶合、寿命短。
前一页
后一页
退 出
2、边界摩擦: 两金属表面间由于润滑油与金属表面的吸附作用, 在金属表面形成极薄的油膜(边界膜)将金属表面隔 开,但高峰部分仍将相互搓削,此时的摩擦称为边界 摩擦。
返回目录
摩擦系数一般在 f边=10-2 数量级,边界膜厚度<1微米。
在规定的加热条件下,润滑脂从标准测量杯的孔口 滴下第一滴时的温度叫润滑脂的滴点。
滴点决了润滑油的工作温度。返 Nhomakorabea目录前一页
后一页
退 出
3、固体润滑剂
如石墨、二硫化钼、氮化硼、石蜡、聚四氟乙烯、 酚醛树脂等。石墨和二硫化相应用最广。 固体润滑剂一般用于不宜使用润滑油和润滑脂的 特殊条件下。此外,它还可以作为润滑油或润滑脂的 添加剂使用,以及与金属或塑料等混合制成自润滑复 合材料使用。 三、添加剂 有时为了改善某些性能还加入一些添加剂,添 加剂可以改变润滑剂的各种性能,起到提高承载能 力、降低摩擦和减少磨损的目的。目前世界各国都 普遍使用加有添加剂的润滑油。
阻力大小。 单位:国际单位: Pa.s(帕.秒) 绝对单位:称为1P(泊)P=0.1Pa.s=100cP(厘泊)
后一页
退 出
② 运动粘度

摩擦磨损与润滑

摩擦磨损与润滑

腐蚀磨损corrosive wear金属表面在磨擦过程中与周围介质在化学与电化学反应作用下产生的磨损过程。

干摩擦dry friction两物体间名义上无任何形式的润滑剂存在时的摩擦。

严格地说,干摩擦时在接触表面上无任何其他介质,如湿气及自然污染膜。

分散润滑individual point lubrication使用便携式工具向润滑点手动加油的润滑方式。

防锈添加剂anti-rust additive,rust preventive additive能防止金属机件生锈,延迟或限制生锈时间,减轻生锈程度的添加剂。

动磨擦kinetic friction相对运动两表面之间的磨擦。

此时的磨擦系数称为动磨擦系数。

多效添加剂multipurpose additive能同时改善油品两种性能以上的添加剂。

多用途润滑脂multipurpose grease适合于多种用途的润滑脂。

可用于润滑汽车中的底盘齿轮轴承、万向节和水泵等。

多线式润滑系统multiline lubricating system油泵的多个出油口,各有一条管路直接将定量的润滑剂供送至各润滑点的集中润滑系统。

稠化剂densifier能提高润滑油、液压油或润滑脂的粘度或稠度的物质。

冲击磨损impact wear是一种磨料磨损类型,磨料垂直或以一定的倾角落在材料表面上。

其情况与冲蚀磨损很相似,但局部应力要高得多。

沉积膜deposit film润滑油中某程组分沉积在摩擦表面上形成的边界膜。

冲刷磨损erosive wear摩擦表面经受高速介质(液、气流或液、气流中夹带砂粒)的冲刷作用而导致表面材料磨损的现象。

边界润滑boundary lubrication作相对运动的两表面之间的摩擦磨损特性,取决于两表面的特性和润滑剂与表面间的相互作用及所生成边界膜的性质的润滑状态。

边界摩擦boundary friction具有无体积特性的液体层隔开两固体作相对运动时的摩擦,即边界润滑状态下的摩擦。

机械设计基础课件第章摩擦磨损及润滑概述

机械设计基础课件第章摩擦磨损及润滑概述
St=1cm2/s=100 cSt =10-4 m2/s。 常用St的百分之一cSt作为单位,称为厘斯,因而1
cSt= 1 mm2/s。
润滑油的牌号就是该润滑油在40C(或100C)时运动粘度
(以厘斯为单位)的平均值。例图2-7 L-AN15。
机械设计基础
第二十七页,编辑于星期五:十一点 三十八分。
或泊的百分之一,即厘泊(cP)。
1 P=0.1 Pa·s
1 cP=0.001 Pa·s
机械设计基础
第二十六页,编辑于星期五:十一点 三十八分。
2)、运动粘度
在工程中,常常将流体的动力粘度与其密度的比值作
为流体的粘度,这一粘度称为运动粘度,常用表示。运
动粘度的表达式为:
运动粘度单位:SI制——m2/s。 C.G.S. 制 : Stoke , 简 称 St ( 斯 ) , 1
到另一个表面,便形成粘附磨损。
机械设计基础
第十七页,编辑于星期五:十一点 三十八分。
❖2、磨粒磨损 也简称磨损。外部进入的硬质颗粒 或摩擦表面上的硬质突出物在较软材料的表面上进行 微切削(犁刨出很多沟纹时被移去的材料)的过程 叫磨粒磨损 。
机械设计基础
第十八页,编辑于星期五:十一点 三十八分。
3、疲劳磨损 也称点蚀,是由于摩擦表面材料 微体积在交变的摩擦力作用下,反复变形所产生 的材料疲劳所引起的磨损。
摩擦分类:
微观宏观
§2-1 摩擦
内摩擦 外摩擦
是否相对运动
静摩擦
滑动摩擦
动摩擦 位移形式 滚动摩擦
机械设计基础
第五页,编辑于星期五:十一点 三十八分。
滑动摩擦
干摩擦 边界摩擦 流体摩擦 混合摩擦
边界润滑 流体润滑 混合润滑

机械设计第二章(摩擦磨损润滑)知识点详细总结

机械设计第二章(摩擦磨损润滑)知识点详细总结

第2章摩擦磨损润滑1.摩擦摩擦磨损、润滑和密封失效是现代机械系统的主要失效原因。

➢干摩擦:两摩擦表面间直接接触不加入任何润滑剂的摩擦称为干摩擦。

➢边界摩擦:两表面加入润滑油后,在金属表面会形成一层边界膜(约为0.02μm)。

油膜较薄时,在载荷的作用下,边界膜互相接触,横向剪切力比较弱,这种摩擦状态称为边界摩擦。

➢液体摩擦:两摩擦表面间被一层具有一定压力、一定厚度、连续的流体润滑剂完全隔开,摩擦性质取决于液体内部分子间粘性阻力的摩擦,称为液体摩擦。

➢混合摩擦:摩擦副处于干摩擦、边界摩擦和液体摩擦的混合状态,称为混合摩擦。

磨损曲线度。

此外,润滑剂还能防锈、减振、密封、清除污物和传递动力等。

润滑剂:润滑油、润滑脂(1)润滑油的主要性能指标➢粘度:液体在外力作用下流动时,分子间的内聚力阻止分子间的相对运动而产生的一种内摩擦力,称为液体的粘性。

分为动力粘度、运动粘度和相对粘度。

➢油性:反映在摩擦表面的吸附性能(边界润滑和粗糙表面尤其重要);➢闪点:润滑油蒸汽遇到火焰即能发出闪光的最低温度,是衡量润滑油易燃性的指标;➢凝点:冷却,由液体转变为不能流动的临界温度(低温启动性能);➢极压性:反映在金属表面生成化学反应膜的性能。

(2)润滑脂的主要性能指标➢针入度:在25℃恒温下,使重量为1.5N的标准锥体在5s内沉入润滑脂的深度(以0.1mm计)。

它标志着润滑脂内阻力的大小和流动性的强弱。

➢滴点:指润滑脂受热熔化后从标准测量杯的孔口滴下第一滴时的温度。

它标志着润滑脂耐高温的能力。

4.液体摩擦润滑根据两摩擦表面间形成压力油膜原理的不同,可将液体摩擦润滑分为液体动力润滑、弹性流体动力润滑和液体静压润滑。

5.摩擦学研究现状及发展趋势液体润滑理论;表面处理技术;纳米摩擦学;生物摩擦学;。

摩擦、磨损、润滑基础知识

摩擦、磨损、润滑基础知识

塑性区
粘着转移,有 粘着转移, 可能形成磨屑
2、磨料磨损 、
磨料磨损是当摩擦副一方表面存在坚硬的细微凸起, 磨料磨损是当摩擦副一方表面存在坚硬的细微凸起, 或者在接触面之间存在硬质粒子时所产生的磨损。 或者在接触面之间存在硬质粒子时所产生的磨损。 F
切削掉的体积
颚式破碎机机构简图——典型的磨粒磨损 典型的磨粒磨损 颚式破碎机机构简图
• 当动压润滑条件不具坏时, 流体摩擦、边界摩擦和干摩擦同时存在的现象, 流体摩擦、边界摩擦和干摩擦同时存在的现象,这种摩 擦状态称为混合摩擦。 擦状态称为混合摩擦。
1、粘着磨损 、 粘着磨损也称咬合磨损, 粘着磨损也称咬合磨损,是指在滑动摩擦 条件下,当摩擦副相对滑动较小时发生的。 条件下,当摩擦副相对滑动较小时发生的。它 是因为缺乏润滑油,摩擦表面无氧化膜, 是因为缺乏润滑油,摩擦表面无氧化膜,且单 位法向载荷很大, 位法向载荷很大,以至接触应力超过实际接触 点处屈服强度而产生的一种磨损。 点处屈服强度而产生的一种磨损。
第四节 密封
一、密封的分类 二、常见密封
摩擦的分类
滑动摩擦
滚动摩擦
静摩擦
一、干摩擦
• 不加润滑剂时,相对运动的零件表面直接接触,这样 不加润滑剂时,相对运动的零件表面直接接触, 如真空中)。 产生的摩擦称为干摩擦 (如真空中 。 如真空中 古典摩擦理论的摩擦力计算公式: 古典摩擦理论的摩擦力计算公式:
F f = fFn
• 现在观点认为: 现在观点认为: 摩擦力的组成可表示为: 摩擦力的组成可表示为:
Ff = F分子 + F机械
二、边界摩擦
两表面加入润滑油后, 两表面加入润滑油后,在金属 表面会形成一层边界膜, 表面会形成一层边界膜,它可能是物 理吸附膜,也可能是化学反应膜。 理吸附膜,也可能是化学反应膜。不 满足流体动压形成条件, 满足流体动压形成条件,或虽有动压 但压力较低,油膜较薄时, 力,但压力较低,油膜较薄时,在载 荷的作用下,边界膜互相接触, 荷的作用下,边界膜互相接触,横向 剪切力比较弱, 剪切力比较弱,这种摩擦状态称为边 界摩擦。 界摩擦。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面的三维形貌图
微凸体微观粗糙度
宏观粗糙度
粗糙表面的二维图
表面上的微小凸起部分称微凸体。

如经过抛光研磨等加工,粗糙度显示出各向同性。

实际固体工程
表面特征往往
是以上述三种
几何形状误差
的组合形式出
现的。

4.表面微凸体
用触针式表面轮廓仪可直接测得表面的起伏不平。

不过因其高度方向的放大比例远大于平面方向的。

故所得图形并不能反映峰谷起伏的实际形状。

而用电子显微镜观测到的表面,因其各向放大比例相等而比较真实。

由电子显微镜观测到的图形可以看到,表面上的峰与谷实际上是比较平缓的,因此人们通常取微凸体为近似的半球状、锥状或柱状来进行几何因正态分布曲线高度Z i
微凸体的高度分布曲线
凡经过一般机械加工的表
面,其微凸体高度的分布通
常接近于正态分布(高斯分
∞±正态分布曲线理论上应延伸到处。

的范围内已包括了99.5%的高度(σ为分布的标准差)。

根据固体物理的观点,结晶固体表面是晶体
在两个方向延伸的缺陷成为面缺陷,也称为
金属一般是多晶体,它是有许多晶粒组成,因而存在晶粒边界面。

晶界面就是一种面缺陷。

此外由两个不同相之间形成的相界面也是一种面
表面结构缺陷模型立方晶系中几个可能滑移的晶面
三、金属表面层的结构组成
金属表面层一般由金属表面以上的外表
内表面层主要是在加工过程中形成的冷硬层和变形层。

是在表面加工时,由于表面分
子层熔化和流动而形成的一种非结晶层或具有非常
细的一层结晶组织(厚度约0.1μm)。

变形层是由于表面加工产
生的弹性变形和塑性变形,
以及局部高温使晶格扭曲变
形而形成的一种加工硬化层
界面是固、液、气三
相中的两个物相之间相接
触的交接部分。

它不是一
个简单的几何平面,而是
从某一物相过渡到另一物
相的界面区或称界面相。

有一定的厚度(约几个分子厚);
有与相邻的本体相完全不同的结构
一般宏观界面有五种类型,由于气体
与气体可以完全混合,因而在气体之
间一般不存在稳定的界面。

按照作用距离或作用势能的大小,通常可将表面力划分为三类,即短程力、分子间引力和长程力。

作用距离一般相当于原子尺寸。

主要表现为形成表面化学键,即在固体表面的分子与被吸引的分子之间的相邻原子,由于产生电子转移或共用电子而结合在一起以形成稳定结构的一种结合方式。

离子晶体的结合力,没有方向性和饱和性。

其特点是在原子之间发生了电子转移。

原子晶体的结合力,具有方向性和饱和性。

共用电子对的方式结合成分子,是由两原子之
间一对自旋相反的共有电子形成的。

金属晶体原子之间的结合通过共用电子云的方式而结合在一起。

没有饱和性和明显的方
分子间引力
这种表面力的作用距离一般有几个分子直径
0.3-0.5μm。

微观粒子之间相邻原子相互作用的一种结合力,这种力的产生是由于粒子之间偶极距的相互当两个粒子相距很近,其相邻原子上的电子运动受到干扰,互相沿对方的总电场的作用力方向移动,从而使粒子外层的电子分布成为瞬时不对称,使正负电荷的重心不重合,此时粒子就显示出正负两极,即偶极。

出现偶极的粒子中,正负电荷重心间的距离
与电荷的乘积即偶极距或永久偶极距,具有偶极
距的分子称为极性分子或偶极子。

偶极距越大,
分子的极性或电性越显著。

按照相互作用的偶极距的不同类型,这种表
面力主要有三种,即静电力、诱导力和色散力,
这三种力一般统称为范德华力。

此外也把氢键力
看作是一种分子间引力。

3.长程力
由于物质本
体相分子的化学键已经饱
和,而界相分子的化学键
没有饱和,界面上的分子
可以通过电子转移或共用
电子对,与被吸附的分子
)
在固体表面,由于物理吸附而形成的薄膜称为物理吸附膜。

多层吸附膜。

吸附膜消失的现象称为解吸或脱吸。

在一般情况下,吸附都是放热过程,但物理吸附
的吸附热较低,即吸附时放出的热量较少,因而
温度稍一升高就会解吸。

吸附和解吸都是完全可逆的;而对于化学吸附,其吸附热较高,且具有一定的选择性,
吸附和解吸是不完全可逆的。

4.2-42kJ/mol-低载、低温、低速
42-420kJ/mol-中载、、中温、中速
3.固-液界面的吸附特点
(1)固-液界面上的吸附大多是指固体在溶液中的吸附,因而比固体吸附单一气体复杂很多。

溶液中至少包含两种组分:溶质和溶剂。

(2)溶质吸附量的大小和溶剂之间以及溶质与固体表面之间的相对亲和力的大小有关。

如果溶质和溶剂的亲和力大于溶质和固体表面之间的亲和力,则溶质的吸附量小。

所以,溶质在溶剂中的溶解度越低,就越容易吸附到固体表面。

(3)固体在溶液中的吸附热一般相当于溶解热,它比固-气界面产生化学吸附的热量要小。

二、润湿现象
1. 润湿现象的分类
润湿是固-液界面上发生的一种吸附现象,这
种现象是机械润滑得以实现的基础。

根据润湿
程度的不同,润湿有以下三种类型:
(1)附着润湿液体与固体接触后,液-气界
面和固-气界面转变为固-液界面。

(2)铺展润湿液滴在固体表面上完全铺展
成为覆盖固体表面的一层薄膜,即由原来的
固-气界面转变为固-液界面和液-气界面。

润湿程度的度量
最直观的办法是测量其接触角。

以水平板上的液滴为例,当固、气、液三相接触达到平衡时,从三相接触点沿液气界面做切线,该切线与固-液界面形成的夹角,称为接触角。

通常认为接触角<90°时,液体可润湿固体;而90°时,则不能润湿固体。

在极端情况下,角=0°时,液体可完全润湿固体即铺展润湿;角=180°时,液体完全不能润湿固体。

润湿现象的实质及其影响因素
润湿现象的实质表现为液体本身分子间引力(内聚力)与液体对固体表面分子间引力(粘附力)的综合作用。

若粘附力小于内聚力,液体就不可能完全润湿
固体,而形成一定的接触角;当粘附力等于零时,液体完全不能润湿固体。

粘附力的大小愈接近内聚力,液体润湿固体的能力愈强,而接触角愈小;当粘附力等于内聚力时,液体可完全润湿固体,此时接触角为零。

润湿现象与液体和固体的性质密切相关。

例如:水与清洁的玻璃或者金属形成的接触角
而水与石蜡则形成105-111°;
又如水与炭形成41°,而苯与炭形成=0°。

能被水等一些极性液体润湿的物质称为亲水性物质,而不能被水等极性液体润湿,但能被苯等一
1物理吸附膜
2化学吸附膜
3反应膜
4稳定的化学反应膜
金属之间的实际接触面积,也可用下式决定:
金属间的实际接触面积与其承受的法向载荷成正比,而与其中较软金属的屈服强度或硬度成一般材料在塑性变形范围内的真实接触面积与载荷成正比,与表面的大小和形状无关。

赫兹接触是在弹性接触范围内分析
理想光滑的球(柱、锥)在无润滑
条件下的接触。

而实际上也并非全
是弹性变形,在接触点处有塑性变
N
塑性流动压力分布赫兹分布
赫兹接触和实际接触
从图可知赫兹压力中心处的接触斑点比较密集,而在赫兹压力边远处接触分布比较稀疏。

说明固体表面接触只在传力的微凸体顶端发生塑性变形,离开这小小的塑性变形区变形σ0N
N (a)(b )
椭球与椭球接触时的接触面积(a)和压力分布
N 表面下的变形区
对于大多数金属而言,都有以下关系:H ≈6τs ≈3σ
s 球和平面的弹性接触
N
的作
R δ
理想的粗糙表面接触
弹性变形范围内,具有等高度、等半径的微凸体表面,在承H N A r =的微凸体才能与之接触。

实际粗糙表面的接触
还是在塑性变形范围,变形后所形成的真实接触面积A 都与之间呈简单的线性关系。

由此得到的结论:两个实际
工程表面接触时,不论微凸
表面膜的存在,对于真
实接触面积的计算没有什么
有表面膜存在时的表面接触状况但是,表面膜的存在对于表面的粘着是很有影响的。

洁净表面的真实接触面积上金属分子的相互作用
很强,很容易粘着。

而接触面间有表面膜存在时对摩
)金属界面粘着理论-费尔轮特和史密斯
金属粘着的主要作用力是两个清洁金属表面接触时的短程力,此力与两个表面的距离有关。

当两个清洁金属表面接近到一定距离时,化学键将起作用,其吸引力随距离的减少而增加。

当距离减小到很小时,分子或原子间由于电。

相关文档
最新文档