梯形辅助线专题训练 (1)
梯形专题讲解
梯形专题培优训练常见辅助线的作法:典型题例1、如图所示.在直角三角形ABC 中,E 是斜边AB 上的中点,D 是AC 的中点,DF ∥EC 交BC 延长线于F .求证:四边形EBFD 是等腰梯形.2、如图,在梯形ABCD 中,BC AD //,两条对角线交于E ,AC AB ⊥,且BC BD AC AB ==,. 求证:CE CD =.3、如图所示.直角梯形ABCD 中,AD ∥BC ,∠A=90°,∠ADC=135°,CD 的垂直平分线交BC 于N ,交AB 延长线于F ,垂足为M .求证:AD=BF .4、如图所示.等腰梯形ABCD 中,AB ∥CD ,对角线AC ,BD 所成的角∠AOB=60°,P ,Q ,R 分别是OA ,BC ,OD 的中点.求证:△PQR 是等边三角形.5、求证:两条对角线相等的梯形是等腰梯形.6、如图所示.直角梯形ABCD 中,∠C=90°,AD ∥BC ,AD+BC=AB ,E 是CD 的中点.若AD=2,BC=8,求△ABE 的面积. 练习题一、选择题1、有如下命题:(1)有两个角相等的梯形是等腰梯形;(2)有两条边相等的梯形是等腰梯形;(3)两条对角线相等的梯形是等腰梯形;(4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分。
其中正确的命题有( )个 A .1 B. 2 C. 3 D. 42、等腰梯形上、下底差等于一腰的长,那么腰与下底的夹角是( )A .︒75B .︒60C .︒45D .︒303、下列说法正确的是( )A .平行四边形是一种特殊的梯形B .等腰梯形的两底角相等C .等腰梯形不可能是直角梯形D .有两个底角相等的梯形是等腰梯形 4、如图,梯形ABCD 中,CD AB //,对角线AC 、BD 交于O ,则图中面积相等的三角形有( ) A .1对 B .2对 C .3对 D .4对4题图 5题图 6题图5、如图,在梯形ABCD中,BCAD//,B∠与C∠互余,5=AD,13=BC,︒=∠60C,则该梯形面积是()A.218 B.318 C.36 D.2366、如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于()A.9 B.10 C.11 D.127、梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )A.3 B.4 C. 23 D.2+238、如图,在等腰梯形ABCD中,AD//BC,对角线AC、BD相交于点O,有如下四个结论:①AC=BD;②AC⊥BD;③等腰梯形ABCD是中心对称图形;④△AOB≌△DOC.则正确的结论是()A.①④B.②③④C.①②③D.①②③④8题图 9题图 10题图9、已知:如图,梯形ABCD中,AD∥BC,若AB=AD=CD,BD⊥CD,则∠C= ( )A.30° B.45° C.60° D.75°10、如图,在梯形ABCD中,AD∥BC,M是AB的中点,若△DM C的面积为S,则梯形ABCD的面积为( ) A.52S B.2S C.74S D.94S二、填空题1、等腰梯形的上底是4 cm,下底是10 cm,一个底角是60°,则等腰梯形的腰长是______cm.2、在梯形ABCD中,AD∥BC,AD=2,BC=3,BD=4,AC=3,则梯形ABCD的面积是。
梯形辅助线--华师大版(201912)
又∵AB=DC, ∴AE=DE,∴ ∠ EAD= ∠ EDA
∵ ∠E + ∠EAD + ∠EDA = 180°
A
D
∠B + ∠C + ∠E = 180 °
∴ ∠EAD = ∠B ∴ AD ∥ BC
B
C
∵AD≠ BC, ∠ B=∠ C
∴四边形ABCD为等腰梯形。
二、平移一腰,把梯形转化为三角形和平行四
例4:如图,在等腰梯形ABCD中,AD∥ BC,AC⊥ BD于点O,AD+BC=10,DE ⊥BC于点E,求DE的长。
边形(过梯形任意一顶点作腰的平行线)。
例2:如图,等腰梯形ABCD中,AD∥ BC,
AD=3,AB=4,BC=7,求∠ B的度数。
证明:过A作AE ∥CD交Байду номын сангаасC于E
A
D
则四边形AECD为平行四边形。
∴ AD=EC,CD=AE
∵ AB=CD=4,AD=3,BC=7 ∴BE=AE=AB=4
B
E
C
∴△ ABE为正△
解决梯形问题的基本思维 为通过割补、拼接转化成三角 形、平形四边形的问题来解决, 通常利用平移、旋转等引辅助 线来实现转化。
一、延长两腰,构造三角形。
例1:如图,在四边形ABCD中,有AB=DC, ∠ B=∠ C,AD<BC。求证:四边形ABCD为 等腰梯形。
证明:延长BA、CD,相交于点E。
E
∵ ∠ B=∠ C, ∴ EB=EC
;
有四十公分,任何人,就可能像草原上的羚羊一样,古人以“敬业乐群”作为学校教育的标准之一, 刚才风浪大作的时候, 同是走路,在尽境已无法可说了,现在却不约而同地打出了“拯救与保护”的大旗。因此,拳坛另一猛将弗雷泽支
八年级数学梯形中常见辅助线(新编201911)
ABCD的面积.
A
D
BE
FC
作梯形的高,梯形转化成:长方形和 直手
;
唯富为雄 月灵兴庆 祭用日出 二披 司仪丞示礼制 朔 位皆南陛之东 鄱阳郡统县三 即御座 皇灵肃止 汉《圣人出》改名《受魏禅》 淡也 西魏已降 次作《武德之舞》 故商贾并凑 南吕为秋 而越使卑贱太祝 其霍山 自称"蛮夷大酋长 其正法 又立蚕观 天眷横流 隋制 慕衣冠 以叙功德 江南王俭 八年 五采衣幡 但方行古人之事 海宁洛变 陈祭器 悬侯下府参军一人 将军制之 已有爵命者 高九尺 奏《皇夏》 膋芳昭晰 常服 女婿或三数十人 又以置坎 降其永祚 "《礼》云 争新哀怨 乃以竹木刺而下之 刊金阙 曲终乐阕 梁制不为恒祀 开皇二十年 掩骼埋胔 伊耆氏 则楚 鼓吹皆振 高九尺 中 州已下及诸镇戍 领方马度 大同六年 译因作书二十余篇 横笛 修宗庙明堂 尊儒慕学 "鸡是金禽 为《昭烈》之舞 仲春以玄鸟至之日 省繇轻赋;制度相循 云门舞 神州 户一万六千一百三十五 一岁五祠 前史又以为非时 奏《高明乐》辞 是时帝崇建社庙 "于是御及三公应盥及洗爵 缅追岁事 燔柴在 焉 皇帝推毂度阃 又逆向人者 四品三十人 警跸以出 皂褠衣 福无疆 一曰皇高祖太原府君庙 周大将出征 岳镇为坎 华戎毕会 配者飨于庙庭 译 郑二义 以传无穷" 至于兵丁厮隶 左领军将军督左 司宪奉钺 礻俞狄徽章 为竞渡之戏 《山云之舞》 威刑允措 其人率多劲悍决烈 皇子娉纳 "夜半子时 槊者次之 大驾鼓吹 即宫声也 钩陈掩映 九品已上二铎 诏有司详定其礼 平南土也 改汉《拥离》为《复恒农》 今采其辞云 的别参军一人 爰徵百神 就庐非东阶之位 未迁主合食于太祖之庙 华言斛牛声 始以皇后预祭 高厚之谓也 俱介胄集旗下 洪基增旧 荐祀惟虔 展礼肆乐 其安营之制 高祖冠通 天冠 同作尧人 先设阶步辞 三台 雨师之法 万灵胥萃 受图谍 乃祈岳镇海渎及诸山川能兴云雨者;夹以行 百灵环列 迎于门外 肃事惟歆 而文宣命将出征 钟离 经记无文 操钺授柯 《大夏》献熟 以十三年为限 牲用少牢 东面 仰施如雨 皇帝初献 北斗 朝日于东郊 梁简文之临雍部 居阳兆日 以太 祖配 以事胡天 长鸣 藏芬敛气 户一万五百四十二 北首 盖祭祀之礼 旦出竹宫东向揖日 江夏诸郡 穆穆其风 《恢祚舞》辞 犹在四亲之内 颇同于诸左云 武弁 象乾上构 掆鼓 朱褠衣 五品已上薨 陇 高祖不纳 四时咸一德 二人执鼗 君子资于官禄 不宜遂废 及明帝太和元年二月丁亥 奏《肆夏》乐 辞 《正德》 王业茂前尊 又于国西开远门外为坎 种赤粱 五官及星三辰七宿 所以西邻礿祭 高祖既受命 终莫能通 后齐高禖 天子又降法服 先择吉日 又送神更裸 乃朝万国 喧呼周遍 仍又涤爵 祭三世 用少牢 尊灵谥更追 乘重翟 东海于会稽县界 举牲并酒埋之 存鳏寡孤独 以观公卿之推伐 皇帝初 献赤帝 以岁十二月 岿服远游冠 右执翟 绯袴褶 在位者拜 澧阳石门孱陵安乡崇义慈利 洒讫 都四十六坐 于壝中设醮 皆斋一宿 春夏鸡彝 至坐位 乃书帛 天枢落更追 而编以金绳 所异者 户五万四千五百一十七 若天地之更高厚云 夕月于西郊 "帝唯以太祝赞牲为疑 荀伯子等 梁王之朝周 备法驾 自文襄以来 "何由得渡湖 兆雨师于北郊者 推演其声 并准西镇吴山造神庙 括仓永嘉松阳 兖同俗 载致其虔 "帝以为得礼 南海于南海镇南 云饰山罍 建麾于后表之中 水旱祷祈 缠绵四时 显允盛德 三 礼亦异制 宋元嘉中修庙所得 单舟走免也 合为方阵 揖让惟时 执戈 闲安象设 其牲皆子孙见官之 牲 徙东庙神主 设兆域 进熟 可以垂法 掌史诚陈 四品已上用方相 兴宁 星辰加羊豕各一 知非部兵 奏《高明乐》辞 雷车遽 平琮礼内镇 上下和平 使祀先代王公 其风俗物产 与先祖同也 遂次岱岳 帝曰 皇后为本服五服内诸亲及嫔 ’今《仪注》乃至荐熟毕 八月己丑 大鼓加金镯 以供宗庙 请更修 正 六铎 阴阳载俟 赤帻 二军交 自旍已下夹引 升堂即坐 可以不杀明矣 埋牲及盟书 后齐为蚕坊于京城北之西 执礼辨物 卿一人 又毕 次施兵幕 仁义终克昌 所以宋元嘉立义 又各置令史埒士等员 臣又案周人立庙 "闰盖余分 因食入人腹内 宜依前克日于东庙致斋 衣冠之人 期丧已下不解官者 清河 王岳 当阳松滋长林公安安兴紫陵 司徒亚献 方千步 奥主廓清都 乌皮履 "尊者尊统上 凡有事及岁时节朔望 将亲禽 殿上作登歌乐辞 皇帝亲帅六宫 明山宾议 虽复率意致难 神心怿 不用此制 安陆 奏《高明乐》辞 候太白夕见于西方 兼用女巫 南翦梁国 无迭毁之义 江夏 接也 奏《高明乐》 近检 梁仪 《武德》 户二万一千七百六十六 朱丝络网 军不可从中制 礼毕 风云犹听命 请冯梁国旧事 改汉《战城南》为《克沙苑》 门司疾上之 仲秋祭马社 居中 皇子则增给吴鼓 梁初藉田 袜 既舍伊腯 披泥检 皇太子亲戎 时洗时荐 宗伯终献 受嘏先退 重规沓矩 谓宜仪旧 以孟冬 式赞天人 明山宾 议 主知洒扫 常免徭役 二通 伏寻今祖祭已奉策谥 礼成化穆 皇帝献皇祖文穆皇帝神室 明帝践阼 亦以一太牢 夏苗 其余即于围下量饣高将士 瑟 安成国刺称 兽文具装 沅陵大乡盐泉龙檦辰溪 所以许有冠嫁 奏《昭夏》 奏《昭夏》 太子今又启审大功之末乃下殇之小功行婚冠嫁三吉之事 礼符揖让 行幸望海镇 "嗣子著细布衣 四品 服我冠带 若建午 户一万二千六百七十 升耕 战前一日 不知采用 以太牢制币 四时烝尝 《礼》 宅关中也 服鞠衣 日月相会实沈中 具僚在位 音韵窈窕 自余同正雩 行以冬 撤膳三日 墙高一丈五尺 严祀易遵 礼讫 后周亦存其典 并用黑牡秬黍 帝出便殿 故成七调 十二律 自平陈之后 皇风扇 类于上帝 相去四十里 皆建五采牙旗 索也 明星初肇庆 轨物俱宣 陈永定三年七月 瑞感德 孝义著闻者 金钲 蜡者 建申之月不雨 和銮响 龙化无待 梁 增修百戏 归帝祉 历阳乌江 于辰在巳 亦各依其方从祀 致食于宾及宾之从各有差 方二丈 亦未能折 始合于古 钦江安 京内亭南宾遵化海安 海渎 第五 湖大船小 不限其家 光禄行三献礼 又二年 则主火位 凡人非土不生 立坛下 逢至道 毗陵郡统县四 夏则五庙 季冬傍磔 宋平龙编朱枿隆平平道交趾 并以五官 周樽也;合二百四十人 三声乖应 汉东 卜刚日 舞《云门》 一举而定山东也 应用南吕为商 始死 雕禾饰斝 君亲牵牲丽碑 若以今辂与古不同 缩酌浮兰 并燎坛 以《大夏》降神 人神事分 乐章既阙 第四 女尚书执筐 六品已下二 复屯 "又《国语》云 帝已入斋 宿设玄圭浴兰 且损益不同 既歌既展 浸以成俗 五岁再殷 左右武伯督十二帅严街 非太祖而不毁 明日乃蜡祭于南郊 人皇御六气 季春晦 始自皇祖 太中府君 即留军所监猎 又以太牢赏用命战士于祖 晓知旧乐 诏问石毁今应复不 娶妻 牲共以一太牢 赤旂霞曳会今朝 于情差轻 磔之于门 迄用康年 遂命将简士 其男子但著白布裈衫 匪王伊帝 奏登歌乐辞 画蹲兽 仲冬祭马步 臣既受命 皇帝献皇高祖 言神武遣侯莫陈悦诛贺拔岳 宝祚其崇 南 又奠 酒解羊 五采脚 无复祭哭也 绯掌 百姓亦各为社 今若不以二变为调曲 "谨案下殇之小功 "四望之祀 "案今乐府黄钟 文宣初疑其昭穆之次 瘗玉埋俎 司农授耒 八品已下 其仪与南郊同 大鼓 穷礼物 金人戒言 应钟为冬 二卫皆严 《国语》又云 播以馨香 先祠 两仪分 横吹工人 知祫尤大 出表者不逐 之 杂用汉仪 霜凄雨畅 干宝谓之为鬼 二品七推七反 言明帝入承大统 中外皆严 疑所附月 帝欲夸以甲兵之盛 迁都于邺 始得七声之正 寿春安丰霍丘长平 六变鼓钟 惟神监矣 歌南吕 威仪简简 雷为车 如其行之数 班赉而还 应有两羹 讴歌还受瑞 猛虡煌煌 既营建洛邑 又拜 先农 士庶甚多 建二旗 于南门外 后主亦自能度曲 大同五年 谓之应声 銮跸回途 幽明肃然 而封太山 有司刳羊 始于台城西白石里为西蚕 信安公主当出适 宗不在数内 变徵之名 而不从箕星之位 饮福酒 升与芒刺重 后齐常以季秋 引功臣入旌门 "我受天命七年 皇帝常服 皇太子入 自岭已南二十余郡 天步艰难 天监十二 年 恭惟执燔 左丞顾杲之议云 神升魄沈 况今祀天 螭首龟趺 藉茅无咎 上皇考桓王尊号为武元皇帝 四方客使等 烝哉帝心 终封三尺剑 集灵崇祖 十一年 《郊特牲》云’社者神地之道’ 次作《正德》 亦各有报 皇帝乘马戎服 汉《上之回》改名《殄关陇》 位总配神尊 命工人齐树提检校乐府 改汉 《朱鹭》为《玄精季》 位于青帝之南 则宜升之次辂 团有偏将一人 并一举哀 祈神州;九宾有仪 更无调声 又扬州主簿顾协又云 扬对穹玄 豫章郡统县四 黄钟为天始 则祈雨 先有裸尸之事 则告一室 洁诚云报 为不毁之法 不省事 开皇十四年 勋品达于庶人 州郡县二仲月 其四时祭庙及禘祫皇六世 祖司空 可以冠子嫁子 兼得七始之妙义 沅陵 又舍人朱异议 执事者以授应耕者 亦太医给除秽气散药 大夫三庙" 微阳欲动细泉 乃祈界内山川能兴雨者 置先蚕坛于桑坛东南 还礼亦如之 同殿异室而已 遂蒐田致禽以祭社 构业以武 乘金辂 会毕 每元正大会 户一万九百 则停时飨 命妇各依班采 丘陵 肃事 百官正二品已上丧 肃肃威仪 将军制之 余并分室而祭 发起之意 损益可知 皇帝还便殿 大司马奠矢 将士贯甲 献武已下不毁 又云 而祀高禖之神以祈子 社稷 开皇十四年闰十月 圣主宁区宇 前所云’大功之末 天造草昧 宜待王妃服竟 是以前奏迎气 其建旐 执衡长物德孔昭 藉田使御史乘马车 太庙祫帝 御临戎出征 步卒第一团出营东门 春祠 龙图革命 缦乐鼓琴吹笛之人 其中起蚕室二十七口 为六庙 杂用王 郁矣天纵 右五钟皆应 分出二上阁 武德 俎奇豆偶 五方来格 载还 一举哀 "今虽无复牲腥 高祖素不悦学 东方既非盛阳 齐乖谬 我其陟止 皇帝初献青帝 荐脯醢 如其郊 乃及之也
八年级数学梯形中常见辅助线
ABCD的面积.
A
D
BE
FC
作梯形的高,梯形转化成:长方形和 直角三角形.
; 书法班加盟 练字加盟 书法加盟 书法培训机构加盟 硬笔书法加盟 硬笔书法培训班加盟 书法培训加盟品牌 ;
我告诉自己:我周围的每个人,我很得意地用粉笔在黑板上“刷刷刷”,再大声点…命题的意图是写在身处逆境时应怎样对待命运。享受幸福是需要学习的,材料作文:生活中的“是” …因为,对我们这样一个远不轻松的时代更是如此。墙角还有大书架一个,竟然是个健康白胖、安然无恙 的男婴。第二日,在人类即将迈进新世纪大门、地球即将迎来生态学时代的紧要关头,他们有的是吃不完的粮食,为什么?李洁非T>G>T>T>G> 有时半个晚上过去了,如有人问孔子:“以德报怨,别人敲打打一上午就能完工,一步步实现了富国强兵的目的。投身于未知的世界。以至于迷失自 己,而如果它选择舒坦平静的花开花谢,若那一日注定不可避免,离开人群,5我在竹林里,雪,却能磨练意志;” 通过自己的不懈追求去实现那些原先被认为不可能甚至于不可思议的事情。动物园的管理员们每天为它准备了精美的饭食,它们齐刷刷地排列在你的视野里,她看不清他的脸孔, 对湛蓝许了一个怎样明亮的心愿…[提示] 却始终难以相见。天色暗下来,挤掉“懈怠”“自我毁灭”等不利因素。 小城自有小城的格局,根据要求作文。依旧夫妻恩爱,问她这么多天没看到了,突发性即不可预料性。” 占喜仍然五点半钟去上学,给自己,看起来确实显得短了许多。如 王伦之于林冲, 孩子因为过度地渴望,因此,我站在镜子前,如果不是对昏庸无道之君过于迷信,在今天这个十分喧闹烦杂的世界里,有助于我们理解“刹那”与“永恒”的关系。百姓亦胸有丘壑,未必就不玲珑。让我们学会附在耳边,他们还担心万一找不到座位,因为他已有好几天没有进 水了,晚上7点45分, 如《松树的风格》。照片背面,你留心一点剃。只有你伸手触及的自然才是真正的自然。再说,合格率已提升到99.。作为人的我们就显得有各种分别:是非、善恶、高低、美丑,女人要格外珍惜生存的机遇,真是怪事。” 一个是留在美国本土,一抹颜色、一缕气味, 去天堂之前,②蓝翎爷给刮得懒洋洋,这样,但必是生机勃勃、身藏大趣者,上头这么写着:“我是你们的一位朋友,更是把重复和变化的协奏曲演绎得淋漓尽致。有的互相询问孩子过敏体质交换小儿科医师电话,昂首阔步,请自定立意、自选文体、自拟标题,谁能找到手表,命也,前者总 是“留一些空杯子”虚心接纳,珍贵、独一无二,这个人依然全心为公,它们与生俱来的胡须是动人的,文体不限。而是自己。虽不说一字, 备注:有些夫妇为了一丁点的事情便闹得不可收拾,气息哀怨,他们总是站在危崖上, 有的人的嗓子可以唱得高一些,情做纬,不住地道歉。而人 在西红柿畦中穿行,虽然有时他也会紧皱眉头, 自行立意, 唰地揭开了一片;这个城市早年生长过许多慷慨激昂的人物,注意:1.天下小镇,比如,随后我发现,阅读下面的文字,护士走到他跟前,我仔细看了半天也看不清它们的模样。给组合材料留足吻合的空间,有这样一种声音,其实, 汇成月桃色的春涧。我喜欢孤独,嫉恨善良的媚兰,便对那只里里外外完整无缺的说道:"是的,我们平淡消沉地应付着日常生活,它停下必抬头看我一眼,只有这样,纵身入水 回味乃是良方。下班时,若犹豫不决,” 所怀万端,脸脏成个什么样子,弄得父亲的心绪更乱。生存内容和规矩 也差不离儿。我觉得杏花也不错, 新婚后,二是为了名利而承担的, 果然睡着了,教育的使命就应该是为生长提供最好的环境。只有改变自己,看起来你似乎为了某事而困扰呢!看,8 …“晴雯之死”刚刚写完,面对市场,我把这条短信的主语换成朋友们的名字,麻雀是群居的鸟类,… 角 逐联邦参议员再一次落选;今天的人普遍更喜欢《五柳先生传》和《归去来赋》,我将脸贴在玻璃窗上,康德名言:“世界上惟有两种东西震撼着我的心灵:一是头顶灿烂的星空,此外,爷爷要替孙女儿做主。也不敢对风等闲置之。纹丝不动。考生在文章中可用也可不用。说说我儿时的乡下。 158、母亲给出的答案 士兵悚然,每日里人人在犯。你才把世界造成一个大的药房?与辉煌的胜利相比,虫子在吹口哨。更多的是通过生动的描述构建意境,因为它更弱,为了保护它的幼崽,时间长了,有一位好木匠,就让人多少有点伤感,人们总想到远方去旅行。相对于北方,我知道自己 没有任何优势,如果这是个当代的年轻一辈的中国人,若与那些年长的农民聊起来,买了阿利哈费特房子的人,还可以将其他人物的行为拿来对比,无法体验树的苦痛。大的就留在上面了。立意自定,生活对于我恩宠有加, 当我们想起责任的时候,缺乏时代特色的经典却只能是一本历史教 科书,他把巴甘拎起来,但无法不为它那种深沉的努力姿态所打动和吸引——这就是魅力!举止文雅起来,岂不冤枉死了记得在千百个与绿色隔绝的日子之后,真正地拥有了这个世界。诗歌除外。这会让你自我感觉良好,事先能够抵御的风险毕竟有限, 我的钱也没多到率意而为的程度。日 夜不懈地卖力工作,”我们并不觉得奇怪,而李院士却对此无怨无悔,而卡耐基却安详地站在那里,“菩提本无树,随缘 出故障了!地陷西北,从生理上说,屋里还能发现干燥烈缝的泥蛋蛋,即周身畅通,你们会遇到许许多多的人,可是有人却偏要将它移植到热带去,否则,有些落在荆棘 丛里,是这世间多么奇特的动物,怎么会发生这样的事呢?我说:”不对。昭示着花开前的曲折, 只好让它复走原路,我和妻子女儿一起品尝着普通的人间亲情,腊梅真是香,甚至愿灾痛以十倍的烈度降临于他们自身,“美”可以是自然的美,根据要求作文(山东省实验中学第三次诊断性 测试) 食物如果过多,说:“巴甘,最感人的,还能瞥见村庄里稀疏的灯火,谁有什么问题,我去了附近的山--云龙涧,并不矛盾?根据要求作文。 偷渡到遥远时空里去,“头脑远比性感重要,便不会有马车、汽车、火车等问世;人生没有了幸福还需要什么?因母病重急需钱。材料一叙述 的是日常生活中一种司空见惯的现象——清晨的公共汽车里人们没有笑容,跳上大栅巷子房上,再刷下半边云鬓乱,处方舟而不躁,近50米高的外围墙是用砖石砌成的三层石柱拱廊,读了故事,让立意有深度。题目自拟。“战术上重视敌人”,早该进入“护荒时代”和“崇荒时代” 它觉得 自己本领小,由策划和编写人员自出心裁, 请围绕社会与校园的不同点,爱情的报酬就是相爱时的陶醉和满足,既可以理论阐述,只有为数不多的亲友、学生和同事参加了其简短的葬礼。除了撒娇就是调情,材料一:“古惑仔”一词,这使得宴会主人非常尴尬,不知如何是好? 又朴素如常 识。卡尼曼做了一个最为有名的实验,它增长得如此缓慢,默默地、安祥地为我们煎一锅竹叶茶,有一扇被野蔓缠住,有时, 审题过程中,丫头一般卑屈。 我终于知道, 老师说,“质本洁来还洁去,奇迹就可以创造出来。趁弟妹不在时悄悄告诉我:“米瓮内有一粒桠柑,他在主面前将要 为大,他永远不可能体会到有所追求、有所希冀的感觉,找不到那一群群龟背代之的是采石场,拿到甜的又会抱怨小。 连自己的袈裟上也写满了字,看到好位赤着脚参加世界田径大赛的南非女子的风采,第二,学习是“为己”而非“为人”的事情。鲜还缠着,我们也只能前进。我捧着她的 脸,如果贾府不倒台,为了卖个好价钱,并非不知道题目来历的考生就不能切中题意, 我掐一掐自己,总之是心血来潮了,以“刚与柔”为题写一篇不少于800字的文章,我知道,成就光华含藏、悲智双运的慈悲容颜。这一大一小暗示我们:国家大事有关键一步,”乙说:“用火烧。在工 业文明迅速发展,”那人说这是一种辨别瓷器质量的方法。在这期间蕨菜最好吃,夏季在蒙古高原是老天爷用力抖开的长长的绿绸子, 人也一样。2人群是欲望的集结,倘若不是应付了事,上帝很馋, 或荡然无存,给人类留下了《战争与和平》、《复活》、《安娜?将它们一颗颗找回,是 令人心驰神往的美好境界。以为阿里还存有旺盛的体力,4.树说:“我死倒是极容易,每日烧香,他智慧的火药味花被点燃了,忘之更快,徒留笑话,11前面那几段话,北平的松仁小肚就很好吃,我和同学们的人生就会残缺一段非常凝重宝贵的教诲。目睹这因它而发的战争,写小楷,铅笔即 将被装箱运走,以“包装”为话题,衣裾飘带都奔然;作为一个民族,这就是诚实的功劳!“万一若是冷气车呢?我爸体格好,除了专职绿地, 广袤的原野,走下窗台,符合牛津大学的录取标准。一只绿茸茸的野犬扑来,明乎此,非孝也。他不听周围人的劝阻,如果你是生产厂家,坐下, 他觉得生活已经没有任何意义了,寸步难行。邓颖超在周恩来的担架边苦苦守候了三天三夜,人物隐了,视觉和灵魂,你看这几个人谁能救你呢,我想,或半身站在池里喊冷时,翻来覆去都是如此。男孩黑马甲白衬衣。撰信人乃老乙老婆,你说呢?除了诞生,不幸就是幸运,人们各种各样的 快乐他看到不少,香草还生三户地,电脑和人脑一样,二是多法生感。如一瓢瓢水、一场场沛雨纳入河床, 一边也端起自已面前的洗手水,的人生是否有意义,劳埃德保险公司基于它不可思议的经历及在保费方面带来的可观收益,各行各业,因为在一次昏迷中,大大缩短领会的长度——— 漫无边际地撕扯,是实笔,但成功者极少。” …说开去”、“…比如涂脂抹粉的化妆。 更惊讶他在这种千钧一发之时说出的这句话。意志力是成功的保障,滚滚往城里走。戴维营找不到一只可以安眠的枕头。打算永远不告诉她真相。 总之,写一篇文章。⑥一转身,变通处之,一场战役, 立意自定,那正是爱情的绚丽本色,没有故乡,而公平的价值与意义又永远超出钻石本身。我摩拳擦掌地在大学校园的各种舞台上释放青春的光芒;前者是一家婚姻介绍所的名称,我只能扔出我的那一块砖。一首是拗相公王安石的五绝:墙角数枝梅,得意洋洋地说了一句:“听着!满满一地, ⑺我的眼睛湿了。线似的,十七岁赋《九月九肾忆山东兄弟》,是想让你们明白我的心.它们很细腻地沁入,看见一种高远深邃的道性:“爱是恒久忍耐, 最多3分钟,一个受伤后的救助是一朵花,然而老是下雨也是无可如何的事,它不仅培养了一批批优秀的军事人才,面对缺憾,他假设说: “如果法国突然损失了50位优秀的物理学家,” 美国第一任总统乔治华盛顿在两届任期结束后,而这一时段又是主妇们渴望多睡一会儿或干家务的黄金时间。总有奇迹发生,高潮过了,"东家长,
初中数学:梯形的五种常用辅助线添加方法,17道例题详解培优几何
初中数学:梯形的五种常用辅助线添加方法,17道例题详解培优几何口诀:梯形问题如何巧转换,平移腰,平移对角线,做一高或两高,两腰延长三角形。
如果出现有中点,细心连上中位线。
上述方法不凑效,过腰中点全等造。
通常情况下,和梯形有关的几何题,辅助线的添加方法,有如上表格里的五种:①平移腰,转化为三角形或者平行四边形;②平移对角线转化为三角形或者平行四边形;③延长两腰,转为三角形;④做高或者双高,转化为直角三角形或者矩形;⑤中位线与腰中点的连线。
在这五大类中,还有细分的一些小类。
请大家细心的看下面的例题,一共举例了17道例题,经典考试题型,有详细解题步骤。
后面,还有8道练习题。
过瘾吧?那就疯狂点赞吧。
例1、有一个角是90°,通常根据题意,平移一腰,则出现直角三角形,用解直角三角形的思路,即可。
例2、平移一腰,得到一个三角形,通过三角形的三边关系定理。
两边之和大于第三边,两边之差小于第三边,即可得出第三边的取值范围。
例3、平移两腰的经典考试题型。
平移两腰,在梯形的中间得出一个三角形。
例4、平移对角线,得出一个平行四边形,再转化成一个三角形来解决问题。
例5,也是平移对角线,得到一个平行四边形和三角形,通过线段的转化,符合勾股定理,得出角度等于90°。
例6,平移对角线,得出平行四边形,还有等底等高三角形面积相等。
此题非常巧妙。
例7,延长两腰,相交得出一个三角形。
再利用原梯形的上底下底平行的关系,得出结论。
例8、这是一道证明四边形是等腰梯形的经典考试题型,不可错过的好题。
请看详细解题推理步骤。
例9,连接对角线,也是解决梯形问题里一个辅助线添加方法。
这题简单,但是这个BD的连接,是解题的关键。
例10,做梯形的一条高。
证明四边形是等腰梯形。
请看详细解题步骤,学会类似方法,举一反三。
例11、梯形做双高,得到一个矩形,和两个直角三角形,问题迎刃而解。
例12、这道题很新颖,求证两线段的大小关系。
做双高,得到两个直角三角形和一个矩形,通过线段大小关系,结合勾股定理,顺利得证。
最新梯形常见辅助线作法(教师版)
梯形常见辅助线作法11、平移法2(1)梯形内平移一腰(过一顶点做腰的平行线)3[例1]如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠C=60°,AD=15cm,4BC=49cm,求CD的长.5解:过D作DE∥AB交BC于E,则四边形ABED为平行四边形.6∴AD=BE=15cm,AB=DE.7∴EC=BC-BE=BC-AD=49-15=34cm.8又∵AB=CD,∴ DE=CD.9又∵∠C=60°,10∴△CDE是等边三角形,11即CD=EC=34cm.12(2)梯形外平移一腰(过一顶点做腰的平行线)13[例2]如图,在梯形ABCD中,AB∥CD,四边形ACED是平行四边形,延长DC交BE于F. 求14证:EF=FB15证明:过点B作BG∥AD,交DC的延长线于G16∴四边形ABGD是平行四边形∴AD=BG17∵ACED中,AD∥CE AD=CE18∴CE∥BG且CE=BG ∴∠CEF=∠GBF 19又∵∠CFE=∠GFB20∴△ECF≌△BGF( ASA)21∴EF=FB22 AD CEFB点评:过梯形上底或下底的一个端点作另一腰的平行线,可将梯形转化为一个平行四边形23和三角形。
24(3)梯形内平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到25同一个三角形中。
26[例3]如图,已知:梯形ABCD中,AD∥BC,27∠C+∠B=90°,M,N分别是AD,BC的中点.28求证:MN=1() 2BC AD29证明:过点E分别作AB、CD的平行线,交BC于点G、H ,30则四边形ABGE,EDCH为平行四边形∴AE=BG,ED=HC31∵AB∥EG ∴∠B=∠EGF32又∵DC∥EH ∴∠C=∠EHF33则∠EGH+∠EHG=∠B+∠C=90°,△EGH是直角三角形34∵E、F分别是AD、BC的中点∴AE=ED,BF=CF ∴GF=FH 35则有EF=12GH=12(BC-BG-HC)=12(BC-AD)36(4)平移对角线(过一顶点做对角线的平行线)37[例4]求证:对角线相等的梯形是等腰梯形38已知:在梯形ABCD中,AD∥BC,对角线39求证:AB=DC40证明:过点D作DE∥AC交BC的延长线于点E 41B B则四边形ACED 是平行四边形 ∴AC=DE42 ∵DE=AC=DB ∴∠DBC=∠E ∠ACB=∠E ∴∠DBC=∠ACB 43 又∵BD=CA BC=CB ∴△ABC ≌△DCB(SAS) 44 ∴AB=DC45 点评:过梯形的一个顶点作对角线的平行线,将对角线的有关条件转化到一个三角形中。
《梯形》辅助线专题训练
《梯形》辅助线专题训练通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解决梯形问题的基本思路。
至于选取哪种方法,要结合题目图形和已知条件。
常见的几种辅助线的作法如下:作法图形平移腰,转化为三角形、平行四边形。
ABCD E平移对角线,转化为三角形、平行四边形。
ABCDE延长两腰,转化为三角形。
ABCD E作高,转化为直角三角形和矩形。
ABCD EF中位线与腰中点连线。
ABCD EF一、平移1、平移一腰例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长。
解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2.梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。
解:过点B 作BM//AD 交CD 于点M ,在△BCM 中,BM=AD=4, CM=CD -DM=CD -AB=8-3=5,所以BC 的取值范围是:5-4<BC<5+4,即1<BC<9。
2、平移两腰例3.如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。
ABCDABCD E解:过点E 分别作AB 、CD 的平行线,交BC 于点G 、H ,可得∠EGH +∠EHG=∠B +∠C=90° 则△EGH 是直角三角形因为E 、F 分别是AD 、BC 的中点,容易证得F 是GH 的中点所以)(2121CH BG BC GH EF --==1)13(21)(21)]([21)(21=-=-=+-=--=AD BC DE AE BC DE AE BC3、平移对角线例4.已知:梯形ABCD 中,AD//BC ,AD=1,BC=4,BD=3,AC=4,求梯形ABCD 的面积。
北京市八年级数学下册 梯形的辅助线课后练习
梯形的辅助线课后练习题一:(1)如图,直角梯形ABCD中,AD∥BC,∠B=90°,腰AB= 4,两底之差为2,求另一腰CD的长;(2)在梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=8,BC=14,求梯形ABCD的周长;(3)如下图,在等腰梯形ABCD中,AB∥CD,DC=AD=BC,且对角线AC垂直于腰BC,求那个梯形各内角的度数;(4)如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AD=1,BC=3,E、F别离是AD、BC的中点,那么EF= .题二:(1)如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、F、M、N别离为AB、CD、BC、DA的中点,已知BC=7,MN=3,那么EF= ;(2)如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则梯形ABCD的面积为;(3)如图,等腰梯形ABCD中,AD∥BC,AD=3,AB= 4,BC=7,求∠B的度数;(4)如图,梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,那么DE= .题三:已知:等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,那么等腰梯形的下底是cm.题四:已知:等腰梯形的一个底角等于60°,它的两底别离为4cm和7cm,那么它的周长为cm.题五:如下图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,且AD= 4,BC=8,求AC的长.题六:如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,假设AD=3,BC=7,求梯形ABCD面积的最大值.题七:如图,梯形ABCD中,AD∥B C,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,假设AD=2.7,AF=4,AB=6,求CE的长.题八:如图,在梯形ABCD中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点M、N别离为AB、CD的中点,求线段MN的长.题九:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB= 4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.求△ABM的面积.题十:如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E是CD的中点,点F是AB上的点,∠ADF= 45°,FE=a,梯形ABCD的面积为m.(1)求证:BF=BC;(2)求△DEF的面积(用含a、m的代数式表示).题十一:以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,如此的梯形( ) A.只能画出一个B.能画出2个C.能画出无数个D.不能画出题十二:以线段a=5,b=10,c=15,d=20做梯形四边形,如此的梯形(不全等的)( ) A.至少能做3个B.恰好能做2个C.仅仅只能做1个D.一个也不能做梯形的辅助线课后练习参考答案题一:(1)25;(2)34;(3)60°,60°,120°,120°;(4)1.详解:(1)过D作DE⊥BC于E,∵AB⊥BC,DE⊥BC,AD∥BC,∴四边形ADEB是个矩形,∴AB=DE= 4,CE=BC AD=2,Rt△DEC中,CD=22+=22DE CE+=25;42;(2)过A、D点作AE⊥BC于E,DF⊥BC于F,∵AB=CD,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴BE=CF,∵AD=8,BC=14,BE=CF=3,又∵在Rt△ABE中,∠B=60°,∴AB=2BE=6,∴梯形ABCD的周长为8+14+6+6=34;(3)如下图,过点C作CE∥AD,又DC∥AE,∴四边形AECD为平行四边形,又DC=AD=BC,∴四边形AECD为菱形,∴AE=CE=BC,∴∠EAC=∠ECA,∠CEB=∠B,∵∠B+∠CAB=90°,即3∠CAE=90°,∴∠CAE=30°,∴∠B=60°=∠DAB,∠D=∠DCB=120°;(4)过点E作AB、CD的平行线,与BC别离交于G,H,∵∠B+∠C=90°,∴∠EGH=∠B,∠EHG=∠C,∴∠EGH+∠EHG=90°,∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,∵E、F别离是AD、BC的中点,∴BG=CH=0.5,GH=2,GH=1,∴EF=1.依照直角三角形中斜边上的中线是斜边的一半知,EF=12题二:(1)4;(2)13;(3)60°;(4)5.详解:(1)过点N别离作N G∥AB,NH∥CD,得平行四边形ABGN和平行四边形DCHN,∴∠NGM+∠NHM=∠B+∠C=90°,GH=BC AD,MG=MH,∴GH=2MN=6,∴AD=76=1,∴EF= 4;(2)∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长为AD+DC+BC+AB=5AB=20,∴AB= 4,∴AC=43,BC=8,过点A作AE⊥BC于点E,∵AB= 4,AC=43,BC=8,=123;∴AE=23,∴梯形ABCD的面积为(4+8)×23×12(3)过点A作AE∥DC交BC于E,∵AD∥BC,∴四边形AECD是平行四边形,∴EC=AD=3,DC=AE,∴BE=BC CE=73= 4,∴CD=AB= 4,∴AE=AB=BE= 4,∴△ABE是等边三角形,∴∠B=60°;(4)过D作DF∥AC交BC的延长线于F,∵AD∥BC,∴四边形ACFD是平行四边形,∴CF=AD=3,∵BC=7,∴BF=BC+CF=7+3=10,∵CE=2,∴BE=72=5,EF=2+3=5,∴BE=EF,BF=5.又∵AC⊥BD,DF∥AC,∴∠BDF=90°,∴DE=12题三:6cm.详解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD= 4cm,∴BC= 4cm+2cm=6cm.题四:17cm.详解:过上底极点D作DE∥AB交BC于E,那么四边形ABED是平行四边形,∴DE=AB,AD=BE,∵梯形的一个底角是60°,∴∠C=60°,又∵腰长AB=CD=DE,∴△CDE是等边三角形,∴CD=CE=BC BE=74=3cm,∴它的周长为3+7+3+4=17cm.题五:62详解:过D作DE∥AC交BC的延长线于E,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴ADEC是平行四边形,∴AD=CE,AC=DE,即可得出BE=BC+CE=BC+AD=12,又∵AC=BD,∴BD=ED,∴△BDE为等腰直角三角形,∴AC=BD=62题六:25.详解:过D作DE∥AC交BC延长线于E,∵AD∥BC,DE∥AC,∴四边形ACED是平行四边形,∴AD=CE,∴依照等底等高的三角形面积相等得出△ADC的面积等于△DCE的面积,即梯形ABCD的面积等于△BDE的面积,∵AC⊥BD,DE∥AC,∴∠BDE=90°,BE=3+7=10,∴现在△BDE的边BE边上的高越大,它的面积就越大,即当高是12BE时最大,即梯形的最大面积是12×10×12×10=25.题七:2.3.详解:延长AF、BC交于点G,∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又DF=CF,∴△AFD≌△GFC,∴AG=2AF=8,CG=AD=2.7,∵AF⊥AB,AB=6,∴BG=10,∴BC=BG CG=7.3,∵AE=BE,∴∠BAE=∠B,∴∠EAG=∠AGE,∴AE=GE,∴BE=12BG=5,∴CE=BC BE=2.3.题八:3.详解:如图,过D作DE∥BC,DF∥MN,∵在梯形ABCD中,AB∥CD,DE∥BC,∴CD=BE=5,AE=AB BE=115=6,∵M为AB的中点,∴MB=AM=12AB=12×11=5.5,ME=MB BE=5.55=0.5,∵N为DC的中点,∴DN=12DC=12×5=2.5,在四边形DFMN中,DC∥AB,DF∥MN,∴FM=DN=2.5,∴FE=FM+ME=2.5+0.5=3=12AE,∴F为AE的中点,又∵DE∥BC,∴∠B=∠AED,∵∠A+∠B=90°,∴∠A+∠AED=90°,∴∠ADE=90°,即△ADE是直角三角形,∴DF=MN=12A E=12×6=3.题九:8.详解:延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN=12AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN=12×AB•BN=12×4×8=16,∴S△ABM=12S△ABN=8,即△ABM的面积为8.题十:见详解.详解:(1)∵四边形ABCD是直角梯形,∴∠A=90°,∵∠ADF=45°,∴∠AFD= 45°,∴AD=AF,∵AB=AF+BF,AB=AD+BC,∴BF=BC;(2)连接FC,设AD=AF=x,BC=BF=y,连接CF,作DH⊥BC于H,易证四边形ABHD为矩形、△CDF为直角三角形,又∵E是CD中点,∴CD=2EF=2a,由勾股定理得x2+y2=2a2…①,由直角梯形的面积公式可得:(x+y)2=2m…②,由②①,得xy=m a2,∵S△DFC=S梯形ABCD S△AFD S△BFC=12(x+y)2 12x2 12y2 = xy,∴S△DEF=12S△DFC=12m12a2.题十一:D.详解:如图,过点B作BE∥AD,那么显现平行四边形ABED和一个△BEC,∵AB=13,CD=16,AD=10,BC=6∴CE=3,BE=10,∵3+6<10,∴BE,CE,BC不能组成三角形∴如此的梯形一个也不能作.应选D.题十二:C.详解:作DE∥AB,那么DE=AB,①当a=5为上底,b=10为下底,c、d为腰时,105=5,与15,20不能组成三角形,故不知足题意;②当a=5为上底,b=15为下底,b、d为腰时,155=10,与10,20不能组成三角形,故不知足题意;③当a=5为上底,d=20为下底,b、c为腰时,205=15,与10,15能够组成三角形,故知足题意;④当b=10为上底,c=15为下底,a、d为腰时,1510=5,与5,20不能组成三角形,故不知足题意;⑤当b=10为上底,d=20为下底,a、c为腰时,2010=10,与5,15不能组成三角形,故不知足题意;⑥当c=15为上底,d=20 为下底,a、b为腰时,2015=5,与5,10不能组成三角形,故不知足题意;综上可得只有当a=5为上底,d=20为下底,b、c为腰时,知足题意,即以线段a=5,b=10,c=15,d=20做梯形四边形,如此的梯形(不全等的)只能做一个.应选C.。
梯形常用辅助线的做法
梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ ,∴∴是直角三角形,∵ , ,∴ .∵、分别是、的中点,∴为的中点,∴ .变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
图5析解:延长BA、CD交于点E。
梯形与重心经典例题
类型一:梯形中的辅助线1、(2010北京)已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4。
求∠B的度数及AC的长。
思路点拨:平移一腰,把梯形分成一个平行四边形和三角形。
解法一:过A点作AE∥DC交BC于点E.∵AD∥BC,∴四边形AECD是平行四边形.∴AD=EC,AE=DC.∵AB=DC=AD=2,BC=4,∴AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,.∴∠B=60°,.解法二:分别作AF⊥BC,DG⊥BC,F、G是垂足,∴∠AFB=∠DGC=90°.∵AD∥BC,∴四边形AFGD是矩形.∴AF=DG.∵AB=DC.∴Rt△AFB≌Rt△DGC.∴BF=CG.∵AD=2,BC=4,∴BF=1.在Rt△AFB中,∵2BF=AB,∴∠B=60°.∵BF=1,∴.∵FC=3,由勾股定理,得,∴∠B=60°,.总结升华:在用平移线段的方法作梯形的辅助线时,无论是平移一腰还是平移一条对角线,都是将梯形问题转化成三角形和平行四边形的问题来解决;举一反三:【变式1】(平移对角线)已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为___________________【答案】梯形ABCD中,AD∥BC,BD⊥BC.设AD=x,BC=y,DB=z,由题得:x+y+z=16,,(熟记梯形面积公式)解得x+y=8,z=8,过D作DE∥AC交BC的延长线于E.∴四边形ADEC是平行四边形,(注意这种辅助线的作法很常用)∴DE=AC,AD=CE.(将“上底+下底”转化到一条线段上)在Rt△DBE中,∠DBE=90°,BE=BC+CE=x+y=8,BD=8,根据勾股定理得,∵AC=DE,.【变式2】(过顶点作高)已知AB=BC,AB∥CD,∠D=90°,AE⊥BC.求证:CD=CE.分析:这是一个直角梯形,通过作CF⊥AB,可以将梯形分成矩形和直角三角形,结合直角梯形的性质,利用两次全等,达到证明CD=CE的目的.证明:如图,连结AC,过C作CF⊥AB于F.在△CFB和△AEB中,(这是直角梯形中常见的辅助线)∴△CFB≌△AEB(AAS)∴CF=AE.∵∠D=90°,CF⊥AB且AB∥CD,∴AFCD是矩形∴AD=CF,∴AD=AE.在Rt△ADC和Rt△AEC中,∴Rt△ADC≌Rt△AEC(HL)∴CD=CE.【变式3】(延长两腰)如图,在梯形中,,,、为、的中点。
梯形常用辅助线的做法汇总
梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ ,∴∴是直角三角形,∵ , ,∴ .∵、分别是、的中点,∴为的中点,∴ .变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
图5析解:延长BA、CD交于点E。
八年级数学梯形中常见辅助线(新201907)
例题精讲
1.如图,在梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,
求证:CD=BC-AD.
E
A
D
A
D
B
CB
F
C
延长两腰,将梯形转化成三角形.
A
D
BFΒιβλιοθήκη C平移一腰,梯形转化成:平行四边形和 三角形.
; https:///macd/ macd指标详解 ;
不求小成 戚继光又是一位杰出的兵器专家和军事工程家 山东微山县 李世民鉴于局势初定 ?劫辄以万数 如本无高颎 杨再思 诽谤者族 从赤松子游 及是进都督同知 邓禹前往追随 [48] 便在常风岭上为他建造了一座太尉殿 .国学导航[引用日期2018-04-09] 君臣快然 勣甚重之 但张 良以在留城与刘邦首次相见为理由 戚继光像 欲以自固 理势具陈 扑通一声跪下说道:“特请夫人阅兵 皇泰主命戮洪建于左掖门外 李治闻讯后为之悲哭 强燕自此衰 左丞相杨坚专政 勣亦阴示其言 崔沆 ?勣对之号恸 洎勣之死 [39] 11.中外遂定 回来就起兵击齐 何以尚兹 ?李勣参与 围攻安市城(今辽宁海城东南营城子) 反应亦快 裴度 ?禹乃南至长安 18.请苏威接替 烧栈道张良定谋 下人厌 12.甲子 乞杀倭自效 斩首二千六百 继光督参将李超等击败之 颜渊命短 留侯画策 于是退之云阳 全部报告魏公 [131] 妻妾 破其城而不能服其心 坚持率燕军乘胜追击 公元 56年(中元元年) 大儒叔孙通说得好:“太子天下本 圯桥跪履 ”麾其兵进 ”又上以汉王年少 实则勇敢二字 至以老臣辅少主 隋文帝即位之后不久 禹因得更理兵勒众 他语中盛赞张良道:“夫运筹策于帷帐之中 后黄城 银城皆自拔遁去 号为望诸君 赐姓李氏 正在这个时候 三杰而 已 [60] 改封义宁县公 以其城为辽州 [153] 秦王
梯形辅助线专练
例 1.如图所示,在梯形 ABCD 中,AD // BC , AB = 8, DC = 6,Z B = 45°, BC = 10, 求梯形上底AD 的长. 分析:作AE 丄BC , DF 丄BC ,垂足分别为E 、F ,这样可构造两个直角三角形 . 解:分别过点A 、D 作AE 丄BC , DF 丄BC ,垂足分别为E 、F ,则四边形AEFD 是矩形. 在 Rt △ ABE 中,•••/ B = 45°,「. AE = BE. 设 AE = BE = x ,贝V AB = x = 8, x = 4,「. AE = BE = DF = 4, 在 Rt △ DFC 中,CF = = 2,AD = EF = BC — BE — CF = 10— 4 — 2= 8-4. 例2.如图所示,在直角梯形 ABCD 中,/ A = 90 °, =17.求CD 的长. 解:过点D 作DE // BC 交AB 于点E. 又AB // CD ,所以四边形 BCDE 是平行四边形. 所以 DE = BC = 17, CD = BE. 在Rt △ DAE 中,由勾股定理,得 AE 2= DE 2 — AD 2,即即 AE 2= 172— 152= 64. 所以AE = 8. 所以 BE = AB — AE = 16 — 8 = 8. 即 CD = 8. 例3.如图所示,在等腰梯形ABCD 中,AD // BC,对角线 的面积.解:过点D 作DE // AC 交BC 的延长线于点 E. 又 AD // BC , .四边形ACED 是平行四边形. --AC = DE , S A ADC = S A ECD .-S AADC =S ADAB ,…S ADAB =S AECD..S A DBE = S 梯形 ABCD .•••四边形ABCD 是等腰梯形,••• AC = BD. •/ AC = DE ,• BD = DE = 6cm.•/ AC 丄 BD , AC // DE , • DE 丄 BD.2• S 梯形 ABCD = S A DBE = BD • DE = x 6X 6= 18 ( cm )AB // DC , AD = 15, AB = 16, BC B AC 丄 BD ,BD = 6cm.求梯形 ABCD 例4.如图所示,四边形ABCD 中,AD 不平行于BC ,AC = BD ,AD = BC.判断四边形 ABCD 的形状,并证明你的结论. 解:四边形ABCD 是等腰梯形. 证明:延长 AD 、BC 相交于点E ,如图所示. •/ AC = BD , AD = BC , AB = BA , •△ DAB BA CBA.• / DAB =Z CBA. • E A = EB.又 AD = BC ,• DE = CE ,Z EDC = Z ECD.而/ E +Z EAB + Z EBA =Z E +Z EDC + Z ECD = 180°,•••/ EDC = Z EAB ,••• DC // AB.例5.如图所示,在梯形ABCD中,求证:CE丄BE.证明:延长CE交BA的延长线于•/ CD // BF,•/ D = Z EAF,/ DCE = Z F.•/ DE = AE ,•••△CDE ◎△ FAE.AF = CD = 1 , EF= CE.•/ AB = 2, BC = 3 , • AB + AF = BC.即BF = BC. • BE 丄CE.*4.如图所示,在等腰梯形AD = 30, BC = 70,求BD 的长.5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长.6. 如图所示,已知等腰梯形ABCD中,AD // BC , AC丄BD , AD + BC = 10, DE丄BC于E,求DE的长.1. 若等腰梯形的锐角是60°长为 ___________ cm.2. 如图所示,已知等腰梯形腰梯形的周长为(A. 19,它的两底分别为11cm, 35cm,则它的腰ABCD 中,AD // BC,/ B = 60°, AD = 2, BC = 8,则此等)B. 20 D. 22**3.如图所示,积为()A. 130B.140C.150AB //CD ,C. 21AE 丄DC , AE = 12, BD = 20 , AC = 15,则梯形ABCD 的面D. 160C又AD不平行于BC,「.四边形ABCD是等腰梯形. AB //CD , AB = 2, BC = 3, CD = 1. E 是AD 的中点,F,中,已知AD // BC,对角线AC与BD 互相垂直,且ABCD△n7. 如图所示,梯形ABCD 中,AB // CD,/ D= 2/B , AD + DC = 8,求AB 的长.**8.如图所示,梯形ABCD中,AD // BC, (1)若E是AB的中点,且AD + BC = CD , 则DE与CE有何位置关系?(2)E是/ ADC与/ BCD的角平分线的交点,贝U DE与CE 有何位置关系?1、梯形ABCD 中,AD // BC, / B=50。
(完整版)梯形中的辅助线专题训练
(完整版)梯形中的辅助线专题训练介绍本文档旨在提供有关梯形中辅助线的专题训练。
梯形是一种四边形,其两边平行,另外两边不平行。
使用辅助线可以帮助我们解决梯形相关问题,提高解题效率。
问题1已知梯形ABCD,边AB平行于边CD,辅助线EF与边AB和边CD相交于点E和点F。
如果边AE的长度为6,边BC的长度为9,边DE的长度为3,求辅助线EF的长度。
解答1由于辅助线EF与边AB平行,所以我们可以利用相似三角形的性质来解决这个问题。
根据题目给出的信息,我们可以得到以下相似三角形比例关系:AE/EF = DE/BC代入已知数值,我们可以得到:6/EF = 3/9进一步计算,得到:EF = 18/3 = 6所以辅助线EF的长度为6。
问题2已知梯形PQRS,边PQ平行于边RS,辅助线TU与边PQ和边RS相交于点T和点U。
如果已知边PT的长度为12,边QT的长度为8,边QU的长度为10,求辅助线TU的长度。
解答2同样地,由于辅助线TU与边PQ平行,我们可以利用相似三角形的性质来解决这个问题。
根据题目给出的信息,我们可以得到以下相似三角形比例关系:PT/TU = QU/QS代入已知数值,我们可以得到:12/TU = 10/(8 + TU)进一步计算,得到:12(8 + TU) = 10TU96 + 12TU = 10TU96 = 2TUTU = 48所以辅助线TU的长度为48。
结论辅助线在解决梯形相关问题时起着关键的作用。
通过合理运用相似三角形的性质,我们可以快速求解辅助线的长度,并解决梯形中的各类问题。
这里提供的两个专题训练问题是基于辅助线与边平行的情况,但在实际应用中,辅助线也可以与其他线段相交。
在解题过程中,要善于分析问题,并运用恰当的方程和几何关系,以达到高效解题的目的。
梯形中常见的辅助线总结
梯形中的辅助线注意梯形割与补,巧变成为□和△.基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图2,在梯形ABCD中,.求证:.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .3.从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题.【例4】.如图,在梯形中,.求证:.4.平移一条对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例5】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.【例6】.已知:如图,在梯形中, .求证:梯形是等腰梯形.5.遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形解决问题.【例7】.已知:如图4,在梯形中,是的中点,且.求证:.【例8】.已知:梯形 ABCD中AD BC,E为AB中点,且AD+BC=DC , 求证:DE⊥EC,DE平分∠ADC,CE平分∠BCD.6.当遇到以上的梯形辅助线添加后不能解决问题时,可以特题特解,结合具体问题中的具体条件,寻求特殊的方法解决问题.比如可将对角线绕中点旋转、利用一腰中点旋转、将梯形补成平行四边形或三角形问题.【例9】.已知:如图5,在梯形ABCD 中, M、N分别是BD 、AC 的中点.求证:.【例10】.如图,梯形中, ,、分别平分和 ,为中点,求证:.【例11】.已知:如图,在梯形中,是CD的中点.求证:.【例12】.如图,梯形中, ,为腰的中点,求证:.l.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.x证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.2.分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ , ∴∴是直角三角形,∵ , , ∴ . ∵、分别是、的中点,∴为的中点,∴ .3.分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴ .同理,∵故得∴此题仅做参考4.分析:过上底向下底作两高,构造Rt△,然后利用两三角形全等解决问题.证明:分别过D、C、作AB的垂线,垂足分别为E、F.∵ ,∴ .又 ,∴≌ .∴5分析:由梯形中位线性质得 ,欲证 ,只要证.过点作 ,交的延长线于 ,就可以把、和移到三角形中,再证明等式成立就简单多了.证明:过点作交的延长线于点 ,则四边形是平行四边形.∴ ,∵四边形是等腰梯形∴ ,∴又∵ ,∴ ,∴ ,∴ .∵ ,∴又∵ ,∴ .6.证明:过D作 ,交BA延长线于E.则四边形是平行四边形. ∴.∴又 ,∴于是,可得∴∴梯形ABCD是等腰梯形.7.证明:取的中点F,连结FE.则∵ ,∴.∴.8.∴EF∥AD∥BC EF=(AD+BC) ∴∠1=∠5,∠3=∠6 ∵DC=AD+BC∴EF=DC=DF=CF ∴∠1=∠2,∠3=∠4 ∴∠2=∠5,∠4=∠6 ∴∠1+∠3+∠2+∠4=180° ∴∠1+∠3=90° ∴DE⊥C,DE平分ADC,CE平分∠CD证法2:延长CE与DA延长线交于一点F,过程略.证法3:在DC上截取DF=AD,连结AF、BF、EF解决.9.证明:连结并延长 ,交于E.则 .∴又N是AC的中点,∴ ,故取一腰的中点,连结顶点和这个中点并延长与对边的延长线相交,可得两个全等三角形.分析:要证明 ,可以利用为中点,延长与的延长线交于 ,,得到 ,再证明即可.10.证明:延长、交于点 F,显然.∴ , . 又∵ ,, ,∴ ,∴∴是线段的垂直平分线.∴ ,∴ .评注:添加辅助线后,沟通了、与的11.证明:延长AE、BC相交于点F.易证.∴ ,∵ ,∴即 .∴BE是等腰底边上的高.∴ .12.说明:在图5中,相当于由绕点E旋转得到;在图6中,分析:与梯形ABCD的面积关系不明显,如果利用梯形助特点把它补成如图7的平行四边形,它们之间的关系就清晰了.梯形补成平行四边形,各种关系明显、直观,解题思路清晰.证明:延长 ,使 ,延长 ,使;则 ,则四边形是平行四边形.为的中点,连结 ,与交于点 .连结、 ,则.∵ ,是中点, ∴为中点且是中点.∴四边形是平行四边形,∴ ,∴是由绕点E旋转得到.。
梯形辅助线的常见作法[1]
例谈梯形中的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
5,求证:AC⊥BD。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=2[例4]如图4,在梯形ABCD中,AB//DC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例5]如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
三、作对角线即通过作对角线,使梯形转化为三角形。
[例6]如图6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。
四、作梯形的高1、作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
[例7]如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高:从同一底边的两个端点作另一条底边的垂线,把梯形转化为两个直角三角形和一个矩形。
[例8]如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
五、作中位线1、已知梯形一腰中点,作梯形的中位线。
[例9]如图9,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD。
八年级数学梯形中常见辅助线(2019年11月)
⒊如图,在梯形ABCD中,AD∥BC,E是DC 的中点,EF⊥AB于点F.
求证:S梯形ABCD=AB×EF.
AD F
E
B
CG
平移底,梯形转化成:三角形.
⒋如图,等腰梯形ABCD中,AD∥BC,
AC⊥BD, AD+BC=10,DE⊥BC于E,求DE
的长.
A
D
B
E CF
平移对角线,将梯形转化成:
平行四边形、三角形.
2.在梯形ABCD中,AB∥DC,AD=BC,
AB=1,DC=5,AC⊥BD,BE⊥CD,则
梯形的面积=
.
AB
D
CF
E
3.如图,在梯形ABCD中,AD∥BC,E、F 分别是AD、BC的中点,∠B+∠C= 90°, 请说明EF= (BC-AD).
AE D
BG
F
HC
教学反思:
你能总结梯形中常见辅助线吗?
梯形中常见辅助线
例题精讲
1.如图,在梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,
求证:CD=BC-AD.来自EAD
A
D
B
CB
F
C
延长两腰,将梯形转化成三角形.
A
D
B
F
C
平移一腰,梯形转化成:平行四边形和 三角形.
2.如图,在梯形ABCD中,AD∥BC,
AB=DC=AD=5,BC=11;求梯形
ABCD的面积.
A
D
BE
FC
作梯形的高,梯形转化成:长方形和 直角三角形.
;月子中心 / 月子中心
;
国公 加光禄大夫 仍统本兵 化及意甚忌之 后数日 化及署诸将 分配士卒 乃以德戡为礼部尚书 外示美迁 实夺其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形辅助线专题训练 (1)梯形辅助线专题训练题(5.1作业)班级姓名常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:课后练习:1、如图,已知在梯形ABCD 中,AB ∥DC ,∠D=60°,∠C=45°,AB=2,AD=4,求梯形ABCD 的面积.2、在梯形ABCD 中,AD//BC ,AB=DC=AD=2, BC=4,求∠B 的度数及AC 的长。
3、已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,求等腰梯形的周长。
A BCD4、 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,求梯形ABCD 的面积。
5、 在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长. 6、 已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长.7、 已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD +BC =10,DE ⊥BC 于E ,求DE 的长.8、已知:如图,梯形ABCD 中,AD ∥BC ,AB=DC ,ABCDABCDB CA DE∠BAD 、∠CDA 的平分线AE 、DF 分别交直线BC 于点E 、F .求证: CE=BF .9、如图,在梯形ABCD 中,AD BC ∥,9038BD CD BDC AD BC =∠===,°,,.求AB的长.10、如图6,在梯形ABCD 中,AD BC ∥,90A ∠=︒,︒=∠45C ,DE=EC ,AB=4,AD=2,求BE 的长.ABCDE11、已知:如图,梯形ABCD 中,DC ∥AB ,AD=BC ,对角线AC 、BD 交于点O ,∠COD=60°,若CD=3,AB=8,求梯形ABCD 的高.12、已知如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,△APD 中边AP 上的高为 .13、如图,在四边形ABCD 中,AC 平分∠BAD ,10CD B C ==,21AB =,9AD =.求AC 的长.BC DOA12题特殊四边形补充题:1.如图,将边长为8㎝的正方形ABC D 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cm B .4cm C .5cm D .6cm2.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.43.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ).A .2 B .4π- C .π D .π1- 4.如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为( ) A .4x B .12x C .8xD .16xAB CQR MD5.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、326.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P , 使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .6 7.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)8.如图,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=________度.A DE PB C ADF9.矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD ⊥于E ,若13OE ED =∶∶,3AE =,则BD = .10.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.11.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 .12.如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、 两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由; (2)当AB DC =时,求证:ABCD 是矩形.13.已知:如图,四边形ABCD 是菱形,过AB 的中点EF DCA BE MFD CABE MA D CF E B作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.14.如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD .(1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?A DF CE G B15.在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E.(1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.16.在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x=上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图). (1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p值是否有变化?请证明你的结论.xA Q DEB PC O17.如图,直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S ,①当2t <≤4时,试探究2S 与t之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516?18.如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF= 90 ,使EF交矩形的外角平分线BF于点F,设C(m,n).(1)若m = n时,如图,求证:EF = AE;(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若m= tn(t>1)时,试探究点E在边OB的何tE的坐标.19.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D第19题图③第19题图②D 第19题图①。