12种三相变压器联结组别及向量图详细说明

合集下载

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器接线组别.ppt

三相变压器接线组别.ppt

三相绕组的联结法
国产电力变压器常用Yyn、Yd和YNd三 种联结,前面的 大写字母表示高压绕组的 联结法,后面的小写字母表示低压绕组的 联结法,N(或n)表示有中点引出的情况。
变压器并列运行时,为了正确地使用三相 变压器,必须知道高、低压绕组线电压之 间的相位关系。下面说明高、低压绕组相 电压的相位关系.
若绕组相反,则高压绕组的上端与低压绕组 的下端为同名端,如图所示。
为了确定相电压的相位关系,高压和低压绕 组相电压向量的正反向统一规定为从绕组 的首端指向尾端。高压和低压绕组的相电 压既可能是同相位,亦可能是反相位,取 决于绕组的同名端是否同在首端和尾端。 若高压和低压绕组的首端同为同名端,相 电压Ua和UA应为同相,如图所示;若高压 和低压绕组的首端为非同名端,则UA和Ua 为反相,如图所示。
高低压绕组线电压的相位关系
三相绕组采用不同的联结时,高压侧的线 电压与低压侧的线电压之间(例如UAB与 Uab之间)可以形成不同的相位。为了表明 高低压线电压之间的相位关系,通常采用 “时钟表示法”,即把高低压绕组两个线 电压三角形的重心0和o重合,把高压侧线 电压三角形的一条中线(例如OA)作为时 钟的长针,指向钟面的12;再把低压侧线 电压三角形中对应的中线(例如oa)作为 短针,它所指的钟点就是该联结组的组号。
图三相变压器组及其磁路
• 接线组别
三相变压器的连接组别
连接组别:反映三相变压器连接方式及一、二次线电动势(或 线电压)的相位关系。
三相变压器的连接组别不仅与绕组的绕向和首末端标志有 关,而且还与三相绕组的连接方式有关。
三角形联结
• 把一相的末端和另一相的首端连接起来,
顺序连接成一闭合电路。两种接法:
三相心式变压器的磁路

三相变压器的连接组别

三相变压器的连接组别
纲要
一、三相变压器的连接方法 二、变压器的极性 三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
A
将三相绕组的三个末端 X ,
B
Y , Z (低压x ,y,z) 分别连接在
C
一起,三个首端 A 、 B 、 C (低压
a、b、c) 分别引出,便构成星形连
接,用 Y表示 (新:高压Y,低压
ÙAB
ÙAB = - ÙA +ÙB Ùab = Ùb
ÙB
A
*
ÙA
Ùa
*
ÙB
Ùb
*
ÙC
Ùc
逆序三角形接法
bz Ùb
ÙAB
Ùc cx
Ùa
a y ÙA
ÙC
12
9
Ùab ÙAB
3
6
a

ab
*
*
四、变压器连接组别综述(小结)
1、变压器的连接组别很多,为了制造和并列运行 的方便,我国电力变压器只生产Y/Y0-12、 Y0/Y12 、 Y/Y-12 、Y/△-11 及Y0/△-11五种连接组别,
y )。
2 、 三角形连接
将高、低压绕组的一相末端
与另一相的首端分别依次连接在
一起,构成一个回路,便构成三
A
角形连接,用△表示( 新:高压
D,低压d )。
顺序三角形接法:ax-by-cz-a
逆序三角形接法:ax-cz-by-a
Xx
a
Yy
b
Zz
c
星形连接
顺序三角形接法 a
逆序三角形接法
二、变压器的极性
同极性端(同名端):
任意瞬间,高压绕组的某 一端点的电位为正(高电位)

三相变压器的联结方式

三相变压器的联结方式

三相变压器的联结方式
(三)三相变压器的联结组标号
1、三相变压器的联结方式
三相变压器的三个相绕组一般有三种联结方式:星形、三角形或曲折性。

星形、三角形接法在前面电工基础中已有叙述。

下面对曲折形联结做一些简单介绍、
所谓的曲折性联结,也称为Z联结,就是把每相绕组分成两半,分别套在两个铁芯柱上,然后到接串联,也就是说每个铁芯柱上都套有分属于两个不同相的绕组。

如下图,图a为三相绕组Z联结的接线方式;图b为相量图。

这种接线方式各相下半截线圈在左边的铁芯柱上,称为左行联结、如果反过来下半截图在右边铁芯柱上。

则称为右行联结。

左行和右行的区别是相量都向同一方向旋转60℃,但相互之间的相位差仍然都是1200,相应顺序也不变。

曲折联结一般只用于小容量变压器的低压绕组,特别适用于中性点要带额定电流的负荷时。

因为三相曲折联结可降低零序阻抗,三相负荷不平衡时引起的中性点电压偏移小。

因此,Z联结的接线方式特别适用于作为接地变压器形成人工中性点。

此外,采用Z型联结可以有助于防止雷击过电压。

因为当雷电冲击电流流过三相Z接线绕组时,每个铁芯柱上的上、下两个绕组匝数相符相等,且下半是反接。

因此流过的雷电流对铁芯内产生的磁通而言,大小相等、方向相反,雷电流在每个铁芯柱上的总磁动势几乎等于零,就不会产生对高压绕组的正、逆变交换过电压。

三相变压器的联结组别

三相变压器的联结组别

电机学三相变压器的联结组别一、绕组的标记方式(又叫标号)三相绕组的如何连接,如何标号直接影响到联结组的组别,也影响变压器的性能。

a b c(低压边)首端(头A B C(高压边)末端(尾X Y Z(高压边)x y z(低压边)、高低压绕组间相电压的相位关系三相变压器,属于一个铁心柱上绕的两个绕组,只有两个“同相”或“反相”。

决定原则为绕向和标号。

总.阳堤懦穆吨电勿鯛HI a ri to t粘1 同相⑴ 绕向相同,标号相同(同相)高压线圈电势由A到X;低压线圈电势由a到x,(图a)(2)绕向相反,标号相反高压线圈电势由A到X;低压线圈电势由a到x,(图d)2 反相(i)绕向相反,标号相同高压线圈电势由A到X;低压线圈电势由a到x,(图b)⑵绕向相同,标号相反(图c)三、高低压侧线电压的相位关系---联结组联结组关系决定原则:(1)高低压线圈的绕向;(2)高低压线圈的标号;(3)三相线圈的连接 方 法(Y ,YN, D, Z 等)其相位不是唯一的 60°,30°,180°,还有其他 90°,120°,240°等。

恰好是 30°的 倍数,这就启发我们找一个方法来表示。

1时钟表示法规定:时钟的长针表示高压侧的某线电势相量 (如EAB ),时 钟的短针表示低压侧对应线电势相量 (如Eab )。

注意:EAB 相量永远指向钟表的 12 : 00,可理解为相量图上 的 点A 为分针的轴,点 B 为分针的矢端;Eab 相量为时针的a 点指向B 点的方向。

此外, 联结组符号中的“ Y ”,“D'和“Z ”分别表示高压测的三绕组联结为“星型”,“三角形”和“曲折线”接线,而“ y ”,“ d ”和“z ”分别表示低压测 的对应三相接线。

2根据线圈接线图画出对应的电压相量图和联结组符号L 画出原边Y 接法12H1时乍眩(沾忻时}2.和原:边同•心柱的副方线圈为c相:因为"标号相同,绕向相反” •所以,高低压边相电协为反相。

三相变压器地连接组别(星形连接、三角形连接)

三相变压器地连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器的连接组别

三相变压器的连接组别

三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n 表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。

当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。

而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。

所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。

但Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。

1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。

在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。

2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。

这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。

若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。

三相变压器的连接组别

三相变压器的连接组别

三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。

当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。

而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。

所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。

但 Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。

1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。

在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。

2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。

这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。

若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。

三相变压器的连接组别-10页文档资料

三相变压器的连接组别-10页文档资料

三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n 表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。

当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。

而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。

所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。

但Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。

1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。

在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。

2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。

这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。

若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。

12种三相变压器联结组别及向量图详细说明

12种三相变压器联结组别及向量图详细说明

12种三相变压器联结组别及向量图详细说明
根据高、低压绕组线电势相位差,确定联结组别的标号。

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶

Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数
为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。

对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明。

三相变压器的连接组别

三相变压器的连接组别

三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。

当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。

而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。

所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。

但 Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。

1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。

在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。

2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。

这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。

若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器接线图_三相变压器连接组别接线和识别方法图解 - 电力配电知识

三相变压器接线图_三相变压器连接组别接线和识别方法图解 - 电力配电知识

三相变压器接线图_三相变压器连接组别接线和识别方法图解 - 电力配电知识三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题。

变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。

通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握。

而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组,更显示出它的优越性。

下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法。

1、用相电压矢量图画出Y/△接法的接线图首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组。

如图1所示,Y/△-11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢量,此a相相电压矢量在原边A相与B相反方向-B 的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和引出线就不会弄错。

因此根据原次边相电压矢量便可画出Y/△-11组接线图,如图2所示。

2、用相电压矢量图来识别Y/Δ接法的联接组别如要识别图3所示的Y/△接法的联接组别,首先画出原边相电压矢量A、B、C,根据图3的接线图可以看出,次边a相绕组的尾连接C 相绕组的头作为次边a相的输出线,由于次边a与原边A同相位,我们把次边a相相电压矢量画在原边相电压C和-A的中间,以原边A 相为基准,顺时针旋转次边a相,它们之间的夹角为210°,由此这个接线图是Y/△-7组,见图4。

3、用相电压矢量图画出△/Y接法的接线图首先画出次边a、b、c三相相电压矢量图,以次边a相相电压矢量为基准,逆时针旋转到所要求联接组,再根据此矢量图画出该组别的接线图。

三相变压器极性及连接组别演示文稿

三相变压器极性及连接组别演示文稿
第7页,共15页。
④三相变压器三个原绕组极性和判别
为了使三相变压器正确联接,必须对三相变压器三个原绕组的
极性于以正确的判别,由图8-2可知,三相变压器的三相绕组是
分别绕于三个铁芯柱上。而每相的原、付绕组是绕在同一铁芯柱上
的,并且每相的绕法是一致的,按图8-2的绕法,三相变压器三
个原边绕组的同名端为A、B、C,且A、B、C定为三相原绕组
三相变压器极性及连接组别演示 文稿
第1页,共15页。
优选三相变压器极性及连接组别
第2页,共15页。
安全事项
线路完全接好再通电源 电路测量完毕后,先关电源再拆线。
第3页,共15页。
试验目的
掌握测定单向变压器原、付绕组出线 端极性的方法
掌握测定三相变压器绕组性的方法
学会判别三相变压器的联接组号的方 法
第10页,共15页。
试验内容及步骤
三相变压器原、付绕 组的判别
a. 用万用表测绕组电阻值的方法,判别 出实验所用三相变压器的原绕组和付绕 组。
A a
o’
c
b
O
C
B
原绕组电阻(Ω) 付绕组电阻(Ω)
R=
R=
第11页,共15页。
b.测每相原、付绕组出线端的极性
在某相原绕组施加110v电压,测定三个付绕组中感 应电势,感应电势最大的一组付绕组就是该项绕组的 付绕组。
若满足UbB =UAB-Uab UcC= UAC- Uac则说明Y/
Y0-12联接组的接法正确,其相量图如图8-4所 示
第9页,共15页。
③每相原、付绕组同名端判别
三相变压器的
每相原付绕组
找好后,可以
A

C
用对单相变压

我国三相变压器的标准连接组别Yyn0

我国三相变压器的标准连接组别Yyn0

U

abI
U abII
的大小相同,但相位不同
副边回路电压和不等于零,会产生很大
的环流。
四、短路阻抗标么值不等时的并联运行
U ab I I Z kI I II Z kII
但负载电流分担的合理性,应从所分担的负载与其额 定电流的相对值,即从负载系数来判断
2019/11/8
四、短路阻抗标么值不等时的并联运行
第一节 三相变压器的磁路
三相组式变压器及连结(图2-tem6)
2019/11/8
第二节 三相变压器的连接组
三相变压器的磁路系统--铁心的 结构形式
三相变压器的磁路系统(图3-23)
2019/11/8
第一节 三相变压器的磁路
二、各相磁路彼此相关 铁心为三相所共有的三相变压器
三相芯式变压器(图2-tem7)
三个首端 A、B、C(或 a、b、c)向外引出 末端 X、Y、Z(或 x、y、z)连接在一起成为
中性点
2019/11/8
第二节 三相变压器的连接组
2.三角形连接用符号“D(或d)”表 示
各相间连接次序为 A - X - C - Z - B Y(或 a- x - c - z - b - y)
i
3i03 03
i03
i i 03 03
一、绕组连接形式对三次谐波电流的影响
由于磁路的饱和性,主磁通与空载电流 为非线性关系,当空载电流包含基波电流和 三次谐波电流时,主磁通为正弦波。
二、磁路形式对三次谐波磁通的影响
A
B
C
a
b
c
x
y
z
X
Y
Z
各相磁路独立,互不关联,每相的三次
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12种三相变压器联结组别及向量图详细说明
根据高、低压绕组线电势相位差,确定联结组别的标号。

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶

Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数
为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。

对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明
12种三相变压器联结组别及向量图详细说明。

相关文档
最新文档