土石坝坝坡稳定分析
基于ABAQUS的某土石坝坝坡稳定性分析
1引言土石坝稳定性分析常用的方法主要是极限平衡法和有限元法。
极限平衡法以毕肖普法、摩根斯顿-普赖斯法、Spencer法、Sarma法、楔形体法等[1-4]为代表,有限元法以强度折减法[5]为代表。
随着土地本构模型(摩尔库仑模型、邓肯张模型、Drucker-Prager模型等)理论应用成熟和有限元软件开发应用,强度折减法越来越多地应用到工程实际,为工程设计提供印证,如边坡、坝坡、隧道、基坑等有限元分析,并趋于成熟。
近年来,国内学者对强度折减法的应用开展了大量工作:李小春[6]采用强度折减法对边坡的多滑面进行了模拟,认为该方法得到的多级滑动面与现场监测数据吻合较好。
王曼等[7]采用ABAQUS软件的强度折减法分析了边坡的稳定性,确认其计算结果的合理性。
王作伟等人[8]采用强度折减方法计算了边坡的极限上限,对比验证强度折减法与传统极限平衡法具有良好的适应性。
雷艳等[9]采用强度折减法对土石坝坝坡进行稳定分析,得出的安全系数与塑型区域可为工程提供借鉴。
以上研究均取得了较好的研究成果,表明强度折减法用于工程实际分析边坡、坝坡稳定性是可行合理的。
故本文基于以上研究,采用ABAQUS软件结合强度折减法对某均质土石坝进行稳定性分析计算,并从水利工程建设管理的角度,浅析建设管理对工程质量的控制。
2强度折减法所谓强度折减法是指给一强度折减系数F r[10],采用公式(1)和(2)将土体抗剪强度指标进行降低,导致土体逐渐失稳,土体单元发生塑性变形,当临界失稳时,折减系数就是边坡对应的安全系数。
具体公式如下所示:c m=c/F r(1)φm=arctan(tanφ/F r)(2)式中,c和φ为土体的抗剪强度指标(粘聚力和内摩擦角);c m和φm是折减后的抗剪强度;F r是强度折减系数。
强度折减法精髓在于降低土地的抗剪强度指标,使土地单元应力不能配套而失稳。
3土石坝稳定性分析某均质土石坝,最大坝高100m,正常蓄水位在坝高90m处,坝顶宽8m,上下游坡比为1∶3√,坝体材料密度为2200kg/m3,强度参数如表1所示。
土质边坡稳定性分析
(4)
将(4)代入(3)式得 1 sec2θi [c l cosθi + (Wi + H i )tgθi ] (Wi + H i )tgθi Pi = tgθi tg i i i Fsi 1 + Fs 第七章 第22页/共26页
又有
Pn = ∑ Pi = 0
i =1
n
土 力 学
并有∑ M oi = 0 可得:
) 抗滑力矩:M R = c AC R + N tgφ L ) 当φ = 0时,M R = c AC R
C
Tf
W
整体圆弧滑动受力示意图
) 抗滑力矩 M R c AC R 稳定安全系数:FS = = = W d 滑动力矩 M s 适用于φ = 0的情况.
第七章 第9页/共26页
二,条分法的基本概念
把(2)式代入 sin 2 θ i (Wi + H i )tgθ i Pi = Ti cos θ i + cosθ i (3)
Pi=Pi+1-Pi
将(2)代入(1)并整理得 1 Fs
Ti =
1 (Wi + H i )tgi ci li + cosθ i tgθi tg i 1+ Fs
第七章
第20页/共26页
五,普遍条分法(Janbu法)
土 力 学
1. 求解前提: 假定条块间水平作用力的位置. 2.求解方法:
如图所示,取条块 i进行分析:
i Hi+1 Pi+1 hi+1 Oi θi Wi Ti Ni Xi
根据滑弧面上极限平衡 条件有 抗剪强度 T fi = Ti = 安全系数 Fs ci li + N i tg i = Fs
土石坝(第四节:稳定分析)
折线滑动面:非粘性土坝部分浸水时滑动面常 常是折线滑动面。 非粘性土石坝的坝坡-心墙坝的上、下游坝坡, 斜墙坝的下游坝坡以及上游保护层连同斜墙的 滑动常形成折线滑动面。
14
常采用滑楔间作用 力平行滑动面假定
1
1
P1 K W1 cos 1tg1 W1 sin1
tg2 K
W2
cos 2
有效应力法:把孔隙压力作为外荷载计算,土的抗 剪强度指标采用有效强度指标 φ’,c’。
τ c (σ u)tg
4、地震荷载:同重力坝。
7
荷载组合(计算工况) 正常运用情况:
1.水库蓄满水时(正常蓄水位或设计洪水位) 下游坝坡的计算。 2.上游库水位最不利时上游坝坡稳定计算。
3.库水位正常降落,上游坝坡的稳定计算。
渗透动水压力可用流网法求得,但总的渗透动水压 力需将各网格的渗透动水压力按向量求和,比较繁 琐,在工程中常采用替代法。
K bi (h1i 'h2i cositg'i ci 'li bi (h1i mh2i )sini
12
最危险圆弧位置的确定
13
2、折线滑动法 直线滑动面:非粘性土坝完全浸水或者不浸水 时滑动面常常是平面。
tg2 K
P1
sin(1
2 )
W2
sin2
P1
cos(1
2 )
P1 W1 sin1 W1 cos 1tg1
2
K P1 sin(1 2 )tg2 W2 cos2tg2
P1 cos(1 2 ) W2 sin 2
15
斜墙坝上游坝坡的稳定计算
最危险滑动面位置的确定
16
3、复合滑动面法
k
有关土石坝坝坡稳定分析的方法探索研究
有关土石坝坝坡稳定分析的方法探索研究【摘要】本文主要深入分析研究了土石坝坝坡稳定分析的方法。
即刚体极限平衡法和有限元法的基本原理,并对刚体极限平衡法和有限元方法的优缺点进行了比较,得出有限元法可以克服刚体极限平衡法所存在的缺陷。
本文是个人提出的一些见解和观点,可与同行共同探讨。
【关键词】土石坝;坝坡;稳定;刚体极限平衡法;有限元法前言如何更合理、更准确地开展土石坝的坝坡稳定分析工作是工程界普遍关注的问题。
目前土石坝坝坡稳定分析的方法主要有刚体极限平衡法和有限元法。
一、刚体极限平衡法分析研究1)刚体条件:在分析滑坡的受力和变形过程中,忽略滑体的内部变形,认为滑体为不可变形的刚体。
2)极限强度条件:假定滑体处于极限强度状态。
3)力的平衡条件:在考虑安全系数后,滑体在所受各种力的作用下处于平衡状态。
目前通用的刚体极限平衡法主要指的是条分法。
采用条分法来分析稳定问题一般为高次的超静定问题,要使问题有解就必须建立新的条件方程。
对条块间作用力作出各种简化假定,以减少未知量或增加方程数。
根据简化假定的条件相同,条分法发展为各种计算方法,这些方法主要有:一是瑞典圆弧滑动法。
瑞典圆弧滑动法(简称瑞典法或费伦纽斯法)是条分法中最古老而又最简单的方法。
除了假定滑裂面是个圆柱面(剖面图上是个圆弧)外,还假定不考虑土条两侧的作用力,安全系数定义按式计算。
由于不考虑条间力的作用,严格地说,对每一土条力的平衡条件是不满足的,对土条本身的力矩平衡也不满足,仅能满足整个滑动土体的整体力矩平衡条件。
由此产生的误差,一般使求出的安全系数偏低 10% , 20% ,这种误差随着滑裂面圆心角和孔隙压力的增大而增大。
二是毕肖普法。
毕肖普法考虑了条块间的法向作用力,但忽略了条块间的切向作用力。
其安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力之比,即:( 1)毕肖普法满足整体力矩平衡条件,满足各条块间力的多边形闭合条件,但不满足条块的力矩平衡条件。
第四节土石坝的稳定分析
第五节 土料选择与填土标准确定
一、筑坝材料选择
▪ 坝址附近各种天然土石料和枢纽建筑物开挖 料的性质、种类、储量、运距等因素。
1.筑坝土石料选择的原则
选择筑坝土石料应遵循下列原则: (1)具有(或经加工后具有)与其使用目的相
适应的工程特性和长期稳定性; (2)就地、就近取材,减少弃料,少占或农田,
第四节 土石坝的稳定分析
3.复合滑动面的坝坡稳定计算
▪ 如图5-24所示,坝坡的任一滑动面abcd,其中ab、 cd为圆弧滑动面。分析的思路是将滑动体分为三个 区域,土块abf的推动力为,cde的阻滑力为,分别 作用在fb和ec面上,土块bcef产生的阻滑力为,作 用在bc面上,建立稳定极限平衡方程式为:
P1
W1 sin1
W1 cos1
tg1
K
0
P1 cos(1
2 ) W1 sin 2
P1 sin(1
2
)
tg
K
2
W2 cos 2
tg 2
K
0
联解两式可求出安全系数 K
第四节 土石坝的稳定分析
▪ 解:首先固定水位在12.0m,取滑动面折点D设在与 上游水位附近,假设α1=40 度,α2=14度,作出滑 动面ADE。取D点垂线将滑动土体分为DCE和ADC两 条块,条块间相互作用力按平行ED面方向假定,并计 算两条块土重分别为W1=5552.3KN; W2=16836.1KN(水上部分取湿重,水下部分取浮 重)。把α1、α2、tgφ1、tgφ2代入式(5-34)和 (5-P31 5)35可68得.9 :30K90.2 0
Wi sini
第四节 土石坝的稳定分析
α α
xi
O
基于折线滑动面法的土石坝坝坡稳定分析
Ab s t r a c t :Ba s e d o n t h e b r o k e n l i n e me t h o d,t h e Vi s u a l Ba s i c p og r r a mmi n g l a n g u a g e i s u s e d t o c o mp i l e a p r o g r a m S O a s t o g e t t h e v a l u e o f mi n i mu m s a f e t y c o e f i f c i e n t u n d e r r i s k wo r k i n g c o n d i t i o n s .Th r o u g h c lc a u l a t i o n,i t i s f o u n d t h a t i n
2 . 河海大学 岩土工程研究所 , 江苏 南京 2 1 0 0 9 8 )
摘
要: 采用折线滑动面法 , 利用 v i s u a l b a s i c 程序语言编制计算程序求解危险工况下 的最小稳定安 全系 值均满足要求 。在此基础上 , 还讨论 了上游水位变化对 坝坡 稳定 的影 响 以及折坡 折点位置 变化对坝
t h e i n lu f e n c e o n he t s t a b i l i t y o f d a m s l o p e d u e t o t h e c h ng a e o f u p s t ea r m wa t e r l e v e l nd a t h e t u r ni n g p o i n t ’ S p o s i t i o n i s
Vo 1 . 1 1 No. 3
Hale Waihona Puke J n .. a 201 3
土石坝的应变分析及稳定分析
土石坝的应变分析及稳定分析关键词:土石坝、应变、蓄水期、稳定性、荷载摘要:我们认为,土石坝应力应变分析中有待解决的问题主要有下列几个方面。
第一是多数的研究限于施工期, 而回避了蓄水期的计算。
但是土石坝是挡水建筑物, 因此可以说, 不解决水对坝体的作用问题就是根本上没有解决问题。
实际上现代设计的高土石坝也多是在初蓄水期发生严重变形甚致破坏的。
此外, 现有计算方法本身也存在许多问题, 例如对于由刚度相差悬殊的几种材料组合的坝型就不能很好适应, 特别当土体中存在混凝土结沟的时候。
但是我们相信, 随着试验和原观测资料的积累及计算技术的发展, 这些问题将会逐步得到决,应力应变分析也一定会在土石坝设计中占据越来越重要的位置, 总有一天设计工作者将能摆脱目前滑坡稳定分析加经验的设计方法, 走上按极限变形和抗裂设计的轨道。
一、蓄水期土石坝工作状态的特点现有的原体观测资料表明, 施工期坝体内的应力主轴的方向变化不大, 坝坡局部偏转较大的地方也不超过15度, 而且大部分区域大小主应力比都在一之间, 也就是说接近于单向压缩状态。
这就意味着, 施工期坝体内的应力状态比较简单, 而月坝体的变形以垂直压缩变形为主。
可是, 一旦受到水的作用, 问题就大大复杂化了。
水对坝体的工作状态的影响表现在三个方面:(1)水平荷载引起的主应力轴偏转;(2)浮托力引起的卸荷作用;(3)土骨架浸水软化引起的附加变形(以下简称浸水变形)。
根据高米的堆石坝模型试验的结果,水平压力与浮托力的共同作用使大范围内应力主轴偏转十几度,并使上游坝壳应力减小,下游坝壳应力加大。
但从应力水平看则是下游降低,上游增高,并在上游坝壳靠心墙处达到破坏状态,形成个相当于主动土压力状态。
同时,国内外大量的观测资料表明,由于水压力及软化变形的共同作用,坝顶既可能向上游位移,也可能向下游位移,而且往往是先向上游,后向下游,同时中心线发生明显的挠曲图。
软化作用还会引起显著的沉降如果仅从浮托力考虑,蓄水时坝顶应当上抬。
土石坝边坡稳定分析与计算方法
土石坝边坡稳定分析与计算方法土石坝作为常见的水利工程构筑物,在防洪、供水、发电等方面发挥着重要的作用。
土石坝边坡稳定性是影响其安全运行的关键因素之一,因此边坡稳定性分析与计算方法十分重要。
本文将介绍土石坝边坡稳定性分析与计算方法的基本理论和应用技术。
一、土石坝边坡稳定性基本理论土石坝边坡稳定性分析的基本理论包括弹性地基理论、破坏力学理论、岩土力学和数值计算方法等。
1.弹性地基理论弹性地基理论是建立在弹性力学基础上的一种土体稳定性分析方法。
其核心思想是将土体与石坝看成一体,在一定的约束条件下,求解土坝体系和地基的弹性应力和应变分布,评估土石坝边坡的稳定性。
这种方法适用于土石坝边坡倾角较小、地基水平变形和竖向应力分布较均匀的情况。
2.破坏力学理论破坏力学理论是通过破裂力学和变形理论相结合的方法,对土石坝边坡的稳定性进行分析。
其核心思想是土体在受力作用下,随着剪切应力和水平应力的增加,会发生变形和破裂,并使边坡处于不稳定状态。
通过破坏力学理论,可以预测土石坝边坡的破坏形式,如滑坡、倾斜、涌浅等。
3.岩土力学岩土力学是土石坝边坡稳定性分析的重要理论基础,它研究土、岩体在地下工程中受力、应力、变形、破坏和稳定性等问题。
其核心思想是通过分析土石坝边坡的岩土力学性质,如强度、压缩模量、剪切模量、抗裂性、渗透性等,预测边坡在不同条件下的稳定性。
4.数值计算方法数值计算方法是通过数学和计算机技术,对复杂的土石坝边坡稳定性问题进行求解的方法。
其核心思想是将边坡分割成若干个小单元,通过模拟不同荷载条件下的应力和变形情况,预测边坡在不同条件下的稳定性。
常用的数值计算方法包括有限元法、有限差分法和边界元法等。
二、土石坝边坡稳定性计算方法1.经验法经验法是一种基于工程经验、检验和修改的方法。
这种方法一般适用于经验较丰富、边坡较小且地质条件比较安全的情况。
其中常用的经验法有刘安钦法、耐均匀法等。
2.解析方法解析方法是通过对已知物理或参考问题进行分析,求解所需要的未知物理的方法。
3.4土石坝的稳定分析.
2)有效应力法,不计地震荷载时
k [(wicosi ubseci )tani' ci' bseci ] wisini
3)按总应力法计算时
k wicositani cili
w is ini
2、简化的毕肖普法
基本原理是:考虑了土条水平方向的作用力 (即Ei≠Ei+1≠0),忽略了竖直方向的作用 力(即令Xi=Xi+1=0)。由于忽略了竖直方向 的作用力,因此称为简化的毕肖普法。
当用计及条块间作用力的计算方法时,坝坡稳定安全系 数应不小于下表规定的数值
坝坡抗滑稳定最小安全系数
运用条件
工程
1
2
正常运用条件
1.5
1.35
非常运用条件Ⅰ 1.3
1.25
非常运用条件Ⅱ 1.2
1.15
等级 3
1.3 1.2 1.15
4、5 1.25 1.15 1.1
第8.3.11条规定
采用不计条间作用力的瑞典圆弧法计算坝 坡抗滑稳定安全系数时,对1级坝正常运用条 间最小安全系数应不小于1.30,对其他情况应 比上表规定值减小8%。
不考虑土条之间作用力的影响
计算步骤
(1)确定圆心、半径,绘制滑弧。 (2)将土体分条编号。为便于计算,土条宽取b=0.1R (圆弧半径),圆心以下的为0号土条:向上游为1,2,
3,…向下游为一1,一2,一3,…。
若采用b = 0.1R,则sinα1=0.1, cosα1=(1-0.1)……在每 个滑弧计算时均为固定值,可使计算工作简化。当端土条宽度时, 可将该土条的实际高度换算为等效高度h(h= b’h’/b)进行计算。
(2)直线和折线滑动面
非粘性土边坡中,滑动面一般为直线;当坝体 的一部分淹没在水中时,滑动面可能为折线。
基于安全系数的土石坝坝坡稳定可靠度分析
I=1 , 力 的函数。 i u i , …, J 2 L和L mb指出, 可以采用不同
的定义 来 定义边 坡 稳 定分析 的功能 函 数 。F 是 通 过不 同 的方
法 获 得 的 安 全 系 数 , 如 简 化 的 Bs o 法 、 ih p Mo gn tr —rc 法 、S e c r 等 。相应 的可靠 度指 标 re sen P ie pne法
第 1 卷 第 6 1 期
21 0 1年
中 国
水
运
VoI 1 1
No 6 .
6月
C n Wa er hi a t Tr n por as t
J e un
2 01 1
基于安全系数的土石坝坝坡稳定可靠度分析
龙 起 华 ,孙 卫 星 ,赵 红 飞
( 1武汉大学水利水 电学院,湖北 武汉 4 0 7 ;2 30 2 湖北省王英水库管理局 ,湖北 成宁 4 70 300)
、
1 r,
、
f 1、
即可进 行可 靠度 分析 。 三 、坝 坡稳 定 可靠 指标 及 失效概 率 的计 算 1 .平均 稳 定安 全 系数 Du c n 在文 献 l中提 出了如 下 的计 算 土坡 稳定 可 靠指 na 9 】 标 的简化 计 算 方法 : 先定 义 “ 均稳 定 安全 系数 ” 平 均稳 首 平 : 定 安全 系 数 是指 采 用 土坡 稳 定分 析 的岩 土 材料 的参 数均
定义 [8 : 71  ̄为
口:丝
盯
这 不 利于 可 靠度 分析 方法 的推 广 应 用 ,基 于 此 ,本 文介
二 、坝 坡可 靠度 分析 的基 本原 理
绍一 种基 于 安全 系数 的实 用 的土坡 稳 定可 靠度 的计 算 方法 。 水工 统标 》 中对 结 构承 载力 极 限状 态 基 本组 合采 用 的
土石坝边坡稳定可靠度分析与研究的开题报告
土石坝边坡稳定可靠度分析与研究的开题报告
一、研究背景和意义
随着经济的快速发展,大量的土石坝被建造或加固,土石坝边坡的稳定性成为了工程建设中的一个重要问题。
土石坝边坡的稳定性受到多种因素的影响,例如土原性、水力条件、地震等。
因此,进行土石坝边坡稳定性的可靠度分析和研究,对于评估土石坝的稳定性和工程的安全性具有重要的意义。
二、研究内容和方案
本研究将以某水库土石坝为研究对象,分析土石坝边坡的稳定性,并通过可靠度分析方法评估土石坝边坡的稳定可靠度。
具体研究内容和方案如下:
1.研究土石坝边坡的稳定性指标及影响因素
通过文献调研和现场调查,梳理土石坝边坡稳定性的相关指标和影响因素,包括土体的强度、水文条件、地震动力学等因素。
2.建立土石坝边坡稳定性模型
以某水库土石坝边坡为例,建立土石坝边坡稳定性分析模型。
该模型将考虑土壤的强度参数、水文条件和地震动力学因素,从而评估边坡的稳定性。
3.进行可靠度分析
在建立土石坝边坡稳定性模型的基础上,引入可靠度分析方法,通过概率论与数理统计的知识计算土石坝边坡的可靠度,为工程安全性评估提供科学依据。
4.开展实验验证
为了验证所建议的土石坝边坡稳定性分析模型和可靠度分析方法的有效性,将开展实验室与现场实验,在对比实验数据和计算结果的基础上,进一步完善土石坝边坡稳定性的可靠性评估方法。
三、预期成果
本研究将建立一套土石坝边坡稳定性的评估方法,能够评估该水库土石坝边坡的稳定可靠度,并为工程建设提供科学的技术支持,进一步提高土石坝工程的安全性。
基于GeoStudio的某土石坝整治前后渗流及坝坡稳定分析
表 4 出逸处水 力坡 降计算 结果表
从表 4中可 以看 出 , 在整 治前 后 , 水 位 升高都 会 导致 出逸 处水 力坡 降 增 大 , 但 是 整 治 前在 3种 稳 定 渗流 工况 下 , 浸润 线 在 下游 排 水 棱 体 出逸 处 的水 力 坡 降都 比《 水利 水 电工 程 地 质勘 察 规 范 G B 5 0 2 8 7 —
3种 工况 下整 治前后 的下游 坝坡 稳 定 最 小 安全 系数 及 允许值 如 表 3所 示 。
表 3 稳 定 性 计 算 结 果 表
棱体 失效 , 坝 体单 宽渗 流量较 小 , 与此 同 时下游 坝体 内浸 润线 位 置较 高 , 下 游 坝坡 的抗 滑 稳定 最 小 安 全 系数 在 3种工 况 下 都 不 满 足规 范 要 求 。通 过 削 坡 、 重建 排水 棱体 工程 整 治 后 , 坝 体 单 宽 渗 流量 虽 有 小 幅增 加 , 但 依 然在合 理 的范 围 内 , 重要 的是下 游 坝壳 中浸 润线 的位 置 明显 降 低 , 最 小 安 全 系数 均 满 足 了
坝体渗流, 提高坝坡稳定的效果显著 。
3 . 3 出逸 处水 力坡 降 计算 结果 及分 析
3种工 况下 整治前 后 渗流 出逸 处 的水 力 坡 降 如
表 4所示
[ 4 ] G B 5 0 4 8 7 — 2 0 0 8 , 水利水电工程地质勘察 规范 [ S ] . 北京: 中国
参考文献 :
[ 1 ] 张克恭 . 土 力学 [ M] . 北京 : 中国建 筑工业 出版社 , 2 0 0 1 : 5 4—
5 5 .
全 系数
均 未 达 到 规 范 要 求 的安 全 系 数 允 许 值
论土石坝的地震液化验算和坝坡抗震稳定计算
论土石坝的地震液化验算和坝坡抗震稳定计算土石坝是由土石材料组成的,地震液化性是土石坝抗震稳定计算的重要内容之一、在地震作用下,土石材料的孔隙水被压缩,造成孔隙水压力的骤然上升,从而导致土石材料变得液化。
液化后的土石材料失去了原有的抗剪强度,无法承受地震力,并会形成流态,给土石坝的抗震稳定性带来严重威胁。
土石坝的地震液化验算主要包括以下几个方面:1.地震动力分析:通过对土石坝所受地震力的分析,确定地震作用下的最大地震水平,以及地震波动特性,为后续液化分析提供依据。
2.评估液化潜势:根据土石材料的物理力学性质,综合考虑孔隙水压力、孔隙比、饱和度等因素,确定土石材料发生液化的潜势。
3.计算地震动力参数:通过对液化分析的地震动力参数的计算,包括最大加速度、地震动剩余位移等,为后续的液化分析提供数据支持。
4.液化模型设计:根据土石材料的物理性质和地震动力参数,选择适当的液化模型,如塑性模型、弹塑性模型等。
5.数值分析:利用有限元或有限差分等方法,建立土石坝的液化数值模型,通过数值模拟分析土石材料的液化行为。
6.评估液化后的稳定性:通过液化分析的结果,评估土石坝液化后的稳定性,并进行针对性的加固措施设计。
土石坝坡抗震稳定计算是指在地震作用下,土石坝坡面的稳定性分析。
其主要内容如下:1.地震力分析:根据土石坝所受地震力的特性和作用力的计算方法,确定地震作用下的最大地震水平。
2.临界滑坡面计算:通过对土石坝局部地形和土体力学性质的分析,计算土石坝临界滑坡面的位置和倾角。
3.抗滑稳定性评估:通过对临界滑坡面进行稳定性分析,判断土石坝坡面的抗滑稳定性,并评估滑坡的发生概率。
4.安全系数计算:利用土体力学原理,计算土石坝坡面的安全系数,以评估土石坝在地震作用下的抗滑稳定性。
5.加固措施设计:根据坡面稳定性评估结果,设计相应的加固措施,如增加坡面支护结构、改善土石材料的力学性质等。
总体而言,土石坝的地震液化验算和坝坡抗震稳定计算是土石坝抗震设计中的两个重要环节。
5-4土石坝坝坡稳定分析解析
• 以心墙坝的上游坝坡为例:
• ADC为任一滑裂面,DE将土体分为两块, 假设两土块间的作用力为P,方向与DC平 行。 • BCDE的极限平衡方程式: 1 P G1 cos1tg1 G1 sin 1 0 Kc • ADE的极限平衡方程式:
1 1 G2 cos 2tg 2 P sin(1 2 )tg 2 Kc Kc G2 sin 2 P cos(1 2 ) 0
土石坝坝坡稳定分析
• • • • • •
4.1 概述 4.2 土石坝滑坡的形式 4.3 稳定分析方法一:圆弧滑裂面法 4.4 稳定分析方法二:折线 4.5 土料的抗剪强度指标的选取 4.6 计算工况和安全系数
土的强度与破坏理论
• 在土力学中被广泛采用的强度理论是摩 尔—库伦强度理论。土体的破坏主要是剪 切破坏,其破坏面上法向应力σ和剪应力τ 之间存在一定的函数关系: τ=f(σ) • 摩尔—库伦强度理论所表示的曲线也称为 摩尔破坏包线,在一定应力范围内,此包 线可以看作一条直线,即库伦方程:
土坡的稳定分析方法
• 土坡的稳定分析方法,主要是建立在极限 平衡理论基础之上,假定土体为理想塑性 材料,达到极限平衡状态时,土体将沿某 一滑裂面产生剪切破坏而失稳,此为刚体极 限平衡法。
• 对于由凝聚性土类组成的均质或非均质土 坝,比较简单实用的稳定分析方法是条分 法:计算时将可能滑动面以上的土体划分 成若干铅直土条,对作用于各土条上的力 进行力和力矩的平衡分析,求解出极限平 衡状态下土坡稳定安全系数。 • 条分法最早是1927年由瑞典的费纶纽斯 (Fellenius)提出,故也称为瑞典圆弧法。 此后不少学者致力于条分法的改进,如毕 肖普(Bishop)等。
土料的抗剪强度指标的选取
水工05-04土石坝的稳定分析
圆弧滑动计算简图
(2)分别计算各土条上的作用力对圆心的力矩Ms 1)土条自重Wi对圆心的力矩 2)渗流动水压力Wφi对圆心的力矩
Wφi=γbh2sinβi 3)地震惯性力Q、V对圆心的力矩
4)孔隙水压力μ对圆心的力矩
(3) 土条底部抗滑力对圆心的力矩Mr
(4) 求稳定安全系数Kc
3. 简化毕肖普法
第四节 土石坝的稳定分析
一、土石坝失稳破坏形式及稳定分析的目的
1.土石坝失稳破坏形式 ●坝坡坍滑 ●塑性流动 ●液化破坏
2.土石坝稳定分析的目的 ●分析坝体及坝基在各种 不同的工作条件下,可 能产生体的失稳破坏形式。 ●通过计算,校核坝的稳定安全度,从而确定合 理的经济剖面。
二、土石坝坝坡滑动面形状
(三)稳定安全系数
1.采用计及条块间作用力的 计算方法时, 坝坡的抗滑稳定安全系数应不小于表1所 规定的数值。 2.采用不计及条块间作用力的 计算坝坡 的抗滑稳定安全系数时,对1级坝正常运 用条件最小稳定安全系数应不小于1.30, 其他情况应表1所规定的数值减小8%。
表1 坝坡抗滑稳定最小安全系数
(1)滑楔法 1)计算方法
以某心墙坝的上游坝坡为例,说明滑楔法按极 限平衡理论计算安全系数的方法。
无粘性土坝坡
2)斜墙与保护层的滑动稳定计算 ●斜墙与保护层的稳定计算 方法较多,有图
解法和数解法。 ●数解法 —作用力平行滑动面法 —水平力法
(2)摩根斯顿—普赖斯法
2.复式滑动面的稳定分析 ●当滑动面通过不同土料时,常由直线与圆弧组 合的形式。 ●复式滑动面的稳定分析方法,可近似按折线法 的原则进行计算。
比较一系列滑动圆弧的Kc,最小的安全系数 Kcmin即为该计算情况的安全系数。
土石坝边坡稳定分析与计算方法
土石坝边坡稳定分析与计算方法1 稳定性理论分析土坝的稳定性破坏有滑动、液化及塑性流动三种状态。
〔1〕坝坡的滑动是由于坝体的边坡太陡,坝体填土的抗剪强度太小,致使坍滑面以外的土体滑动力矩超过抗滑力矩,因此发生坍滑或由于坝基土的抗剪强度缺乏,因此坝体坝基一同发生滑动。
〔2〕坝体的液化是发生在用细砂或均匀的不够严密的砂料作成的坝体中,或由这种砂料形成的坝基中。
液化的原因是由于饱和的松砂受振动或剪切而发生体积收缩,这时砂土孔隙中的水分不能立即排出,局部或全部有效应力即转变为孔隙压力,砂土的抗剪强度减少或变为零,砂粒业就随着水的流动向四周流散了。
〔3〕土坝的塑性流动是由于坝体或坝基内的剪应力超过了土料实际具有的抗剪强度,变形超过了弹性限值,不能承受荷重,使坝坡或者坝脚地基土被压出或隆起,因此使坝体的坝基发生裂缝、沉陷等情况。
软粘性土的坝或坝基,假设设计不良,就容易产生这种破坏。
进展坝坡稳定计算时,应该杜绝以上三种破坏稳定的现象,尤其前两种,必须加以计算以及研究。
2 PC1500程序编制根据及计算方法2.1 编制根据及使用情况综述PC1500程序在计算方法方面采用了瑞典条分法和考虑土条程度侧向力的简化毕肖甫法。
从对土料物理力学指标的不同选用又可分为总应力法,有效应力法和简化有效应力法。
程序规定,计算公式中无孔隙水压力为总应力法;计入孔隙水压力为有效应力法;令孔隙水压力一项为零而将孔隙水压力包含在土体重量的计算之中,称为简化有效力法[1]。
分别考虑了稳定渗流期,施工期,水位降落期三种情况。
程序按照“水工建筑物抗震设计标准〞,“碾压土石坝设计标准〞编制。
2.2 计算方法所谓网格法,要计算假设干滑弧深度,对每一滑弧度计算过程如下:以给定滑弧圆心为中心,以大步长向四周由49个点,逐一计算,找出平安系数最小的点,以该点为中心,以小步长向四周布49个点,计算后就找出相应该滑弧深度的最小平安系数。
混合法是先用网格法。
将大步长布下的49个点算完后,找出平安系数最小的点,转入优选法计算。
第五节 土石坝的稳定分析
第五节土石坝的稳定分析
一、目的
分析坝体及坝基在各种不同的工作条件下可能产生的稳定破坏形式,通过必要的力学计算,校核坝剖面的安全度,经过反复修改定出经济剖面。
确定土坝稳定性,主要指边坡的抗滑稳定。
二、坝坡的滑动面形式
坝坡的滑动面形式主要与坝体结构型式、筑坝材料和地基情况、坝的工作条件等因素有关。
1、曲线滑动面:滑动面通过粘性土部位时,
2、折线滑动面:滑动面通过非粘性土部位时;
3、复式滑动面:滑动面通过粘性土和非粘性土构成的多种土质坝时。
图6-17 坝坡坍滑破坏形式
1-坝壳或者坝体;2-防渗体;3-滑动面;4-软弱夹层
三、荷载及其组合
(一)作用力
1、自重:水上——湿容重,水下——浮容重。
2、渗透力:与渗透坡降有关。
3、孔隙水压力:总应力法和有效应力法.
4、地震力:地震区应考虑地震惯性力。
地震惯性力壳拟静力法计算。
(二)荷载组合:
正常运用:
(1)水库蓄满水(一般为正常蓄水位)形成稳定渗流时,验算下游坝坡稳定。
(2)水库水位为最不利水位时,上游坡的计算。
(3)库水位降落,使上游坡产生渗透压力时的稳定计算
非常运用:
(1)库水位骤降时的上游坝坡的计算
(2)施工期(含竣工期)考虑孔隙水压力上下游坝坡稳定计算
(3)地震情况下,上下游坝坡计算
(4)校核水位时下游坡的计算
四、稳定分析方法
强度分析法和刚体极限平衡法。
1、圆弧滑动法:针对粘性土的坝坡;
2、折线滑动法:针对非粘性土的坝坡;
图6-18 坝坡稳定计算示意图
图6-19 非粘性土坡稳定计算示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土坡的稳定分析方法
• 土坡的稳定分析方法,主要是建立在极限 平衡理论基础之上,假定土体为理想塑性 材料,达到极限平衡状态时,土体将沿某 一滑裂面产生剪切破坏而失稳,此为刚体极 限平衡法。
• 对于由凝聚性土类组成的均质或非均质土 坝,比较简单实用的稳定分析方法是条分 法:计算时将可能滑动面以上的土体划分 成若干铅直土条,对作用于各土条上的力 进行力和力矩的平衡分析,求解出极限平 衡状态下土坡稳定安全系数。 • 条分法最早是1927年由瑞典的费纶纽斯 (Fellenius)提出,故也称为瑞典圆弧法。 此后不少学者致力于条分法的改进,如毕 肖普(Bishop)等。
• 式中:G1、G2分别为ADE和BCDE两个楔 形体的自重; 分别为AD面和DC面的土 体内摩擦角; 、 分别为AD面和DC 面与水平方向的夹角。 • 联立二式可求解滑动体的安全系数Kc和土 块间的作用力为P。 • 土块间作用力的方向,《碾压式土石坝设 计规范》(SL274-2001)中建议了两种假 定,一是假定土块间的相互作用力为水平 的;二是假定土块间的相互作用力为平行 于上游坡面和楔底斜面的平均坡度。
稳定分析方法一:圆弧滑裂面法
• 基本原理 • 假定不同的半径及圆心位置,画出一系列 的假定圆弧滑裂面。 • 对所假定的每一圆弧上的土体进行受力分 析,求出土体上的力对圆心的抗滑力矩和 滑动力矩。圆弧滑裂面上的抗滑安全系数 为阻滑力矩与滑动力矩的比值。
• 比较一系列圆弧滑裂面上的Kc,其中Kmin 所对应的圆弧面为最危险滑弧,要求 Kmin≥[ Kc ]。
土料的抗剪强度指标的选取
• 土料的抗剪强度指标主要是指颗粒间的内 摩擦角φ和凝聚力c。 • 对同一种土料,其抗剪强度指标 c、φ,并 不是一个常量,它与土的性质、土料的固 结度、应力历史,荷载条件等诸多因素有 关。
(1)粘性土的抗剪强度
• 抗剪强度指标测定的三种代表性试验 • ①不排水剪。试样不固结,在不排水条件 下剪切,剪切前及过程都有孔隙水压力, 用以模拟坝体竣工期。(UU) • ②固结不排水剪。试样固结后,在不排水 条件下剪切,剪切过程产生孔隙水压力。 (CU) • ③排水剪。试样固结后,在排水条件下缓 慢剪切,不产生孔隙水压力。(CD)
• τ=c+σtgφ • 式中: φ为土的内摩擦角; c为土的凝聚力。
• 土的抗剪强度计算有两种方法: • (1)总应力法:τ=c+σtgφ,σ代表破坏面上 的总法向应力 。 • (2)有效应力法:τ=c'+σ'tgφ'。土体在外 力作用下,控制土体强度和变形二者变化 的,并不是作用在破坏面上的总法向应力, 而是土体骨架所承受的有效应力σ',有效 应力σ'=σ-u。 • u为孔隙压力,对于非饱和土体,孔隙压力 包括孔隙水压力和孔隙气压力。对于饱和 土体,孔隙压力即为孔隙水压力。
• 以心墙坝的上游坝坡为例:
• ADC为任一滑裂面,DE将土体分为两块, 假设两土块间的作用力为P,方向与DC平 行。 • BCDE的极限平衡方程式: 1 P G1 cos1tg1 G1 sin 1 0 Kc • ADE的极限平衡方程式:
1 1 G2 cos 2tg 2 P sin(1 2 )tg 2 Kc Kc G2 sin 2 P cos(1 2 ) 0
• • • • • •
4.1 概述 4.2 土石坝滑坡的形式 4.3 稳定分析方法一:圆弧滑裂面法 4.4 稳定分析方法二:折线法 4.5 土料的抗剪强度指标的选取 4.6 计算工况和安全系数
土的强度与破坏理论
• 在土力学中被广泛采用的强度理论是摩 尔—库伦强度理论。土体的破坏主要是剪 切破坏,其破坏面上法向应力σ和剪应力τ 之间存在一定的函数关系: τ=f(σ) • 摩尔—库伦强度理论所表示的曲线也称为 摩尔破坏包线,在一定应力范围内,此包 线可以看作一条直线,即库伦方程:
具体计算步骤
• (1)假定圆心和半径画弧。
• (2)将滑面上的土体分条编号。 • 为简化计算,土条取等宽b;圆心以下的为0号土 条:向上游依次为1、2、3...,向下游依次为-1、 -2、-3...。 • (3)分别求出各土条上的作用力,及各力对圆心 的力矩(不计土条间作用力) • 浸润线以上土体,按湿容重γ1计; • 为近似考虑渗透水压力对稳定的影响,浸润线以 下、下游水位土体,在计算抗滑力矩时,按浮容 重γ2计,计算滑动力矩时则取饱和容重; • 下游水位以下土体,按浮容重γ2计; • 坝基土体,按浮容重γ4计。
Kc
[c l W cos tg ] W sin
i i i i i i i
• 其中粘聚力和内摩擦角取有效抗剪强度指 标。 • 简单条分法并不满足每个条块的力平衡和 力矩平衡条件,一般使安全系数偏低。如 果考虑土条间的法向作用力,则为简化的 毕肖普法,需迭代求解。
稳定分析方法二:折线法
抗滑力矩
• i土条自重:
பைடு நூலகம்
Wi b(h1 1 h2 2 h3 2 h4 4 )
• 沿切线方向的分力: • 沿法线方向的分力: • 沿切线方向的摩擦力:
• 对圆心的抗滑力矩:
滑动力矩
• 自重:
• 其中 为土体的饱和容重。
• 对圆心的滑动力矩:
• (4)计算滑裂面上的抗滑安全系数Kc
土坝滑坡的型式
• (1)圆弧滑裂面——当滑裂面通过粘性土 边坡时,滑裂面的形式为圆弧滑裂面。
• (2)直线或折线滑裂面——当滑裂面通过 非粘性土边坡时,滑裂面的形式为直线或 折线。 • 当坝坡干燥或全部浸入水中,滑裂面的形 式一般为直线;当坝坡部分浸入水中,滑 裂面的形式一般为折线。
• (3)复式滑裂面——当滑裂面通过粘性土 和非粘性土组成的边坡时,滑裂面的形式 为复式滑裂面。 • 最终可统一为多折线滑动形式,可以模拟 单一直线,多段折线,任意曲线等,通过 优化方法找到最危险滑动面。
• (1)瑞典圆弧法(简单条分法):不考虑 土条间相互作用力的影响。1927年由瑞典 的费伦纽斯(Fellenius)提出。 • (2)简化的毕肖普法:近似考虑了土条间 相互作用力的影响。
• 对于无粘性土类组成的土坝,或以心墙、 斜墙为防渗体的砂砾石坝体,其坝坡的稳 定分析常采用楔体极限平衡理论,如直线 法或折线法。