高等数学证明题练习一
高等数学练习题(附答案)
《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
高等数学试题详解及答案
高等数学试题详解及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B3. 函数F(x)=∫(0 to x) t^2 dt的不定积分是:A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. x^2 + C答案:A4. 无穷小量α与无穷小量β,若α是β的高阶无穷小,则:A. α/β→0B. α/β→∞C. α/β→1D. α/β→常数答案:A5. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. -2B. 0C. 2D. 1答案:C二、填空题(每题3分,共15分)1. 若函数f(x)的二阶导数为f''(x)=6x,那么f'(x)=______。
答案:3x^2 + C2. 函数y=e^x的反函数是______。
答案:ln(x)3. 定积分∫(0 to 1) x dx的值是______。
答案:1/24. 函数y=ln(x)的导数是______。
答案:1/x5. 曲线y=x^2在点(1,1)处的法线方程是______。
答案:y=-x+2三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的极值点。
答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1或x=2/3。
通过二阶导数f''(x)=6x-6,可以判断x=1为极大值点,x=2/3为极小值点。
2. 计算定积分∫(0 to π/2) sin(x) dx。
答案:根据积分公式,∫sin(x) dx = -cos(x) + C,所以∫(0 toπ/2) sin(x) dx = [-cos(x)](0 to π/2) = -cos(π/2) + cos(0)= 1。
高数(一)第一章练习题
高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
高数习题集及答案
高数习题集及答案一、极限1. 求下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} (1 + \frac{1}{x})^x \)2. 利用夹逼定理证明:- \( \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \)答案:1. 对于第一个极限,我们可以使用洛必达法则或者直接利用三角函数的性质得到:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]对于第二个极限,我们可以使用重要极限:\[ \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \]2. 利用夹逼定理,我们可以找到两个序列 \( a_n \) 和 \( b_n \) 使得:\[ a_n \leq (1 + \frac{1}{n})^n \leq b_n \]并且 \( \lim_{n \to \infty} a_n = e \) 和 \( \lim_{n \to \infty} b_n = e \),从而证明 \( \lim_{n \to \infty} (1 +\frac{1}{n})^n = e \)。
二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + x \)- \( g(x) = \ln(x) \)2. 利用导数求函数的单调区间:- 对于函数 \( h(x) = x^2 - 4x + 4 \),求其单调增区间。
答案:1. 对于 \( f(x) \) 的导数,我们有:\[ f'(x) = 3x^2 - 4x + 1 \]对于 \( g(x) \) 的导数,我们有:\[ g'(x) = \frac{1}{x} \]2. 对于函数 \( h(x) \),我们先求导:\[ h'(x) = 2x - 4 \]令 \( h'(x) > 0 \),解得 \( x > 2 \),因此 \( h(x) \) 在\( (2, \infty) \) 上单调增。
大一高等数学练习题及答案解析
大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。
(完整word版)《高等数学(1)》练习题库
华中师范大学网络教育 《高等数学(1)》练习测试题库一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 2 3.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x xk)1(lim e 6 则k=( )A.1B.2C.6D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x2-1B. x3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logx相切,则()aA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、-8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、233、函数f(x)在点x0连续是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x0可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x xx 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 xx x x sin 1sin lim20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( ) A 、0 B 、1/2 C 、1 D 、2 43、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、B、2 C、31/2D、21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56、设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111A.1-──B.1+ ──C. ────D.xxx1-x157、x→0 时,xsin──+1是()xA.无穷大量B.无穷小量C.有界变量D.无界变量58、方程2x+3y=1在空间表示的图形是()A.平行于xoy面的平面B.平行于oz轴的平面C.过oz轴的平面D.直线59、下列函数中为偶函数的是()A.y=e^xB.y=x^3+1C.y=x^3cosxD.y=ln│x│60、设f(x)在(a,b)可导,a〈x_1〈x_2〈b,则至少有一点ζ∈(a,b)使()A.f(b)-f(a)=f'(ζ)(b-a)B.f(b)-f(a)=f'(ζ)(x2-x1)C.f(x2)-f(x1)=f'(ζ)(b-a)D.f(x2)-f(x1)=f'(ζ)(x2-x1)61、设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( ) A.充分必要的条件 B.必要非充分的条件 C.必要且充分的条件 D 既非必要又非充分的条件二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( ) 13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( ) 26、∫49 x 1/2(1+x 1/2)dx=( ) 27、∫49 x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( ) 29、∫49 x 1/2(1+x 1/2)dx=( ) 30、∫49 x 1/2(1+x 1/2)dx=( ) 31、∫49 x 1/2(1+x 1/2)dx=( ) 32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( ) 34、设f(x) = [x] +1,则f (л+10)=( ) 35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( ) 37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46、函数y=arcsin√1-x^2 +──────的定义域为_________√1-x^2_______________。
大一高等数学答案
练习一答案 一、1、(√) 2、(ⅹ) 3、(ⅹ) 4、(ⅹ) 5、(√)二、1.(1,e ) 2.⎪⎩⎪⎨⎧<≤---=≤<00)(00)(x x f a x a x x f 3.⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=-x x x x x x x f 16log 1611)(214.2211,ln ,,arcsin x w w v v u u y +====三.1、C 2、A 3、B 4、A 5、D 四、1、(―∞,0)2、解:))()((21)]([x g x g x g f +==⎩⎨⎧≥<0002x xx⎩⎨⎧≥<=+=⎩⎨⎧≥<=000)(410)()]([0)()()]([222x xx x x x f x f x f x f x f g3、解:xxxe y y e e y )1(1-=∴+= 即yy x -=1ln ,即反函数为x x y -=1ln 由于1xxe y e =+01ln (0,1)1定义域为xy y x∴<<∴=-练习二答案 一、1、(√) 2、(ⅹ) 3、(√) 4、(ⅹ) 5、(√)6、(ⅹ) 7、(ⅹ) 8、(ⅹ)二、 1、 -A 2、 A 3、不存在 4、A 三、1、n n 1+ 2、n n n 1)(+- 3、3212++n n 4、121111-++++n n n四、1、 0 2、0 3、1 4、∞五、1、证明:00lim lim 1x x x x x x ++→→== 而00lim lim 1x x x xx x--→→-==- x x x 0l i m →∴不存在。
2、证明:a a n n =∞→lim 0, 0,N ε⇔∀>∃>当n >N 时,有ε<-a a n∴n n a a a a ε-≤-< 即lim n a a →∞=取 (1)lim 1nn n n a a →∞=-=则而 lim n n a →∞不存在。
高等数学习题及解答(极限,连续与导数)
高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x x =+(3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n→∞ (2)222312limn n n →∞+++(3)(4)1lim 1n n→∞+解:(1) 233nn n n <,又2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:11111n n n ≤+≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得111n n+=6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
《高等数学》练习题库含答案(大学期末复习资料) (1) (1)
华中师范大学网絡教育学院 《高等数学》练习测试题库一.选捽题1,函数y=-J —是()X + 1A, 偶函数B,奇函数 C 单调函数 2•设 f(sin —)=cosx+l,则 f(Q 为( )2卜-列数列为单潤递増数列的有(6 limsincr-l)=(Il X -]AJ B,0C2IXI/27.设L*X=c h则 k=()AJ B 、2 C.6 DJ/68?'|x->l 时,下列与无穷小(x-1 )等价的无穷小是( A. x 2-! B. x ?-l C.(x-l)2D.sin(x-I)9. f(x)在点处有定义是f(x)在NXQ 处连续的() A,心要条件 B.充分条件 C.充分必要条件 D,无关条件 10、 当 |x <1 Ht, y= /】京(.)D 无界函数A 2x 2-2 B 2—2/ C I +/D l-x 2A. 0,9 t 0.99, 0,9991 0.9999B.—为奇数 I +n丄,网为偶数 U -科4, 数列有界是数列收敛的() A.充分条件 C.充要条件 5. 卜列命题正确的是( )A.发散数列必无界C.两发散数列之狷必发散C. {f(n)h 其中 f(n)=; B. D 必要条件 既非充分也非必要 R.D. 2N + 1 2tl两无界数列之和必无界 两收敛数列之用[必收A、是连续的无界函数C、有最大值勺最小值IL无最小值11、设函数f (x) = (1-xL要使f (x)在点:戸。
连续,则应补充定义1 (0) 为< )A、丄B、e 。
、-e D. _e 1e12、下列有跳跃间断点x=0的函数为()A-, sarctiinl /x B、 arctan 1/xC\ tetr 1 /x D、cosl/x13、设f (妇在点为连续,g(x)在点舔不连续,则下列结论成立是()A、f(X)-g(X)在点Xa必不连续B、f(x) Xg(x)在点为必不连续须冇C、复合函数f [g(x)]在点为必不连续*)D、gW在点为必不连续1 li1L设f (,x)= ]+@户在区间(1 8,+ 8)卜连续,冃J5f(x)=0,则a, h满足 ()A. a>0, b>0B. a>0h b<0C. a<0,b>0 Ik a<0, b<015、若函数「6)在点险连续,则下列复合函数在x*也连续的有( )A. K) B、貯3C、Un[f(x)]D、f[f(x)]16、函数f (x)=tanx能取最小最大值的区间是下列区向中的< )A、[0, ]B、『0,」)C、[- ■! /I, Ji /4] D* (-.'1/4:J]/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A,充分条件B、必要条件C、充要条件IX无关条件18、「(a)「(b) VQ是在[H,b] ±连续的函「(x)数在(a, b)内取零值的( )L 充分条件 B 、必要条件 C 、充要条件D 、无关条件19、 下列函数中能在区间(。
2020数一证明题
2020数一证明题2020年数学一科的证明题有很多,以下是其中一道典型的题目:题目,设函数f(x)在区间[a, b]上连续,且在开区间(a, b)内可导,且f(a)=f(b)=0。
证明,存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
解答:首先,根据题目给出的条件,我们可以得知函数f(x)在区间[a, b]上满足罗尔定理的条件。
根据罗尔定理,如果一个函数在闭区间[a, b]上连续,在开区间(a, b)内可导,并且在区间的两个端点上取到相同的函数值,那么在开区间(a, b)内至少存在一点ξ,使得函数的导数等于零。
由于题目中给出f(a)=f(b)=0,我们可以得知函数f(x)在区间[a, b]的两个端点上取到相同的函数值。
因此,根据罗尔定理,存在ξ∈(a, b),使得f'(\xi)=0。
接下来,我们需要证明存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
由于题目中给出f(a)=f(b)=0,我们可以得知函数f(x)在区间[a, b]的两个端点上函数值为零。
根据介值定理,如果一个函数在闭区间[a, b]上连续,并且在区间的两个端点上取到不同的函数值,那么在开区间(a, b)内至少存在一点ξ,使得函数的函数值等于任意给定的值。
因此,我们可以得知存在ξ∈(a, b),使得f(\xi)=0。
结合前面得到的结论f'(\xi)=0,我们可以得到f'(\xi)=-\frac{f(\xi)}{\xi}。
综上所述,我们证明了存在ξ∈(a, b),使得f'(\xi)=-\frac{f(\xi)}{\xi}。
以上是对2020年数学一科证明题的一个示例解答。
在实际考试中,可能会有其他类型的证明题目,但是解题思路和方法大致相同,即根据已知条件运用数学定理和推理进行证明。
希望这个回答能够帮助到你。
高等数学练习册(1-5章)带答案
高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。
(2)523arcsin3xx y -+-=的定义域 。
(3)xxy +-=11的反函数 。
(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。
2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。
高等数学B(1)练习题
第一章 函数、极限与连续作 业 题一、计算下列函数极限1.220()lim h x h x h →+-2. 231lim (2sin )x x x x x→∞-++3. 322232lim 6x x x x x x →-++-- 4. 1x →5 3tan sin lim x x xx →- 6 0x →7 21lim 1x x →+∞⎛- ⎪⎝⎭8. 01lim 1cos x x →-9.()2sin 0lim 13xx x →+10.22x →11.()120lim e x xx x -→+ 12.()1lim 123nn nn →∞++13.21sinlim x x →+∞e 1lim e 1nn n →∞-+二、确定下列极限中含有的参数1.2212lim22x ax x bx x →-+=-+-2.(lim 1x x →-∞=三、解答题1.探讨函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.练 习 题一、单项选择题1.以下结论正确的是 .A. lim 0n n y A ε→∞=⇔∀>,在(,)A A εε-+之外只有{}n y 的有限项B. 设n a y b <<,且lim nn y A →∞=,则有a A b <<C. 收敛数列必有界D. 发散数列必无界 2.若函数()f x 在某点0x 极限存在, 则 . A. ()f x 在点0x 的函数值必存在且等于该点极限值B. ()f x 在点0x 的函数值必存在,但不肯定等于该点极限值C. ()f x 在点0x 的函数值可以不存在D. 若()f x 在点0x 的函数值存在,必等于该点极限值 3.极限0limx xx→= . A. 1 B. 1- C. 0 D. 不存在 4.下列命题正确的是 .A. 无穷小量的倒数是无穷大量B. 无穷小量是肯定值很小很小的数C. 无穷小量是以零为极限的变量D. 无界变量肯定是无穷大量 5.下列变量在给定的改变过程中为无穷小量的是 .A. 1sin(0)x x→ B. 1e(0)xx →C. 2ln(1)(0)x x +→D. 21(1)1x x x -→-6.变量11sin xx.A. 是0x →时的无穷小B. 是0x →时的无穷大C. 有界但不是0x →时的无穷小D. 无界但不是0x →时的无穷大 7.0x =是1()sin f x x x=的 .A. 可去间断点B. 跳动间断点C. 无穷间断点D. 振荡间断点8.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩.A. 在0,1x x ==处都间断B. 在0,1x x ==处都连续C. 在0x =处连续,1x =处间断D. 在0x =处间断,1x =处连续9.设函数2,0(),0x f x xk x ≠⎪=⎨⎪=⎩在0x =处连续,则k = . A. 4 B. 14 C. 2 D. 1210.方程sin 2x x +=有实根的区间为 .A. ,32π⎛⎫ ⎪⎝⎭B. 0,6π⎛⎫ ⎪⎝⎭C. ,64ππ⎛⎫ ⎪⎝⎭D. ,42ππ⎛⎫⎪⎝⎭二 、填空题1.0sin lim x x x →= ;sin lim x x x→∞= .2.0sin limsin x x x x x →-=+ ;sin lim sin x x xx x→∞-=+ . 3.21lim 1xx x x →∞-⎛⎫=⎪+⎝⎭; 10lim 12xx x →⎛⎫-= ⎪⎝⎭ . 4.当0x →时,sin3x 是2x 的 无穷小;2sin x x +是x 的 无穷小;1cos sin x x -+是2x 的 无穷小;23e1x x --是2arcsin x 的 无穷小;1(1)1nx +-是xn的 无穷小;32x x -是22x x -的 无穷小. 5.已知0x →时,()12311ax +-与cos 1x -为等价无穷小,则常数a = .6.设2,0()sin ,0a bx x f x bxx x⎧+≤⎪=⎨>⎪⎩ 在0x =处连续,则常数,a b 应满意的关系为 . 7.()sin xf x x=的可去间断点为 ;221()32x f x x x -=-+的无穷间断点为 .8.函数21()23f x x x =--的连续区间是 .三、计算题1.220e 1lim x x x →-2.0ln(12)lim sin x x x→-3.0x +→4.x →.5.lim x →+∞6. n7.0x → 8.220tan lim e 1x x x x x -→+-9.20sin cos 1lim sin 3x x x x x→+-- 10.()21ln(1)0lim cos x x x +→11.探讨函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩ 在0x =处的连续性.12.证明方程e 2x x -=在区间(0,2)内至少有一实根.其次章 导数与微分作 业 题1.利用导数定义计算()ln()f x a x =+的导数(1)f '.2.探讨函数1arctan ,0()x x f x x⎧≠⎪=⎨在0x =处的连续性和可导性.求下列函数的导数(3-7小题) 3.21arctan 2ln ln 2y x x x =-+-,求'y4.2sin(21)e x y x -=⋅ ,求'y5.sin 3cos xy x=-,求'y6.1,0xy x x ⎛⎫=> ⎪⎝⎭,求'y7设()f x 可导,计算函数(e )x y f x =+的导数d d y x.求下列函数的二阶导数(8-10小题)8. (ln y x =,求''y9 2e cos x y x =⋅,求''y10.设2(sin )y f x =,其中()f x 二阶可导,求22d d yx.11.已知arctan y x =d d yx12.求曲线35230y y x x ++-=在0x =处的切线方程.13 求由参数方程2ln(1)arctan x t y t t⎧=+⎨=-⎩,所确定的隐函数的二阶导数利用对数求导法求下列函数的导数d d yx.(14-15小题)14.sin x y x =,求'y 15.y ='y求下列函数的微分(16-19小题)16.2ln sin y x x x =+,求dy 17.21cot exy =,求dy18.42ln x y y =+,求dy 19.y x x y =,求dy练 习 题一、单项选择题 1.已知(3)2f '=,则0(3)(3)lim2h f h f h→--= .A .2 B.2- C.1- D.1 2.()|2|f x x =-在点2x =处的导数是 .A.1B.0C.1-D.不存在 3.设()(1)(2)...()f x x x x x n =+++,则(0)f '= .A.(1)!n -B.nC.!nD.04.()f x 在0x x =处左导数0()f x -'和右导数0()f x +'存在且相等是()f x 在0x x =处可导的 条件.A .必要非充分 B.充分非必要 C .充分必要 D. 既非充分又非必要 5.设函数()y y x =由方程3330x y axy +-=所确定,则d d yx= . A.22ay x y - B.22x y ay ax+- C.22ay x y ax -- D.22x ax y - 6.设22()f x y y +=,其中22()f x y +是可导函数,则d d yx= . A.22()f x y '+ B.22222()12()xf x y yf x y '+'-+C.222()()x y f x y '++ D.2222()12()f x y yf x y '+'-+ 7.由参数方程所确定的函数cos sin x a t y b t =⎧⎨=⎩的函数()y y x =的二阶导数22d d yx = .A.2csc bt a - B.32csc b t a -C.2csc b t a D.32csc b t a8.设()y y x =由参数方程2e 321sin 02x t t t y y π⎧=++⎪⎨-+=⎪⎩所确定,则0d d t yx == . A.0 B.12 C.1e sin 2x y D.23二、填空题1.设sin ,0(),0x x f x x x <⎧=⎨≥⎩,则(0)f '= .2.设(0)0f =,(0)f '存在,则0()limx f x x→= . 3.设2,0(),0x x f x x x ⎧≥=⎨-<⎩,则(0)f +'= ,(0)f -'= ,(0)f ' .4.设2111f x x x⎛⎫=++ ⎪⎝⎭,则()f x '= . 5.设2()y f x =,且()f x 可导,则d d yx= . 6.设()sin cos 22xf x x =+,则(100)()f π= .7.设(ln )y f x =,其中()f x ''存在,则22d d yx= .8.设g 是f 的反函数,且2(4)5,(4)3f f '==,则(5)g '= . 9.d =x,d =1d x x .10.由方程e 0x y xy ++=所确定的函数()y y x =的微分d y = .三、计算题1.求曲线sin y x =在3x π=处的切线方程和法线方程.2.(ln e x y =+,求'y3.)11y⎫=-⎪⎭,求'y4.a a xa x a y x a a =++,求'y5.cos (sin )x y x =,求'y6.设2()1n f x x x x =++++,计算()(0)n f .7. y =dyarctaney x=,求dy9. .求参数方程e sin cos tx t y t t⎧=⎨=+⎩所确定的函数()y y x =的微分d y .10. .证明:当||x 1x n≈+.第三章 微分中值定理与导数的应用作 业 题一、证明题1. 证明:若()f x 在区间I 内可导,且()0f x '=,则()f x 在区间I 内是一个常数.2.证明方程510x x +-=只有一个正实根.3.证明恒等式arctan arccot 2x x π+=.4.证明:当02x π<<时,sin tan 2x x x +>.二、求下列函数的极限.1.30sin lim ;x x x x →-2.1lim 1ln x x x x x x →--+3.21lim(cos)x x x → 4.1lim (1);xx x →+∞+5.arctan 2lim ;1x x xπ→+∞- 6.2cos lim;2x xx ππ→-三、解答题1. 判定函数)2x (0 cos )(π≤≤+=x x x f 的单调性.2. 证明:当1>x 时,xx 132->.3. 求32 )52(x x y -=的极值点与极值.4. 求函数593)(23+--=x x x x f 在]4,2[-上的最大值与最小值.5. 求曲线31x y =的拐点和凹凸区间.6. 求下列曲线的渐近线(1) 12+-=x x y ; (2) xx y )1ln(+=7. 作函数23)1(22--=x x y 的图形.练 习 题一、证明题1. 已知函数()f x 在[0,1]上连续,(0,1)内可导,且(1)0f =,证明在(0,1)内至少存在一点ξ使得()()tan f f ξξξ'=-.2.证明:当0a b <<时,ln b a b b ab a a--<<.3. 证明:若)(x f 在],[b a 上连续,在),(b a 内可导,且0)(>'x f ,则)(x f 在],[b a 上严格单增.4. 设01 (21)0=++++n a a a n ,证明多项式n n x a x a a x f +++=...)(10在)1,0(内至少有一个零点.二、求下列函数的极限.1.0e 1lim sin x x x x →-- 2.30sin cos lim sin x x x x x→-3.2ln 2lim tan x x x ππ+→⎛⎫- ⎪⎝⎭ 4.2201lim cot x x x →⎛⎫- ⎪⎝⎭5.sin 0lim(cot )xx x → 6.210arcsin lim xx x x →⎛⎫ ⎪⎝⎭三、解答题1.确定下列函数的单调区间.(1)82y x x=+ (2)23(1)y x x =-2.列表求曲线2ln(1)y x =+的拐点和凹凸区间.4.求函数()(1)e x f x x -=+的极值.5.求函数32()21f x x x x =-+-在[0,2]上的极值,最大值与最小值.6. 设324x y x+=,求:⑴ 函数的增减区间与其极值; ⑵ 函数图象的凹凸区间与其拐点; ⑶ 渐近线; ⑷ 做出其图形.第四章 不定积分 作 业 题一、求下列不定积分: (1) ⎰-dx xx )1(2; (2) ⎰++dx x x 1124;(3) dx xx e e x xx⎰--) 2(3; (4) dx xx ⎰sin cos 122;二、用第一换元法求下列不定积分(1) ⎰xdx x 54cos sin ; (2) )0( 22>-⎰a xa dx ;(3) dx x x x )1(arctan ⎰+; (4) )0( 22≠+⎰a xa dx;三、用其次换元法求下列不定积分 (1) dx x x x ln ln 1⎰+; (2) dx xx x x ln 12⎰++;(3) ⎰-24xx dx . (4) )0( 22>+⎰a xa dx .四、用分部积分计算下列不定积分(1) ⎰xdx x ln ; (2) ⎰dx e x x 2;(3) ⎰≠=)0( sin ab bxdx e I ax (4) ⎰dx xe x .五、求下列不定积分(三角函数、有理式、无理式)(1) ⎰+--+dx x x x x x 223246)1(24; (2) ⎰+)1(24x x dx ;(3)dx xx ⎰ cos sin 32. (4)dx x x xx cos 3sin 2cos 2sin 3⎰++.(5) ⎰-+342)1()1(x x dx; (6) dx xx 14⎰+;练 习 题一、填空题1.设2()ln(1)d f x x x C =++⎰,则()f x = . 2.()d d f x ⎰= .3.设()F x 是()f x 的一个原函数,则()e e d x x f x --⎰= .二、单项选择题1.下列等式正确的是 .A .()()d d f x x f x =⎰B .()()d f x x f xC '=+⎰C .()()d f x f x =⎰D .()()dd d f x x f x C x =+⎰ 2. 曲线()y f x =在点(,())x f x 处的切线斜率为1x ,且过点2(,3)e ,则该曲线方程为 .A .ln y x =B .ln 1y x =+C .211y x=-+ D .ln 3y x =+3. 设()f x 的一个原函数是2e x -,则()d xf x x '=⎰ . A .222e x x C --+ B .222e xx --C .22(21)e x x C ---+ D .()()d xf x f x x +⎰三、求下列不定积分1. x2. ⎰xdx x 35sec tan3. dx x x x ⎰++)1(212224. x ⎰5. 23sin cos d x x x ⎰6. 3tan d x x ⎰7.x 8.9.2(1)d xx x -⎰10.d x ⎰11.x ⎰12. 2sin e d xx x ⎰13.x ⎰ 14.21(1)d x x x +⎰第五章 定积分 作业题一、求下列定积分1. 22sec (1tan )40d x x x π+⎰ 2.13-21(115)d x x +⎰3. 122(1)0d x x +⎰ 4.41x ⎰5.221x ⎰ 6.401cos 2d x x x π+⎰7.220sin d x x x π⎰ 8.1cos(ln )ed x x ⎰9.1ex ⎰ 10.2x ⎰二、解答题 1.把极限)221limn n n →∞++表示成定积分.2. 03(sin )lim(1)d e xxx t t tx →--⎰3. 设21,1()1,12x x f x x x +≤⎧⎪=⎨>⎪⎩,求20()d f x x ⎰与0()()d x x f x x ϕ=⎰.4.设()f x 在(,)-∞+∞上连续,且()(2)()0d xF x x t f t t =-⎰,证明:若()f x 单调不增,则()F x 单调不减.三、定积分的几何应用1.求抛物线243y x x =-+-与其在点()0,3-和()3,0处的切线所围成的图形的面积.2. 设有曲线y =过原点作其切线,求由此曲线、切线与x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的体积.3. 计算底面是半径R 的圆,而垂直于底面上一条固定直径的全部截面都是等边三角形的立体体积.练 习 题一、填空题1.依据定积分的几何意义,20d x x =⎰ ,1x -=⎰ , sin d x x ππ-=⎰ .2. 设0sin d t x u u =⎰,0cos d t y u u =⎰,则d d y x = . 3.31d d d x x ⎰= .4.设e x x -为()f x 的一个原函数,则10()d xf x x '=⎰ .5. 设()f x 是连续函数,且2-1()0d x f t t x =⎰,则(7)f = .二、单项选择题1. 定积分()d b a f x x ⎰ .A .与()f x 无关B .与区间[],a b 无关C .与()d b a f t t ⎰相等D .是变量x 的函数2.设()f x 在[],a b 上连续,()()d x a x f t t φ=⎰,则 . A .()x φ是()f x 在[],a b 上的一个原函数B .()f x 是()x φ在[],a b 上的一个原函数C .()x φ是()f x 在[],a b 上唯一的一个原函数D .()f x 是()x φ在[],a b 上唯一的一个原函数 3.arctan b d d d a x x x=⎰______. A .arctan x B .211x + C .arctan arctan b a - D .0 4.下列反常积分收敛的是 .A .+0e d x x ∞⎰B .1ln e d x x x +∞⎰C .1sin 1-1d x x⎰ D .32+1d x x -∞⎰ 5.211-1d x x=⎰ .A .0B .2C .-2D .发散三、计算题1.ln 0x ⎰ 2.)211d x x -⎰3.x ⎰ 4.20sin cos sin cos d x x x x xπ-++⎰5.已知sin ,01(),12x x f x x x ≤≤⎧=⎨<≤⎩,求0()()d x F x f t t =⎰.四、求下列定积分与反常积分1.求1ln e e d x x x ⎰ 2.220cos x x x π⎰d3.1sin(ln )x x ⎰e d 4.244cos e d x x x ππ-⎰5.1x ⎰06.0d e ex x x +∞-+⎰7.322arctan (1)+0d x x x ∞+⎰ 8.+1x ∞⎰五、证明题1.设()f x 是连续函数,证明()()d d b ba a f x x f ab x x =+-⎰⎰六、计算题1.直线y x =将椭圆2236x y y +=分为两部分.设小块面积为A ,大块面积为B ,求A B的值.2.求由曲线1sin y x =+与直线0,0,y x x π===围成的曲边梯形绕x 轴旋转所成的旋转体的体积.。
高等数学第二版教材练习答案
高等数学第二版教材练习答案第一章:数学形式与证明练习题答案:1. (2, ∞)2. -√2, √23. 假设已知函数f(x) ≥ 0,而 f(x) = 0 的一个解为 x = a,则 x = a 是函数f(x) ≥ 0 的最小零点。
4. a. 记 b = 1 - √2,则 (b - √2)^2 = (1 - √2 - √2)^2 = (1 - 2√2 + 2)^2 =(3 - 2√2)^2 = 9 - 12 + 8 = -3 < 0。
b. ∃a∈R,无论 a 取何值,都有 a^2 + 2a + 2 > 0。
5. a. 必要性:已知f(x) 是偶函数,即f(-x) = f(x),则对于∀x∈D_f,有 -x∈D_f,即 (b)。
充分性:已知对于∀x∈D_f,有 -x∈D_f,即 (b),则有 f(-x) = f(-(-x)) = f(x),即 f(x) 是偶函数。
b. 必要性:已知f(x) 是奇函数,即f(-x) = -f(x),则对于∀x∈D_f,有 -x∈D_f,即 (a)。
充分性:已知对于∀x∈D_f,有 -x∈D_f,即 (a),则有 f(-x) = -f(x),即 f(x) 是奇函数。
6. a. 设 f(x) 是周期函数,周期为 T>0,则对于∀x∈R,有 x+T∈D_f,即 (c)。
b. 存在正常数 a>0,使得对于∀x∈R,有 x+a∈D_f,即 (b)。
例如,函数 f(x) = sin(x) 满足这个条件。
c. 存在正常数 a>0,使得对于∀x∈R,有 x+a∈D_f 且 x+2a∈D_f,即 (a)。
例如,函数 f(x) = sin(2x) 满足这个条件。
d. 必要性:已知 f(x) 是周期函数,周期为 T>0,则对于∀x∈R,有 x+T∈D_f,即 (c),故 b-d 都是必要条件。
充分性:设 b、c、d 其中至少有一个条件满足,即 f(x) 在某个区间内满足 b/c/d 条件。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
高等数学第三版上册课后习题答案
高等数学第三版上册课后习题答案高等数学是大学数学的一门重要课程,它为学生提供了丰富的数学知识和解决问题的能力。
而课后习题作为巩固和拓展知识的重要方式,对于学生来说是非常重要的。
然而,由于高等数学的复杂性和抽象性,许多学生在解题过程中会遇到困难。
因此,本文将为大家提供高等数学第三版上册课后习题的答案,希望能够帮助大家更好地理解和掌握这门课程。
第一章:极限与连续1. 习题1:设函数f(x) = x^2 + 3x - 2,求f(x)在x = 2处的极限。
解答:将x = 2代入f(x),得到f(2) = 2^2 + 3*2 - 2 = 10。
因此,f(x)在x = 2处的极限为10。
2. 习题2:求函数f(x) = (x - 1) / (x + 1)在x = -1处的极限。
解答:将x = -1代入f(x),得到f(-1) = (-1 - 1) / (-1 + 1) = 0/0。
由于0/0是一个不确定形式,我们需要进行进一步的计算。
通过分子有理化,可以得到f(x) = (x - 1) / (x + 1) = (x + 1 - 2) / (x + 1) = 1 - 2 / (x + 1)。
当x趋近于-1时,2 / (x + 1)趋近于无穷大,因此f(x)在x = -1处的极限为负无穷大。
第二章:导数与微分1. 习题1:求函数f(x) = x^3 - 3x^2 + 2x的导数。
解答:对f(x)进行求导,得到f'(x) = 3x^2 - 6x + 2。
2. 习题2:求函数f(x) = e^x在x = 0处的导数。
解答:e^x的导数等于其本身,因此f'(x) = e^x。
将x = 0代入f'(x),得到f'(0) = e^0 = 1。
因此,函数f(x) = e^x在x = 0处的导数为1。
第三章:微分中值定理与导数的应用1. 习题1:证明函数f(x) = x^3 - 3x在[-1, 1]上满足罗尔定理的条件,并找出满足罗尔定理的点。
高数练习题 第一章 函数与极限
‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。
自学考试高等数学练习试卷1(题后含答案及解析)
自学考试高等数学练习试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题选择题1.若则A.B.C.2D.4正确答案:B解析:令则当x→∞时,t→0,则2.要使在点x=0处连续,应给f(0)补充定义的数值是( ).A.kmB.C.1nkmD.ekm正确答案:A解析:∴f(0)=km,选A项.3.设f(x2)=x4+x2+1,则f’(-1)=( ).A.1B.3C.-1D.-3正确答案:C解析:(1)∵f(x2)=(x2)2+x2+1,∴f(x)=x2+x+1.(2)f’(x)=2x+1,f’(-1)=-2+1=-1,选C项.4.已知f(x)=(x-3)(x-4)(x-5),则f’(x)=0有( ).A.一个实根B.两个实根C.三个实根D.无实根正确答案:B解析:(1)∵f(x)在[3,4]连续在(3,4),可导且f(3)=f(4)=0,∴.f(x)在[3,4]满足罗尔定理条件,故有f(ξ1)=0(3<ξ1<4).(2)同理f(x)在[4,5]满足罗尔定理有f’(ξ2)=0,4<ξ2<5.综上所述,f’(x)=0在(3,5)至少有两个实根(3)f’(x)=0是一元二次方程,至多有两个根,故选B项.5.已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,则f[g(x)]的一个原函数为( ).A.x2B.cos2xC.cosx2D.cosx正确答案:B解析:(1)∵f(x)=(cosx)’=-sinx,g(x)=(x2)’=2x,∴f[g(x)]=-sin2x.(2)∵(cos2x)’=2cosx(-sinx)=-sin2x,∴选B项.6.设e-x是f(x)的一个原函数,则A.e-x(x+1)+CB.-e-x(x+1)+CC.e-x(1-x)+CD.e-x(x-1)+C正确答案:A解析:∵F(x)=e-x,f(x)=F’(x)=-e-x,选A项.填空题7.微分方程y”+y=0满足则的解是____________.正确答案:y=sinx解析:y”+y=0的通解为y=C1cosx+C1sinx.由题意得:C1=0,C2=1,所以方程的解为y=sinx.8.若f’(2)=2,则正确答案:-12解析:9.过点P(1,2,3)且与直线平行的直线方程为___________.正确答案:解析:设所求的直线为l,其方向向量为,已知直线的方向向量取为n1×n2={1,-2,3}×{3,1,-2}={1,11,7},因为两直线平行,故直线方程为10.正确答案:0解析:11.已知x→0时,a(1-cosx)与xsinx是等价无穷小,则a=___________.正确答案:2解析:由题意所以a=2.12.交换二重积分的次序:正确答案:解答题13.设函数y=y(x)由方程ex-ey=xy确定,求正确答案:方程ex-ey=xy,两边对x求导数得ex-ey·y’=y+xy’,故又当x=0时,y=0,故14.已知y=(1-x2)cosx,求y(n).正确答案:15.求正确答案:16.计算定积分正确答案:17.计算正确答案:18.求微分方程x2y’=xy-y2的通解.正确答案:将原方程变形为:令则y’=p+xp’,代入原方程得xp’=-p2,分离变量得两边积分,得即19.已知z=f(x2-y2,xy),求正确答案:已知20.f(x)在x=0处连续,求a;正确答案:21.求f’(x).正确答案:x≠0,当x=0时,综合题22.证明:函数在x=0处连续,在x=0处不可导.正确答案:因为所以又f(0)=0,所以函数f(x)在x=0处连续. 因为所以函数f(x)在x=0处不可导.23.证明:当x>0时,(x2-1)lnx≥(x-1)2.正确答案:令显然,F(x)在(0,∞)上连续,由于故F(x)在(0,∞)上单调递增,于是,当0<x<1时,F(x)<F(1)=0,即又(x2-1)lnx>(x-1)2. 故(x2-1)lnx≥(x-1)2;当x≥1时,F(x)≥F(1)=0,即又x2-1≥0. 故(x2-1)lnx≥(x-1)2. 综上所述,当x>0时,总有(x2-1)lnx≥(x-1)2.证明题24.证明:当时,成立.正确答案:设则令在区间内解得x=0.由知在区间内的最小值是f(0)=0.故当时,则。
高等数学练习题(函数)
使所用材料最省?若底面单位面积的造价是侧面单位面积造价
的2倍,问怎样设计才能使造价最低?
练习题九
一、填空题:
1、D: 0 x 1, 0 y 1 dxdy
。
D
2、D:y 0, x 0, y 1 x dxdy
。
D
3、D:x2 y2 1
dxdy
。
D
4、D: y x, x 2, y 0 dxdy
x [ 3 , ]
22
B、 f ( x) ( x 4)2 x [2,4] D、 f ( x) | x | x [1,1]
2、f ( x) 2x2 x 1在[1,3]上满足拉格朗日中值定理条件的
A、
3 4
B、0
C、 3
4
D、1
3、若 x0 是 f ( x) 的极值点,则下列命题正确的是(
dx x
D、
xe xdx
0
1
4、 A、 1 x2 dx
B、 1
ln xdx x
5、 A、 0 e2xdx
B、 1 dx
1x
三、计算:
3
x x 1dx
0
C、 x cos xdx 0
D、
1
x x
2
dx
C、 1 dx 1x
D、
0
1
x x
2
dx
四、求下列各题中所给曲线及直线围成的平面图形面积
下列反常积分中收敛的是(
)
1、 A、 exdx 0
2、
A、 1
1 x3
3、
A、 0 e xdx
B、2
x
1 ln
x
dx
C、
1 dx 0 1 x
根的存在性证明问题的解法
在高等数学中经常会出现一类题:即证明根的存在性。
今天就来借两道经典的母题来对此类题目的证明做个总结。
一、此类题目的两种思路证明连续函数f(x)在区间[a,b]上根的存在性,最常用的思路有两种:1、利用零点定理。
也就是说只要证明f(x)在[a,b]存在两点c<d (可能有c=a,b=d ,但也可能没有),且f(c)*f(d)<0即可,那么f(x)在[c,d]上必存在零根。
2、利用罗尔定理。
首先构造f(x)的原函数F(X)(即F ’(x)=f(x)),然后证明在[a,b]上有点c,d (c<d,可能有c=a,b=d,也可能没有),使得F(c)=F(d),那么根据罗尔定理,在[c,d]上必有一点t ,使得F ’(t)=0,也就是f(t)=0,因此题目得证。
解答这类题目,关键还在于多练习,多做题目找感觉和经验,尤其是对于F(x)的构造,技巧性较大,更加需要经验的积累。
本文的最后会给出常见的F(x)的构造方法。
二、一道典型例题,小试牛刀下面我我们就来证明一道典型的例题来试一试上面的两种思路吧。
题目:已知()()()()012/2/3/10n a a a a n +++⋯++=,证明方程010n n a a x a x ++⋯+=在(0,1)上至少有一个根。
解法一:我们利用零点定理来解答。
我们直接令()01 n n f x a a x a x =++⋯+然后观察a n x n 与a n /(n+1)这两项的关系,发现有101n n n a a x dx n =+⎰,那么我们就可以得到()11010010 (210)n n n f x dx a a x a x dx a a a n =++⋯+⎛⎫=+++ ⎪+⎝⎭=⎰⎰ 如果f(x)在(0,1)上恒大于0,那必有()100f x dx >⎰矛盾,如果f(x)在(0,1)上恒小于0,则有()100f x dx <⎰矛盾。
因此在(0,1)内必有两点c<d ,使得f(c)*f(d)<0。