2019年全国高考理科数学数学分类汇编---排列组合二项式定理
2019年高考数学(理)精品资料:1.7 排列组合二项式定理(讲)含解析
1 / 7
2019年高考数学(理)精品资料:
1.7 排列组合二项式定理(讲)
考向一 两个计数原理、排列组合的综合应用
【高考改编☆回顾基础】
2017课标II 改编】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 .
【答案】36
【解析】
由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列33A 即可,由乘法原理,不同的安排方式共有
种
方法.
2.【两个计数原理】【2018年新课标I 卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1
位女生入选,则不同的选法共有_____________种.(用数字填写答案)
【答案】16
【解析】
根据题意,没有女生入选有
种选法, 从6名学生中任意选3人有种选法, 故至少有1位女生入选,则不同的选法共
有种,故答案是16.
3.【计数原理、简单组合问题】【2018年浙江卷】从1,3,5
,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)
【答案】1260.
【解析】
若不取零,则排列数为
若取零,则排列数为 因此一共有个没有重复数字的四位数.
4.【计数原理、简单排列组合问题】【2017天津,理14】用数字1,2,3,4,5,6,7,8,。
2019年全国高考理科数学试题分类汇编10:排列、组合及二项式定理
2019年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯W ORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-【答案】D2 .(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2019年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是 A .56B .84C .112D .168【答案】D5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2019年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2019年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2019年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2019年高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2019年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为222222(133)(22323)(++++⨯+⨯++⨯+(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2019年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】1013.(2019年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))6x ⎛⎝的二项展开式中的常数项为______.【答案】1517.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________【答案】10。
2019年高考数学理试题分类汇编:排列组合与二项式定理
2019年高考数学理试题分类汇编排列组合与二项式定理一、排列组合1、(2019年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72【答案】D2、(2019年全国II 高考)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9【答案】B3、(2019年全国III 高考)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个 (C )14个 (D )12个 【答案】C二、二项式定理1、(2019年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.2、(2019年山东高考)若(a x 2+1x)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 3、(2019年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________【答案】1124、(2019年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A5、(2019年天津高考)281()x x -的展开式中x 2的系数为__________.(用数字作答)【答案】56-6、(2019年全国I 高考)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。
【备战2019】(北京版)高考数学分项汇编 专题11 排列组合、二项式定理(含解析)文
【备战2018】(北京版)高考数学分项汇编 专题11 排列组合、二项式
定理(含解析)文
( )
A . 33
B . 29
C .23
D .19
2. 【2009高考北京文第5题】用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )
A .8
B .24
C .48
D .120
3. 【2006高考北京文第4题】在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有 A.36 B.24 C.18 D.6
4. 【2007高考北京文第5题】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )
A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个
5. 【2005高考北京文第8题】五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )
(A )1444C C 种 (B )1444C A 种 (C )44
C 种 (
D )44A 种
6. (用数字作答)
7.
)
作答)
【答案】10 32。
【备战2019】(上海版)高考数学分项汇编 专题11 排列组合、二项式定理(含解析)理
2019届高三上期末数学分类汇编(30)排列组合、二项式定理(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)14.设,则的值为__________.【答案】1【解析】【分析】分别令x=0和x=-1,即可得到所求.【详解】由条件,令x=0,则有=0,再令x=-1,则有-1=,∴,故答案为1.【点睛】本题考查二项式定理的系数问题,利用赋值法是解决问题的关键,属于中档题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)14.二项式的展开式中,的系数为__________.(用数字填写答案)【答案】【解析】【分析】本道题利用二项式系数,代入,计算,即可.【详解】利用二项式系数公式,故的系数为,所以为【点睛】本道题考查了二项式系数公式,难度较小.(湖北省2019届高三1月联考测试数学(理)试题)14.某共享汽车停放点的停车位排成一排且恰好全部空闲,假设最先来停车点停车的3辆共享汽车都是随机停放的,且这3辆共享汽车都不相邻的概率与这3辆共享汽车恰有2辆相邻的概率相等,则该停车点的车位数为_______.【答案】10【解析】【分析】设停车位有n个,求出这3辆共享汽车都不相邻的种数和恰有2辆相邻的种数,可得A n﹣23=A32A n﹣22,解得即可.【详解】设停车位有n个,这3辆共享汽车都不相邻的种数:相当于先将(n﹣3)个停车位排放好,再将这3辆共享汽车,插入到所成(n﹣2)个间隔中,故有A n﹣23种,恰有2辆相邻的种数:先把其中2辆捆绑在一起看做一个复合元素,再和另一个插入到,将(n﹣3)个停车位排放好所成(n﹣2)个间隔中,故有A32A n﹣22种,因为这3辆共享汽车都不相邻的概率与这3辆共享汽车恰有2辆相邻的概率相等,∴A n﹣23=A32A n﹣22,解得n=10,故答案为:10.【点睛】本题考查了排列组合中的相邻问题和不相邻问题,考查了运算能力和转化能力,属于中档题.(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)13.(2+)(2+x)5的展开式中x2的系数是____.(用数字作答)【答案】200【解析】【分析】求出(2+x)5展开式的通项公式,要求x2的系数,只需求出(2+x)5展开式中x2和x3的系数即可.【详解】(2+)(2+x)5展开式中,含x2的项为2+=(2+)=200x2,所以系数为200,故答案为200.【点睛】本题主要考查二项式定理的基本应用,利用展开式的通项公式确定具体的项是解决本题的关键.(江西省新余市2019届高三上学期期末考试数学(理)试题)8.把1,2,3,,6这六个数随机地排成一列组成一个数列,要求该数列恰先增后减,则这样的数列共有多少个?A. 31B. 30C. 28D. 32【答案】B【解析】【分析】该数列恰先增后减,则数字6一定是分界点,且前面的顺序和后面的顺序都只有一种,根据6前面的数字的个数多少分类即可.【详解】解:该数列恰先增后减,则数字6一定是分界点,且前面的顺序和后面的顺序都只有一种,当6前有1个数字时,有种,当6前有2个数字时,有种,当6前有3个数字时,有种,当6前有4个数字时,有种,根据分类计数原理,共有种,故选:B.【点睛】本题考查分类计数原理,关键是掌握分类的方法,属于中档题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)14.为培养学生的综合素养,某校准备在高二年级开设,,,,,六门选修课程,学校规定每个学生必须从这门课程中选门,且,两门课程至少要选门,则学生甲共有__________种不同的选法.【答案】【解析】【分析】本道题先计算总体个数,然后计算A,B都不选的个数,相减,即可。
2019年全国2卷省份高考模拟理科数学分类--排列组合二项式定理
2019年全国2卷省份高考模拟理科数学分类----排列组合二项式定理1.(2019重庆市理科模拟)设(1﹣x)(1+x)5=a+a1x+a2x3+a3x3+…+a6x6,则a1的值为【分析】由二项式定理及展开式通项公式得:(1﹣x)(1+x)5展开式x的一次幂的系数a1==4,得解.【解答】解:由(1+x)5展开式的通项得T r+1=x r,则(1﹣x)(1+x)5展开式x的一次幂的系数a1==4,故答案为:4.【点评】本题考查了二项式定理及展开式通项公式,属中档题.2.(2019青海西宁四中理科模拟)在二项式的展开式中,含的项的系数是A. B. 15 C. D. 60【答案】D【解析】解:二项式的展开式的通项公式为,令,求得,可得展开式中含项的系数为,故选:D.在二项展开式的通项公式中,令x的幂指数等于6,求得r的值,可得展开式中含项的系数.本题考查了二项式定理的应用,二项展开式的通项公式,属于中档题.3.(2019青海西宁四中理科模拟)有5名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学不能相邻,则不同的站法有A. 8种B. 16种C. 32种D. 48种【答案】B【解析】解:根据题意,假设有1、2、3、4、5,共5个位置,分3步进行分析:,甲必须站在正中间,将甲安排在3号位置,,在1、2、4、5中一个位置任选1个,安排乙,有4种情况,由于乙、丙两位同学不能相邻,则丙有2种安排方法,,将剩下的2名同学全排列,安排在剩下的2个位置,有种安排方法,则有种安排方法;故选:B.根据题意,假设有1、2、3、4、5,共5个位置,分3步进行分析:,将甲安排在3号位置,,在1、2、4、5中一个位置任选1个,安排乙,依据乙、丙两位同学不能相邻,再安排丙,,将剩下的2名同学全排列,安排在剩下的2个位置,由分步计数原理计算可得答案.本题考查排列组合的应用,注意题目的限制条件,优先满足受到限制的元素.4.(2019大连重点校协作体理科模拟)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙2人中至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序的种数为()A.720B.520C.600D.264【分析】根据题意分甲、乙其中一人参加和甲乙两人都参加两种情况,再由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论,若甲乙其中一人参加,则有••=192种情况;若甲乙两人都参加,有••=72种情况;则不同的发言顺序种数192+72=264种.故选:D.【点评】本题考查了排列、组合知识的应用问题,利用加法原理,正确分类是关键.5.(2019大连重点校协作体理科模拟)二项式(ax﹣)3的展开式中,第三项的系数为,则(+)dx=【分析】由题意利用二项展开式的通项公式求得a的值,再根据定积分的意义及运算,求得结果.【解答】解:二项式(ax﹣)3的展开式中,第三项的系数为••a=,∴a=2,则(+)dx=(+)dx=dx+dx=lnx+•π•12=ln2+,故答案为:ln2+.【点评】本题主要考查本题主要考查二项式定理的应用,二项展开式的通项公式,定积分的意义及运算,属于中档题.6(2019吉林省四平一中理科模拟).的展开式的第项为_______.【答案】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为,故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.7.(2019吉林长春市理科模拟)某学校要将4名实习教师分配到3个班级,每个班级至少要分配1名实习教师,则不同的分配方案有()A. 24种B. 36种C. 48种D. 72种【答案】B【分析】每个班级至少要分配1名实习教师,故4名教师中必然有两名教师分配到同一个班级,故可以先选出两名教师安排到一个班级实习,剩下的两名教师再进行排序安排班级。
2019年高考数学真题分类汇编:专题(11)排列组合、二项式定(理科)及答案
专题十一 排列组合、二项式定理1.【2018高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =.2.【2018高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 3.【2018高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.4.【2018高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( ) A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2018高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2018高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别. 7.【2018高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r rr n T C a b n N n r N -+=∈≥∈且.8.【2018高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2018高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2018高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()rr r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2018高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2018高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2018高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2018高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )C.6 D-6 【答案】D. 【解析】试题分析:r rr rr x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.【2018高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2018高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。
2019年高考数学(理科)二轮复习讲义:专题六 第四讲 排列、组合、二项式定理Word版含答案
第四讲排列、组合、二项式定理排列、组合应用授课提示:对应学生用书第69页[悟通——方法结论]两个计数原理解题的方法在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.求解排列、组合问题常用的解题方法(1)元素相邻的排列问题——“捆绑法”;(2)元素不相邻的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法;(5)分组分配问题①平均分组问题分组数计算时要注意除以组数的阶乘.②不平均分组问题实质上是组合问题.[全练——快速解答]1.(2017·高考全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种答案:D2.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国国家元首的安全,某部门将5个安保小组全部安排到指定的三个区域内工作,且每个区域至少有一个安保小组,则这样的安排方法共有( )A .96种B .100种C .124种D .150种 解析:因为每个区域至少有一个安保小组,所以可以把5个安保小组分成三组共有两种方法,一种是按照1,1,3来分,另一种是按照2,2,1来分.当按照1,1,3来分时,不同的分法共有N 1=C 15C 14C 33A 22A 33=60(种);当按照2,2,1来分时,不同的分法共有N 2=C 25C 23C 11A 22A 33=90(种).根据分类加法计数原理,可得这样的安排方法共有N =N 1+N 2=150(种),故选D. 答案:D3.3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9 C .72D .36解析:可分两步:第一步,把3名女生作为一个整体,看成一个元素,3名男生作为一个整体,看成一个元素,两个元素排成一排有A 22种排法;第二步,对男生、女生“内部”分别进行排列,女生“内部”的排法有A 33种,男生“内部”的排法有A 33种.故符合题意的排法种数为A 22×A 33×A 33=72,故选C.答案:C4.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有( )A .60B .20种C .10种D .8种解析:根据题意,可分两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C 35=10(种)情况.故不同的开灯方案共有10×1=10(种),故选C. 答案:C5.某大学的6名大二学生打算参加学校组织的“临界动漫协会”“大学生心理卫生协会”“学生跆拳道协会”“蓝天环保社团”“《马头琴》诗歌协会”5个社团,若每名学生必须参加且只能参加1个社团,并且每个社团至多2人参加,则这6人中至多有1人参加“学生跆拳道协会”的不同参加方法种数为 ( )A .1440B .3600C .5040D .6840解析:可分两类:第一类,若有1人参加“学生跆拳道协会”,则从6人中选1人参加该社团,其余5人去剩下4个社团,人数安排有两种情况,即1,1,1,2和1,2,2,故1人参加“学生跆拳道协会”的不同参加方法种数为C 16×(C 15C 14C 13A 33A 44+C 25C 23A 22A 34)=3600;第二类,若无人参加“学生跆拳道协会”,则6人参加剩下4个社团,人数安排有两种情况,即1,1,2,2和2,2,2,故无人参加“学生跆拳道协会”的不同参加方法种数为C 26C 24C 12A 22A 22A 44+C 26C 24C 22A 33·A 34=1440.故满足条件的方法种数为3600+1440=5040,故选C.答案:C掌握分组、分配问题的求解策略(1)分组问题属于“组合”问题,按组合问题求解,常见的分组问题有三种: ①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,若有n 组均匀,最后必须除以n !; ③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,可以按要求逐个分配,也可以分组后再分配. (3)解决分组分配问题的基本指导思想是先分组,后分配.二项式定理授课提示:对应学生用书第70页[悟通——方法结论]1.通项与二项式系数T k +1=C k n a n -k b k(k =0,1,2,…,n ),其中C k n 叫作二项式系数.2.各二项式系数之和(1)C 0n +C 1n +C 2n +…+C n n =2n ; (2)C 1n +C 3n +…=C 0n +C 2n +…=2n -1.3.二项式系数的最大项由n 的奇偶性决定 当n 为奇数时,中间两项的二项式系数最大; 当n 为偶数时,中间一项的二项式系数最大.(1)(2017·高考全国卷Ⅰ)在⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.答案:C(2)(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.答案:C(3)若(3x -1)2018=a 0+a 1x +a 2x 2+…+a 2018x 2018(x ∈R ),则13+a 232a 1+a 333a 1+…+a 201832018a 1=________.解析:令x =0,可得a 0=1.由通项公式可得a 1=C 20172018·31·(-1)2017=-6054.令x =13,得a 13+a 232+a 333+…+a 201832018=-1,则13+a 232a 1+a 333a 1+…+a 201832018a 1=1a 1⎝⎛⎭⎫a 13+a 232+a 333+…+a 201832018=-1a 1=16054. 答案:160541.公式法求特定项的类型及思路通项公式T r +1=C r n an -r b r的主要作用是求展开式中的特定项,常见的类型有: (1)求第k 项,此时r +1=k ,直接代入通项公式求解; (2)求含x m 的项,只需令x 的幂指数为m 建立方程求解;(3)求常数项,即项中不含x ,可令x 的幂指数为0建立方程求解;(4)求有理项,先令x 的幂指数为整数建立方程,再讨论r 的取值.若通项中含有根式,一般先把根式化为分数指数幂,以减少计算错误.2.赋值法研究二项展开式的系数和问题的策略“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.[练通——即学即用]1.(2018·唐山模拟)(x 2-1x )6的展开式中的常数项为( )A .15B .-15C .20D .-20解析:依题意,T r +1=C r 6(x 2)6-r (-1x )r =C r 6(-1)r x 12-3r,令12-3r =0,则r =4,所以(x 2-1x)6的展开式中的常数项为C 46(-1)4=15,选择A. 答案:A2.(2018·长郡中学模拟)若二项式(x 2+ax )7的展开式的各项系数之和为-1,则含x 2项的系数为( )A .560B .-560。
2019年高考(理科)数学二轮专题复习课件:专题六 第四讲 排列、组合、二项式定理
中至多有 1 人参加“学生跆拳道协会”的不同参加方法种数为 类, 若无人参加 “学生跆拳道协会”, 则 6 人参加剩下 4 个社团, (人数安排有两种情况,即 1,1,2,2 和 2,2,2,故无人参加“学生跆 C )
考点一
考点二
课后训练 提升能力
首页
上页 下页
尾页
考点一
排列、组合应用
[全练——快速解答]
根据题意,可分两步: 4.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯 第一步,先安排四盏不亮的路灯,有 1 种情况; 不相邻,则不同的开灯方案共有( C ) 第二步,四盏不亮的路灯排好后,有 5 个空位,在 5 个空位中 A.60 B.20 种 任意选 3 个,插入三盏亮的路灯,有 C3 5=10(种)情况. C.10 种 D. 8 种 故不同的开灯方案共有 10×1=10(种),故选 C.
考点一 考点二 课后训练 提升能力 首页 上页 下页 尾页
考点一
排列、组合应用
(4) 带有“含”与“不含”“至多”“至少”的排列组合问题 ——间接法; (5)分组分配问题 ①平均分组问题分组数计算时要注意除以组数的阶乘. ②不平均分组问题实质上是组合问题.
考点一
考点二
课后训练 提升能力
首页
上页 下页
尾页
考点一
排列、组合应用
[全练——快速解答]
因为每个区域至少有一个安保小组,所以可以把 5 个安保小组 2.第一届“一带一路”国际合作高峰论坛于 2017 年 5 月 14 日 分成三组共有两种方法,一种是按照 1,1,3 来分,另一种是按照 至 15 日在北京举行,为了保护各国国家元首的安全,某部门将 2,2,1 来分. 5 个安保小组全部安排到指定的三个区域内工作,且每个区域至 1 1 3 C5 C4C3 3 当按照 1,1,3 来分时,不同的分法共有 N1=( D2 ) A3=60(种); 少有一个安保小组,则这样的安排方法共有 A2
2019年高考理科数学知识点总结:排列、组合和二项式定理、数学归纳法
高中数学知识点总结 第 1 页 共 1 页 2019年高考理科数学知识点总结:排列、组合和二项式定理、数学归纳法排列、组合和二项式定理、数学归纳法127. 排列数、组合数的计算(1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-L ;!(1)(2)21n n A n n n n ==--⋅L 。
(2)组合数公式()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =. (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=; (4)分组问题:要注意区分是否均匀,有无组别,平均分成n 组问题别忘除以n !。
(5)至多至少问题要注意分清所需元素具体数目(切忌盲目保底)或者用间接法128.二项式定理:011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二项式系数;展开式共有n +1项,其中第r +l 项1r n r r r n T C a b -+=称为二项展开式的通项,二项展开式通项的主要用途是求指定的项.特别提醒:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。
(2)审题时注意区分所求的是项还是第几项?求的是系数还是二项式系数? 129、二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即m n nm n C C -=; (2)增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C rn 的值逐渐减小,且在中间取得最大值。
2019年高考数学(理):专题04-算法、排列、组合与二项式定理(命题猜想).doc
12019年高考数学(理):专题04-算法、排列、组合与二项式定理【考向解读】1.高考中主要利用计数原理求解排列数、涂色、抽样问题,以小题形式考查;2.二项式定理主要考查通项公式、二项式系数等知识,近几年也与函数、不等式、数列交汇,值得关注.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.3.以选择题、填空题的形式考查古典概型、几何概型及相互独立事件的概率;4.二项分布、正态分布的应用是考查的热点;5.以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等.6.在概率与统计的交汇处命题,以解答题中档难度出现. 【命题热点突破一】程序框图 例1、(2018年全国Ⅱ卷理数)为计算,设计了下面的程序框图,则在空白框中应填入A. B. C.D.【答案】B【解析】由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.【变式探究】【2017课标1,理8】右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A 1 000和n =n+12D .A ≤1 000和n =n +2【答案】D【解析】由题意,因为,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D. 【变式探究】执行右面的程序框图,如果输入的,则输出x ,y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】当时,,不满足;,不满足;,满足;输出3,62x y ==,则输出的,x y 的值满足4y x =,故选C. 【感悟提升】程序框图中单纯的顺序结构非常简单,一般不出现在高考中,在高考中主要出现的是以“条件结构”和“循环结构”为主的程序框图.以“条件结构”为主的程序框图主要解决分段函数求值问题,以“循环结构”为主的程序框图主要解决数列求和、统计求和、数值求积等运算问3题,这两种类型的程序框图中,关键因素之一就是“判断条件”,在解题中要切实注意判断条件的应用. 【变式探究】某程序框图如图 所示,若该程序运行后输出的S 的值为72,则判断框内填入的条件可以是( )A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11? 【答案】A【解析】依题意,可知程序运行如下:n =1,S =0→S =0+2×1=2,n =2→S =2+2×2=6,n =3→S =6+2×3=12,n =4→S =12+2×4=20,n =5→S =20+2×5=30,n =6→S =30+2×6=42,n =7→S =42+2×7=56,n =8→S =56+2×8=72,n =9,此时输出S 的值为72,故判断框中应填“n ≤8?”.【命题热点突破二】排列与组合例2、(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 【答案】1260【解析】若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.【变式探究】【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列33A 即可,由乘法原理,不同的安排方式共有种方法。
2019高考数学(理)高分大二轮课件:专题6第2讲排列、组合、二项式定理
答案:B
7
精准考点突破
易错防范突破 真题押题精练 增分强化练
首页
上页
下页
末页
考点一
考点二
5.(均匀分组)上合组织青岛峰会于2018年6月9日到11日在青岛举行.为了保护各国
国家元首的安全,某部门将5个安保小组全部安排到指定的三个区域内工作,且
每个区域至少有一个安保小组,则这样的安排方法共有 A.96种 C.124种 B.100种 D.150种 ( )
C.42种
D.54种
解析:若节目甲排在第一位,则节目乙有4种排法; 若节目甲排在第二位,则节目乙有3种排法.
3 故该毕业典礼的节目演出顺序的编排方案的种数为(4+3)A3 =42.故选 C.
答案:C
2
精准考点突破
易错防范突破 真题押题精练 增分强化练
首页
上页
下页
末页
考点一
考点二
2.(相邻问题)5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端,
6
精准考点突破
易错防范突破 真题押题精练
增分强化练
首页
上页
下页
末页
考点一
考点二
1 2 4 所以中间行数字和为 5 的不同排法的种数为 C2 A2A6= 1 440.
再考虑三行中有两行的数字和都为 5 的情况,分四步: 第一步,从 1,4 和 2,3 两组中选一组占用中间行,有 C1 2种选法; 第二步,将另一组放入其他行,有 C1 2种情况;
以考虑一个约束条件为主,同时兼顾其他条件.
2.相邻、不相邻问题 对于某几个元素必须相邻的排列问题,可以用捆绑法来求解,即将需要相邻的元 素捆绑为一个元素,再与其他元素一起进行排列,同时要注意捆绑元素的内部也 需要排列.
专题11 排列组合、二项式定理(理科专用)(讲)(解析版)
专题11 排列组合 二项式定理1.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.2.【2019年高考浙江卷理数】在二项式9(2)x +的展开式中,常数项是__________;系数为有理数的项的个数是__________. 【答案】162 5【解析】由题意,9(2)x +的通项为919C (2)(0,1,29)rr r r T x r -+==L ,当0r =时,可得常数项为0919C (2)162T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.故答案为:162,5.【名师点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.3.(2016年全国II)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .9 【答案】B【解析】由题意可知E F →有6种走法,F G →有3种走法,由乘法计数原理知,共有6318⨯= 种走法. 4、【2017新课标Ⅱ】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种【答案】D【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D . 5.【2018全国卷Ⅲ】252()x x+的展开式中4x 的系数为 A .10B .20C .40D .80【答案】C【解析】251031552C ()()C 2rrr r r rr T x xx --+==,由1034r -=,得2r =,所以4x 的系数为225C 240⨯=. 6.【2017新课标Ⅰ】621(1)(1)x x++展开式中2x 的系数为A .15B .20C .30D .35 【答案】C 【解析】621(1)(1)x x ++展开式中含2x 的项为224426621130C x C x x x⋅+⋅=,故2x 前系数为30,选C .一、考向分析:二、考向讲解排列组合两个计数原理的应用排列数及其性质的应用组合数及其性质的应用二项式定理求展开式中的特定项或系数二项式系数性质的应用二项展开式的应用考查两个计数原理:【例1】用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为A.243 B.252 C.261 D.279【答案】B【解析】能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8 =648.故-=.能够组成有重复数字的三位数的个数为900648252【例2】如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用()A .288种B .264种C .240种D .168种 【答案】B【解析】B ,D ,E ,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;B ,D ,E ,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法;B ,D ,E ,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法. 考查排列组合问题:【例1】现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
2019高考数学大二轮复习专题6算法、推理、证明、排列、组合与二项式定理第2讲排列、组合、二项式定理课件理
甲、乙2名学生至少有一人参加,且若甲、乙同时参加,则他们发言时不能相
邻,那么不同的发言顺序的种数为 A.360 C.600 B.520 D.720 ( )
解析:若甲、乙同时被选中,则只需再从剩下的 5 人中选取 2 人,有 C2 5种选法,因
2 为在安排顺序时,甲、乙不相邻需 “插空 ”,所以安排的方式有 A2 A 3 2种,从而此 2 2 种情况下不同的发言顺序的种数为 C2 5A3A 2= 120.若甲、乙只有一人被选中,则先从 1 甲、乙中选一人,有 C2 种选法,再从剩下的 5 人中选取 3 人,有 C3 5种选法,因为 3 4 在安排顺序时无要求, 所以此种情况下不同的发言顺序的种数为 C1 C 2 5A4= 480.综上,
分步涂色时,需要先考虑区域 1 和 3 的涂色情况,再考虑区域 2 和 4,最后考虑区 域 5.解决本题需要适时跳过分步计数的陷阱,注意条件“相邻的区域不能涂相同的
C.36 D.40 2 2 4 解析:甲、乙相邻有 A2 种情况,连同其他 3 个元素的不同排法种数为 A2 A4=48,
3 其中甲在两端且与乙相邻的排法种数为 2A3 =12,故满足题意的排法种数为 48-
12=36.故选 C. 答案:C
3.(不相邻问题)某班班会上老师准备从甲、乙等7名学生中选派4名学生发言,要求
使 x 的指数是整数,需 r 是 3 的倍数,∴r=0,3,6,9,12,15,18,∴x 的指数是整数的
1.(a+b)n中的特定项
求(a+b)n 的展开式中的特定项包括求常数项、中间项、有理项、最大项等问题,
n- r r 其求解工具是通项公式 Tr+1=Cr b (r=0,1,2,…,n),注意通项公式表示的是第 na
________. 解析:法一:(x2+x+y)4=[(x2+x)+y]4, 2 4- r r 其展开式的第 r+1 项 Tr+1=Cr ( x + x ) y, 4
2019年全国1卷省份高考模拟理科数学分类---排列组合二项式定理
2019年全国1卷省份高考模拟理科数学分类----排列组合二项式定理1.(2019安徽理科模拟)已知(x+1)(2x+a)5的展开式中各项系数和为2,则其展开式中含x3项的系数是()A.﹣40 B.﹣20 C.20 D.40【解答】解:令x=1,可得(x+1)(2x+a)5的展开式中各项系数和为2•(2+a)5=2,∴a =﹣1.二项式(x+1)(2x+a)5 =(x+1)(2x﹣1)5=(x+1)(32x5﹣80x4+80x3﹣40x2+10x﹣1),故展开式中含x3项的系数是﹣40+80=40,故选:D.2.(2019河南百校联盟理科模拟)(2x2﹣x﹣1)5的展开式中x2的系数为()A.400 B.120 C.80 D.0解:(2x2﹣x﹣1)5的展开式中x2的系数为:(﹣1)4(﹣1)3=10﹣10=0,故选:D.3.(2019福建理科模拟)已知,若,则()A.1 B.-1 C.-81 D.81【答案】B【解析】先令,求得,再令求得,然后令求得所求表达式的值.【详解】令,得;令,得,所以,即;令,得.故选B.【点睛】本题考查二项式定理的应用,考查运算求解能力.属于基础题.(安徽淮南理科模拟)的展开式中,的系数是A. 40B. 60C. 80D. 100【答案】C【解析】解:二项展开式的通项为.令,得.因此,二项展开式中的系数为.故选:C.先写出二项展开式的通项,然后令x的指数为4,解出相应参数的值,代入通项即可得出答案.本题考查二项式定理求指定项的系数,考查二项式定理的应用,属于中等题.5.(2019安徽淮南理科模拟)如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A、C区域涂色不相同的概率为A. B. C. D.【答案】B【解析】解:提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为A、B、C、D、E,分4步进行分析:,对于区域A,有5种颜色可选;,对于区域B,与A区域相邻,有4种颜色可选;,对于区域E,与A、B区域相邻,有3种颜色可选;,对于区域D、C,若D与B颜色相同,C区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有2种颜色可选,则区域D、C有种选择,则不同的涂色方案有种,其中,A、C区域涂色不相同的情况有:,对于区域A,有5种颜色可选;,对于区域B,与A区域相邻,有4种颜色可选;,对于区域E,与A、B、C区域相邻,有2种颜色可选;,对于区域D、C,若D与B颜色相同,C区域有2种颜色可选,若D与B颜色不相同,D区域有1种颜色可选,C区域有1种颜色可选,则区域D、C有种选择,不同的涂色方案有种,、C区域涂色不相同的概率为.故选:B.提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,利用分步计数原理求出不同的涂色方案有420种,其中,A、C区域涂色不相同的情况有120种,由此能求出A 、C 区域涂色不相同的概率.本题考查概率的求法,考查分步计数原理等基础知识,考查运算求解能力,是中档题. 6.(2019福建漳州理科模拟)已知 ,若 的展开式中 的系数比x 的系数大30,则 ______.【答案】2【解析】解: ,若 的展开式中 的系数比x 的系数大30,,求得舍去 ,或 ,故答案为:2.由题意利用二项展开式的通项公式,二项式系数的性质,求得m 的值. 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.7.(2019广州理科模拟)若(ax-l)5的展开式中x 3的系数是80,则实数a 的值是____.28.(2019广州理科模拟)已知(4234012342x a a x a x a x a x =++++,则()()2202413a a a a a ++-+= .答案:16考点:二次项定理,特殊值法的应用。
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国高考理科数学分类汇编——排列组合二项式定理
1.(2019全国1卷理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
A. 516
B. 1132
C. 2132
D. 1116
【答案】A
【解析】
【分析】
本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.
【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻
情况有3
6
C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A . 【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
2.(2019全国3卷理科)(1+2x 2 )(1+x )4的展开式中x 3的系数为
A. 12
B. 16
C. 20
D. 24
【答案】A
【解析】
【分析】
本题利用二项展开式通项公式求展开式指定项的系数.
【详解】由题意得x 3的系数为314424812C C +=+=,故选A .
【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.
3.(2019江苏卷)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.
(1)求n 的值;
(2)设(1n a +=+*,a b ∈N ,求223a b -的值.
【答案】(1)5n =;
(2)-32.
【解析】
【分析】
(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值;
(2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;
解法二:利用(1)中求得的n 的值,由题意得到(5
1-的展开式,最后结合平方差公式即可确定223a b -的值.
【详解】(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2
323(1)(1)(2)C ,C 26
n n n n n n n a a ---====, 44(1)(2)(3)C 24n n n n n a ---==. 因为23242a a a =, 所以2(1)(2)(1)(1)(2)(3)[]26224
n n n n n n n n n ------=⨯⨯, 解得5n =.
(2)由(1)知,5n =.
5(1(1n +=+
02233445555555
C C C C C C =++++
a =+
解法一:
因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,
从而222237634432a b -=-⨯=-.
解法二:
50122334455555555
(1C C (C (C (C (C (=+++++
02233445555555C C C C C C =--+-.
因为*,a b ∈N ,所以5(1a -=-.
因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.
【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.
4.(2019天津卷理科)83128x x ⎛⎫- ⎪⎝
⎭是展开式中的常数项为________. 【答案】28
【解析】
【分析】
根据二项展开式的通项公式得出通项,根据方程思想得出r 的值,再求出其常数项。
【详解】8848418831(2)()(1)28r r r r r r r r T C x C x x
---+=-=-, 由840r -=,得2r =,
所以的常数项为228(1)28C -=.
【点睛】本题考查二项式定理的应用,牢记常数项是由指数幂为0求得的。
5.(2019浙江卷)在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.
【答案】 (1). (2). 5
【解析】
【分析】
本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.
【详解】9)x 的通项为919(0,1,29)r r r r T C x r -+==
可得常数项为0919T C ==
因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项
【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.
6.(2019上海春季高考)在6
x
⎛ ⎝的二项展开式中,常数项的值为__________ 答案:15
7.(2019上海春季高考)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有_____种(结果用数值表示)
答案:24
解析:在五天里,连续连续2天,一共有4种,剩下的3人排列,
故一共有:33424P ⨯=种.。