信号流图梅森公式

合集下载

25信号流图与梅森公式 共31页

25信号流图与梅森公式 共31页
Li L1L2L3L4
i1
G 1 G 2 G 3 G 4 G 5 G 6 H 1 G 2 G 3 H 2 G 4 G 5 H 3 G 3 G 4 H 4
L iL j L 2 L 3 ( G 2 G 3 H 2 ) G ( 4 G 5 H 3 )
G 2G 3G 4G 5H 2H 3
2-5 信号流图及梅森公式
是表示复杂系统的又一种图示方法。
重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x 2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
作业:
2-11 求C(s)/R(s) 2-12 (a) (d)
30
谢谢!
xiexie!
8
Σ Li:所有各回路的“回路传递函数”之和; Σ LiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; Σ LiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
9
注意事项:
“回路传递函数”是指反馈回路的前 向通路和反馈回路的传递函数的乘积, 并且包含代表反馈极性的正、负号。
11
所以
C (G s P ) 1 Δ 1
1
R(s) Δ R 1 R 2 C 1 C 2 s2 R 1 C 1 s R 1 C 2 s 1
28
练习eBiblioteka g1ab
c
d
R(s) f
C(s) h
四个单独回路,两个回路互不接触

梅逊公式

梅逊公式

+ G1(s) + H(s) F(s)
A(s)
G2(s)
Y(s)
1
R(s) E(s)
G1(s)
A(s)
1
G2(s)
Y(s)
1 Y(s)
-H(s)
回章首 回节首 14
R(s) -
-
H2 (s) G2(s) G3(s) Y(s)
+
G1(s)
+
+
H1 (s) -1
-H2 (s) R(s) 1 G1(s) G2(s) G3(s) Y(s) 1 Y(s)
回章首
回节首
5
前向通路传输:在前向通路中 , 各支路传输的乘积。 如图中abc和ade。 回路传输:回路中各支路传输的 乘积。 如图中的df和g。
回章首
回节首
6
2. 信号流图的基本性质
1) 信号在支路上只能沿箭头单向传 递,后一节点对前一节点没有负载 效应。 2) 支路表示了一个信号对另一信号 的关系,支路传输相应于比例系数, 信号经支路时,被乘以支路传输变 为另一信号。 如图中x2经支路b变换为x3=bx2 , 经支路d变换为x4=dx2 。
回章首
回节首
21
解: 有三条前向通路, 前向通路的增益分别为
n3
p1 G1G2 G3G4 G5 p2 G1G6 G4 G5 p3 G1G2 G7
有四个独立的回路,分别为
L1 G2 G3G4 G5 H 2 L2 G6 G4 G5 H 2
在四个回路中,L3与L4不接触。
L3 G2 G7 H 2 L4 G4 H1
回章首
回节首
7
3) 节点可以把所有输入支路的信 号相加(注意:是相加而不是相减), 并把总的信号传递到所有输出支 路。 如图中节点 x2=ax1+fx4 如果此反馈为负反馈,则将“-” 号表示在传输 f 上,即信号流图上 f变为-f,此时x2=ax1+(-f)x4

梅森公式-信号流图

梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b

信号流图和梅森公式

信号流图和梅森公式
04:07 38
例2:求系统传递函数。
e
g
R(s)
1
a f
b
c
h
d
C(s)
四个单独回路,两个回路互不接触。
前向通路两条。
ab c d + e d (1 – b g) C(s) = R(s) 1 – a f – b g – ch– e h g f + af c h
04:07
39
例3:求系统的传递函数
G1 R G2 C
04:07
42
解:由结构图绘制出信号流图。
x2 R(s) 1 x1 1 1 1 x6
04:07
G1
x3
1x
4
C(s)
1
G2
-1
1 x5
43
单独回路有5条:
x1 x2 x3 x4 x1 : L1 G1
x2
G1
x3 x4
R(s)
x1 x6 G2 -1 x5
04:07
Δ1=1 Δ2=1 Δ3=1-L1
1 N Gk Δ k 代入 G kΣ Δ 1
得系统的传递函数C(s)/R(s)为
C(s) 1 G (p1Δ1 p 2Δ 2 p 3Δ 3 ) R(s) Δ G1G 2 G 3 G 4 G 5 G1G 6 G 4 G 3 G1G 2 G 7 (1 G 4 H1 ) 1 G 4 H1 G 2 G 7 H 2 G 6 G 4 G 5 H 2 G 2 G 3 G 4 G 5 H 2 G 4 H 1G 2 G 7 H 2
04:07
31
G6
R(s)
G7
G3
G1 a
G2 b
G4 c

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

信号流图与梅森公式

信号流图与梅森公式

2.5 信号流图与梅森公式2.5.1 信号流图信号流图是表示复杂的又一种图示方法.信号流图相对于结构图更简便明了,而且不必对图形进行简化,只要根据统一的公式,就能方便地求出系统的传递函数.1. 信号流图的组成及基本性质信号流图由节点和支路组成.一个节点代表系统中的一个变量,用小圆圈”Ο”表示;连接两个节点之间有箭头的定向线段为支路.支路相当于信号乘法器,乘法因子(或支路增益)表在支路上;信号只能沿箭头单方向传递,经支路传递的信号应乘以乘法因子;只有输出支路,无输入支路的节点称为输入节点,代表系统的输入变量;只有输入支路,无输出支路的节点称为输出节点,代表系统的输出变量;既有输入支路,也有输出支路的节点称为混合节点.信号流图的特征描述还需要以下专用术语:前向通路 信号从输入节点到输出节点传递时,对任何节点只通过一次的通路称为前向通路.而前向通路上各支路增益之积,为前向通路总增益.回路 如果信号传递通路的起点和终点在同一节点上,且通过任何一个节点不多于一次的闭合通路称为单独回路,简称回路.回路中各支炉增益的乘积称为回路增益.不接触回路 两个或两个以上回路之间没有任何公共节点,此种回路称为不接触回路. 由图2-31的信号流图可以说明以上的基本元素,即 74321X XX X X是节点;j h d c b a ,,,,, 为支路增益;4,1X X 为输入节点;7X 为输入节点;6532X X X X 为混合节点。

信号流图共有三条前向通道,第一条是765321XXXXXX →→→→→;第二条是76531X XXXX →→→→;第三条是765324X XXXXX→→→→→。

有两个单独回路,一个是565X X X →→,起点和终点是5X ;另一个起点、终点在3X 的自回路。

而且这两个回路无公共节点,是不接触回路。

图2-31 信号流图注意:对于确定的控制系统,其信号流图不是唯一的。

2.5.2 信号流图的绘制信号流图可以根据系统方框图的绘制,也可以根据数学表达式绘制。

系统的信号流图与梅森公式

系统的信号流图与梅森公式

6-5 系统的信号流图与梅森公式一、信号流图的定义由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图,简称信号流图或流图。

例如,图6-29(a)所示的系统框图,可用图6-29(b)来表示,图(b)即为图(a)的信号流图。

图(b)中的小圆圈“o”代表变量,有向支路代表一个子系统及信号传输(或流动)方向,支路上标注的H(s)代表支路(子系统)的传输函数。

这样,根据图6-29(b),同样可写出系统各变量之间的关系,即图6-29二、三种运算器的信号流图表示三种运算器:加法器、数乘器、积分器的信号流图表示如表6-3中所列。

由该表中看出:在信号流图中,节点“o”除代表变量外,它还对流入节点的信号具有相加(求和)的作用,如表中第一行中的节点Y(s)即是。

三、模拟图与信号流图的相互转换规则模拟图与信号流图都可用来表示系统,它们两者之间可以相互转换,其规则是:(1) 在转换中,信号流动的方向(即支路方向)及正、负号不能改变。

(2) 模拟图(或框图)中先是“和点”后是“分点”的地方,在信号流图中应画成一个“混合”节点,如图6-30所示。

根据此两图写出的各变量之间的关系式是相同的,即。

(3) 模拟图(或框图)中先是“分点”后是“和点”的地方,在信号流图中应在“分点”与“和点”之间,增加一条传输函数为1的支路,如图6-31所示。

(4) 模拟图(或框图)中的两个“和点”之间,在信号流图中有时要增加一条传输函数为1的支路(若不增加,就会出现环路的接触,此时就必须增加),但有时则不需增加(若不增加,也不会出现环路的接触,此时即可以不增加。

见例6-17)。

(5) 在模拟图(或框图)中,若激励节点上有反馈信号与输入信号叠加时,在信号流图中,应在激励节点与此“和点”之间增加一条传输函数为1的支路(见例6-17)。

(6) 在模拟图(或框图)中,若响应节点上有反馈信号流出时,在信号流图中,可从响应节点上增加引出一条传输函数为1的支路(也可以不增加,见例6-17)。

2.6信号流图与梅森公式

2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:

梅森公式的理解

梅森公式的理解

是包含于,你理解的有点偏差,举个例子如果有三个互不接触的回路,取两个不接触的回路应有三项,取三个互不接触回路就一项。

具体的应该是这样:
梅森公式G(s)=Σ(Ρκ*△κ)╱△G(s)= ——系统总传递函数;n——是前向通道数;Ρκ——第k条前向通路的传递函数,由输入端单向传递至输出端的信号通道称为前向通道;△——流图的特征式△=1-ΣLi+ΣLjLk-ΣLiLjLk+······
L A
bc为每两个不接触回路增益乘积之和
a为所有回路增益之和;L a L b
Li——所有单独回路的增益之和;
LjLk——所有互不接触的单独回路中,取其中两个不接触的回路增益乘积之和;LiLjLk——所有互不接触的单独回路中,取三个互不接触回路增益之和;
△κ——第k条前向通路特征式的余因子,即对于流图的特征式△,将与第k 条前向通路相接触的回路
增益代以零值,余下的即为△κ。

对于复杂的结构,理论上有很多项,但实际上△就取到前两三项。

25控制系统的信号流图和梅森公式

25控制系统的信号流图和梅森公式

15
例 绘制RLC电路的信号流图,设电容初始电压为uo(0), 回路中电流的初始值为i(0)。
16.04.2019
16
1 列写网络微分方程式如下:
d it () L R it () u t- u () t + = i() o d t
C
duo (t ) =i(t ) dt
2 方程两边进行拉氏变换:
d x5 f
x1
a
x2
b x3
c
x4
e
16.04.2019
13
2 对于一个给定的系统,由于描述同一个系统的方 程可以表示为不同的形式,因此信号流图不是唯一 的。 3 混合节点可以通过增加一个增益为 1 的支路变成 为输出节点,且两节点的变量相同。
x5 1
x1
a
x2
d
b x3
c
x4
e
16.04.2019
互不接触的回路L1 L2。所以,特征式
= 1 ( L + L + L + L ) + L L 1 2 3 4 1 2
33
16.04.2019
G6 R(s) G1 G2 G3
G7 G4 G5 C(s)
a
b
c
-H1
d
-H2

前向通道有三个:
P G G G G G 1= 1 2 3 4 5
1 1
16.04.2019 27
例1 利用梅森公式,求:C(s)/R(s)。
16.04.2019
28
G6
R(s)
G7
G3
G1 a
G2 b
G4 c
-H1 -H2
G5
d

信号与系统 7.3 信号流图

信号与系统 7.3 信号流图
§7.3 信号流图
•信号流图 信号流图 •梅森公式 梅森公式
一.信号流图
信号流图是用有向的线图描述线性方程组变量间因果 关系的一种图,它用来描述系统较方框图更为简便。 关系的一种图,它用来描述系统较方框图更为简便。 通过梅森公式将系统函数与相应的信号流图联系起来, 通过梅森公式将系统函数与相应的信号流图联系起来, 不仅有利于系统分析,也便于系统模拟。 不仅有利于系统分析,也便于系统模拟。 Y (⋅) = H(⋅)F(⋅) F(s) Y(s) H(s) F(s) Y(s) H(s) Y(z) F(z) H(z) F(z) Y(z) H(z) 方框图 信号流图 一般而言,信号流图是一种赋权的有向图。 一般而言,信号流图是一种赋权的有向图。它由连接在结 点间的有向支路构成。它的一些术语定义如下: 点间的有向支路构成。它的一些术语定义如下:
∆ = 1− ∑Lj = 1 + a1s−1 + a0s−2
前向通路1: 前向通路1: F → x1 → x2 → x3 →Y : 增益 P1= b0s-2 前向通路2: 前向通路2: F → x1 → x2 →Y : 增益 P2= b1s-1 前向通路3: 前向通路3: F → x1 →Y : 增益 P3= b2 由于各回路都包括x 各前向通路也都包括x 由于各回路都包括x1,各前向通路也都包括x1, 1; 所以每条前向通路对应的 Δ1= Δ2= Δ3= 1;
1 H = ∑P∆i i ∆ i
∆ =1− ∑Lj + ∑LmLn =1+ (G1H1 + G2H2 + G3H3 + G1G2G3H4 ) + G1G3H1H3
j m,n
1 H = ∑P∆i i ∆ i
∆ =1− ∑Lj + ∑LmLn =1+ (G1H1 + G2H2 + G3H3 + G1G2G3H4 ) + G1G3H1H3

梅森公式-信号流图

梅森公式-信号流图

L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
1 (a23a32 a23a34a42 a44 a23a34a52 a23a35a52 ) a23a32 a44 a23a35a52a44
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))
G1(s)
NNN((s(ss)))
G2(s)
GGG2(22s(()ss))
CCC(s(()ss))
HHH2(22s(()ss)) H3(s)
HHH3(33s(()ss))
C(s)
R(s)
E(S) P1=H–P1G(s1)2=H13 △△1=11=+G1 2HH2 2(s)P1△1= ?
E(s)= R(s)[ (1+G2H2) +(- G3G2H3)] +(–G2H3)N(s)
1 G1H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G4G5G7 H1H 2
x1
x2
x3
x7 I(s) x4
x5
o在源节点上,只有信号输出 支路而没有信号输入的支路,
1/R1 1+R1C1s R2
它一般代表系统的输入变量。
-1
•阱节点(输出节点):
在阱节点上,只有信号输入的支路而没有信号输出的支路,它

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

23

例2:用梅森公式求如图所示系统的传递函数。
24

例3:用梅森公式求如图所示系统的传递函数。
25

例3:用梅森公式求如图所示系统的传递函数。
26

例3:用梅森公式求如图所示系统的传递函数。
27

例3:用梅森公式求如图所示系统的传递函数。
28

例3:用梅森公式求如图所示系统的传递函数。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
29

例4:用梅森公式求如下2图所示系统的传递函数。
30
所 有 单 个 回 路 增 益 之 和
触取所 回其有 路中单 增不个 益同回 乘的路 积两中 之个, 和不每 。接次
20
2、有关定义
(1)前 向 通 路——信号从输入节点到输出节点传递时, 每个流经节点只通过一次的通路。 (2)回 路——起点与终点为同一节点,而中间混合 节点最多通过一次的闭合通路。

信号流图梅森公式

信号流图梅森公式

2/5/2020
14
梅逊公式||例2-13
[例2-13]:绘出两级串联RC电路的信号流图并用Mason公式计算 总传递函数。
ui (s) ue (s) 1 I1(s) -
1 u(s)
-
R1
I(s) C 1s
-
1
1 uo(s)
R 2 I2(s) C 2 s
[解]:先在结构图上标出节点,再根据逻辑关系画出信号流图如
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
P7 G6G3G4 P8 G6G8G4
P 9G 6H 2G 2G 7G 4
2/5/2020
19
梅逊公式||例2-15
对应的结构图为:
G6 G5
R - G1
R 1
G6
G5
1
G1
+
-
G2
H2
H1
G7
G2 1
G3
1
Байду номын сангаас
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图的对

信号流图与梅森公式

信号流图与梅森公式

7
梅森公式参数解释:
G(s):待求的总传递函数;
Δ称为特征式, 且Δ=1-ΣLi+ΣLiLj-ΣLiLjLk+… Pk:从输入端到输出端第k条前向通路的总 增益; Δk:在Δ中,将与第k条前向通路相接触的 回路所在项除去后所余下的部分,称余子式;
8
ΣLi:所有各回路的“回路传递函数”之和; ΣLiLj:两两互不接触的回路,其“回路传递 函数”乘积之和; ΣLiLjLk:所有三个互不接触的回路,其“回 路传递函数”乘积之和; n:前向通道数;
信号流图及梅森公式
❖ 是表示复杂系统的又一种图示方法。
❖ 重点: 1)根据系统的结构框图可画出信号流图 2)根据信号流图求系统的传递函数
1
x5
一、信号流图的几个定义
f
输入节点(或源节点):
x1 a x2
b
只有输出支路的节点,如x1、 x5。
d
e
c
x4
x3
输出节点(或阱节点):只有输入支路的节点,如x4。
混x合3。节点:既有输出支路,又有输入支路的节点,如:x2、
传之间的输增:益两为个a节,点则之传间输的也增为益a。叫传输。如:x1→x2
前向通路:信号由输入节点到输出节点传递时,每个
节点只通过一次的通路称为前向通路。如
x1→x2→x3→x4 。
2
x5
前向通路总增益:前向通路 x1 a x2 b
上各支路增益的乘积 ,如:
R(s) +
E(s) G(s)
C(s)
2
_
H(s)
N(s)
R(s) + E(s)
++
C(s)
3
_ G1(s)

梅森定律-信号流图

梅森定律-信号流图
信号流图的绘制
由系统结构图绘制信号流图
1) 用小圆圈标出传递的信号,得到节点。 2) 用线段表示结构图中的方框,用传递函数代表支路增益。 ➢ 注意信号流图的节点只表示变量的相加。
R(s)
C(s)
G(s)
D(s)
R(s) E(s) (-) G1(s)
V(s)G2(s) C(s)
H(s)
(a) 结构图
a45 x5
X 5 (s) X1(s)
(b)
x1
a52
x2
x3
x4
P1 a12a23a34a45 x5
1 1
(c)
x1
x2
x3
x5 P1 a12a23a35
2 1 a44
(a) x1
a12 x2
a42
a44
a23 a32 x3
a34 x4
a35
a45 x5
a52 (d) x2
(e) x2 (f) x2 (g) x2
x3
互不接触
L1 a23a32
L12 a23a32a44
x4 x3
x4 x5
L2 a23a34a42
L3 a44 互不接触 L22 a23a35a52a44
L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))

自动控制原理03信号流图,梅逊公式

自动控制原理03信号流图,梅逊公式
1 1
2 1 P2 2

abcdefg
abhfg (1 d )
1 b d f bd df bf bdf
2.4.2 梅逊增益公式
例题2:已知系统的动态结构图,求系统的传递函数
C (s) R (s)

解:首先进行分析
G1
X2
X3
G2 H1
G3
X4
G4
C(s)
R
1
X1
G1
X2
G2 X3 -1 -H1
G3
X4
G4
C
2.4 信号流图与梅森公式
2.4.2 梅逊增益公式
P G (s) 1
n

k 1
Pk
--特征式
k
1

La

Lb Lc

Ld Le L f
{
例题1:已知系统的信号流图,求系统的传递函数
C (s) R (s)

h a b -1 c d -1 e f -1
g
R(s)
C(s)
解:首先对信号流图进行分析,找到梅逊公式中的相关信息 系统有:2条前向通道,3个闭合回路,3组两两互不接触回 路, 1组三三互不接触回路 然后写出各项的取值:
2.4.2 梅逊增益公式 例题1:P1
3 1
,找到梅逊公式中 的相关信息
G2
R(s)
G1 H
G3 G4
C(s)
系统有:3条前向通道,2个闭合回路,0组两两互不接触回路
P1 G 1 G 3
P2 G 2 G 3
P3 G 1 G 4
1 G1H G 2 H

梅森公式——精选推荐

梅森公式——精选推荐

、 梅森公式(Mason ’s Formula)从系统的信号流图直接求系统函数()()()s F s Y s H =的计算公式,称为梅森公式。

该公式如下:()()()∑∆∆==k kk P 1s F s Y s H (6-34)此公式的证明甚繁,此处略去。

现从应用角度对此公式予以说明。

式中+-+-=∆∑∑∑r,q .p r q p n,m n m iI L L L L L L 1 (6-35)Δ称为信号流图的特征行列式。

式中:i L 为第i 个环路的传输函数, i i L 为所有环路传输函数之和;n m L L 为两个互不接触环路传输函数的乘积,n m L mL 为所有两个互不接触环路传输函数乘积之和;r q p L L L 为三个互不接触环路传输函数的乘积, ∑rq,p,rq p L L L 为所有三个互不接触环路传输函数乘积之和;k P 为由激励节点至所求响应节点的第k 条前向开通路所有支路传输函数的乘积;k ∆为除去第k 条前向通路中所包含的支路和节点后所剩子流图的特征行列式。

求k ∆的公式仍然是式(6-35)。

例6-19 图6-34(a)所示系统。

求系统函数()()()s F s Y s H =。

解:1 求Δ(1) 求∑iiL:该图共有5个环路,其传输函数分别为2L 1=,8,42L 2=⨯=()-11-1L 3=⨯= 2L 4=,()421-2L 5=⨯⨯-=故 ∑iiL15L L L L L 54321=++++=)s ()a ()b图6-34(2) 求 ∑nm,nmL L:该图中两两互不接触的环路共有3组:()1628L L 422L L 212L L 424131=⨯==⨯=-=-⨯=故 18L L L L L L L L424131nm,n m=++=∑该图中没有3个和3个以上互不接触的环路,故有 0LL L rrq,p,qp=∑;…。

故得418151L L L L L L -1r rq,p,q p n,m n m ii =+-=+-+=∆∑∑∑2 求∑∆kkk P(1) 求k P :该图共有3个前向通路,其传输函数分别为1111P 1=⨯⨯=()-41141-1P 2=⨯⨯⨯⨯= ()()2121-1P 3=⨯-⨯⨯=(2) 求k ∆:除去1P 前向通路中所包含的支路和节点后,所剩子图如图6-34(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通路:沿支路箭头方向穿过各个相连支路的路线,起始点和终点都在节点上。若 通路与任一节点相交不多于一次,且起点和终点不是同一节点称为开通路。起点在源 点,终点在阱点的开通路叫前向通路。
Sunday, January 12,
4
2020
信号流图的术语
X 1 G1 X 2 G2 X 3 G3
? H3 G4
X9 G5 X 6 G6X 7 G7 X 8
? H1
X4 X5 ? H2
回路(闭通路):通路与任一节点相交不多于一次,但起点和终点为同一节点的通路 称为回路。
互不接触回路:回路之间没有公共节点时,这种回路称为互不接触回路。
通路传输(增益):通路中各支路传输的乘积称为通路传输或通路增益。前向通路中 各支路传输的乘积称为前向通路传输或前向通路增益。
13
2020
梅逊公式 ||例2-13a
例2-13a:求速度控制系统的总传输
。(?不(计s)扰动)
1
G1
G2
G3
ug (s)M Gu
c
l
g V3 e
V2
h
C (S)
Sunday, January 12, 2020
f f
m
h
R1

b
l

V3
k


C
V1 d Ⅴ e V2 1
g
10
信号流图的绘制
例2: 按微分方程拉氏变换后的代数方 程所表示的变量间数学关系绘制。如 前例所对应的代数方程为:
R1
V1 ? mV1 ? lV3 ? bR C ? V2 ? gV1 ? hV2 ? eV3 ? fR
先在结构图1上标出节G 点1 ,如上G图2 所示。G然3 后画出GM信u 号c 流G 图m 1如下图所示。
ug ue
u1
u2
ua
?
?
Sunday, January 12, 2020
?Gf
9
例2: 已知结构图如下,可在结构图上标出节点,如上图所示。然后画出信号流图如下 图所示。
k
R(S) b
m
d
V1
Sunday, January 12,
8
2020
信号流图的绘制
[ 信号流图的绘制]: 根据结构图 列出系统各环节的拉氏方程,按变量间的数学关系绘制
例1:速度控制系统的结构图为:
ug (s) ue (s)
G1
u f (s)
u1(s)
G2
u2 (s)
G3
Gf
M c (s) Gm
ua (s)
Gu
? (s)
k?1
式中:
P 总? 传输(即总传递函数); 从输入节点到输出节点的前向通道总数;
n第? k个前向通道的总传输;
流图特征式;其计算公式为:
Pk ?
??
Sunday, January 12,
12
2020
梅逊公式
?1 n
P?
?
Pk ? k
k?1
? ? ? ? ? 1? La ? LbLc ? Ld Le Lf ? ...(正负号间隔)
控制系统的信号流图
Sunday, January 12,
1
2020
信号流图的概念
信号流图可以表示系统的结构和变量传送过程中的数学关系。它也是控制系统 的一种数学模型。在求复杂系统的传递函数时较为方便。
一、信号流图及其等效变换 组成:信号流图由节点和支路组成。见下图:
R1
N
1
E G1 P
G2
Q
1
R(s)
? 式中:
La
?流图中所有不同回路的回路传输之和;
所有互不接触回路中,每次取其中两个回
? 和;
Lb Lc ?
路传输乘积之
? 之和; Ld Le L f ?所有互不接触回路中,每次取其中三个回路传输乘积
?k ?
第k个前向通道的特征余子式;其值为 回路后的剩余部分。
中除去与第?k个前向通道接触的
Sunday, January 12,
Sunday, January 12,
6
2020
信号流图的等效变换
混合支路的清除:
x4 ad b
x1 c
x2
x3
x1 a c x2 b x3 x4
自回路的消除:
a b x3 x1 x2 ? b
Sunday, January 12, 2020
x4
ad bd
x1ac
bc x2
x3
ac
x1
x4
x2 bc
回路传输(增益):回路上各支路传输的乘积称为回路传输或回路增益。
Sunday, January 12,
5
2020
信号流图的等效变换
串联支路合并:
ab x1 x2 x3
并联支路的合并:
a
x1 b x2
回路的消除:
ab x1 x2 ? c x3
ab
x1
x3
a? b
x1
x2
b
a 1 ? bc
x1 x2 x3
x
y
G
上图中, 两者都具有关系: 点y来说是输入支路。
xG y
y(s) ? G。(支s路)x对(s节) 点 来说是输出支路x ,对节
Sunday, January 12,
3
2020
信号流图的术语
X1 G1 X 2 G2 X 3 G3
? H3 G4
X9 G5 X 6 G6X 7 G7 X 8
[ 几个术语]:
V3 ? dV1 ?Leabharlann kV2按方程可绘制信号流图。
f
m
h

b
l

V3
k


C
V1 d Ⅴ e V2 1
g
Sunday, January 12,
11
2020
梅逊公式
二、梅逊增益公式
用梅逊公式可不必简化信号流图而直接求得从输入节点到输出节点之间的总传
输。(即总传递函数)
其表达式为:
? P ?
1 ?
n
Pk ? k
ab 1 x1 x3 ? b x4
1
ab 1? b
x1 x3 x4
7
信号流图的性质
信号流图的性质
? 节点表示系统的变量。一般,节点自左向右顺序设置,每个节点标志的变量 是所有流向该节点的信号之代数和,而从同一节点流向各支路的信号均用该 节点的变量表示。
? 支路相当于乘法器,信号流经支路时,被乘以支路增益而变换为另一信号。 ? 信号在支路上只能沿箭头单向传递,即只有前因后果的因果关系。 ? 对于给定的系统,节点变量的设置是任意的,因此信号流图不是唯一的。
C
E(s)
-
G1(s)
N (s)
+ G2(s) C(s)
?H
H(s)
Sunday, January 12,
2
2020
信号流图的概念
节点:节点表示信号,输入节点表示输入信号,输出节点 表示输出信号。 支路:连接节点之间的线段为支路。支路上箭头方向表示信号传送方向,传递 函数标在支路上箭头的旁边,称支路传输。
? H1
X4 X5 ? H2
输入节点(源点):只有输出支路的节点。如:X1,X9。 输出节点(阱点):只有输入支路的节点。如: X8。
混合节点:既有输入支路又有输出支路的节点。如:X2,X3,X4,X5,X6,X7。混合节 点相当于结构图中的信号相加点和分支点。它上面的信号是所有输入支路引进信号的 叠加。
相关文档
最新文档