连续型随机变量及其概率密度
合集下载
概率论-2-3连续型随机变量及其概率密度
x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)
连续型随机变量及其概率密度函数
是一个连续型随机变量的概率密度函数.
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
连续型随机变量及其概率密度
问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
第三节连续型随机变量及其概率密度
则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.
当
2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x
2.4连续型随机变量及其概率密度函数
-?
a b- a
连续型随机变量及概率密度函数
注
蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3
连续型随机变量及其概率密度
a,有 P{X=a}=0
0 P{X a} P{a x X a} F(a) F(a x)
而F (x)连续,故x 0时,F (a) F (a x) 0
由此 P{a X b} P{a X b} P{a X b}
P{a X b}
b a
f
( x) d
x
f
x dx=P{X
F( x) P{X x} P{X xk } pk ( x∈R )
xk x
xk x
P{X xk} F(xk ) F(xk 0)
Ⅰ:确定X及其分布,A={X∈L} Ⅱ:P{X∈L}= →F(x) 【分布律、概率密度f(x)】 →高等数学、 F(x) 、分布律、密度函数f(x)的性质、 各种概型的规律。
得t ln2/2 0.3446(小时)。
15解:(迅速)设X为这批投保人一年内死亡的
人数,则X ~ b(5000, 0.00015), X 近似服从 (75),
由题意,所求为P{X 10}=...
第四节 连续型随机变量及其概率密度
一、连续型随机变量及其概率密度的概 念与性质 二、常见连续型分布
x0
x
x0
x
若不计高阶无穷小,有P{x X x x} f (x)dx
.
P{X=x}
50 连续型随机变量x的分布函数F(x)是连续函数
因为对x,lim F (x) lim[F (x x) F (x)]
x0
x0
xx
lim f (t)dt 0 x0 x
说明: 若 X 为连续型随机变量,则对任一实数
Ⅰ:确定X及其分布,A={X∈L} Ⅱ:P{X∈L}= →F(x) 【分布律、概率密度f(x)】 →高等数学、 F(x) 、分布律、密度函数f(x)的性质、 各种概型的规律。
连续型随机变量及其概率密度函数
§2.4 连续型随机变量及其概率密度函数
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
2-4_连续型随机变量及其概率密度
第2.4节 连续型随机变量及密度函数
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
高等数学第三节连续型随机变量及其概率密度函数
▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
概率统计
2. 概率密度函数的性质
性质1 f ( x) 0
性质2
f ( x)dx 1
f (x)
这两条性质是判定 一个函数 f(x) 是否 为某随机变量 X 的 概率密度函数的充 要条件.
面积为1
o
x
概率统计
性质3
F ( x0 x) F ( x0 )
x0x f (t)dt x0
当 x 0时, 两边取极限:
0
P(X
x0 )
lim
x0
x0x f (t)dt
x0
0
P( X x0 ) 0
概率统计
注 ▲ 这个结论的意义:
(1). P( X x0 ) 0 从积分的几何意义上说,当 底边缩为一点时,曲边梯形面积退化为零。
(2).由此可知连续型随机量X 在某区间上取值的 概率只与区间长度有关,而与区间是闭、开、 半开半闭无关,即有:
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f ( x)dx
F ( x2 ) F ( x1 )
概率统计
注 P( x X x x) F( x x) F(x)
不计高阶 无穷小
x x
x f (t) dt
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x] 上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。
P( x1 X x2 ) F ( x2 ) F ( x1 )
2.4 连续型随机变量及其概率密度
分布函数为
F( x)
1
x
e
(
t u )2 2 2
dt
2π
当 0 , 1时称 X 服从标准正态分布.
其概率密度和分布函数分别用 ( x),Φ( x)表示 ,
即有
易知
(x) Φ( x)
1 et2 2 , 2π
1 ex t2 2dt .
2π
Φ( x) 1 Φ( x)
正态分布的应用与背景 正态分布是最常见最重要的一种分布, 例如测
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)
指数分布
3. 正态分布是概率论中最重要的分布
正态分布有极其广泛的实际背景, 是自然界 和社会现象中最为常见的一种分布, 一个变量如 果受到大量微小的、独立的随机因素的影响, 那 么这个变量一般是一个正态随机变量.
二项分布、泊松分布等的极限分布是正态分 布.所以,无论在实践中,还是在理论上,正态 分布是概率论中最重要的一种分布.
f
(
x)
b
1
a
,
0,
a xb, 其他,
则称X在(a,b)上服从均匀分布. 记为X ~ U (a,b) .
概率密度函数图形
f (x)
均匀分布概率密度函数演示
•
a
o
•
bx
均匀分布的意义
在区间(a,b)上服从均匀分布的随机变量 X , 落在区间(a , b)中任意等长度的子区间内的可能 性是相同的.
P{X s t X s} P{X t} .
事实上
P{X s t X s} P{(X s t) ( X s)}
P{X s}
P{X s t} 1 F(s t)
概率论课件之连续型随机变量及其概率密度PPT课件
如电话通话时间、各种随机服务系统的服务时 间、等待时间等.
例 某种电子元件的寿命(以小时计) X 服从指数分 布,其概率密度为
f
(
x)
1 100
e
x
100
,
x0
0,
其它.
(1) 求元件寿命至少为200小时的概率. (2) 将3只这种元件联接成为一个系统,设系统工作 的方式是至少2只元件失效时系统失效,又设3只元 件工作相互独立.求系统的寿命至少为200小时的概 率.
(4) 若f ( x )在点x 处连续,则有
F ( x) f ( x),
证明
x
F ( x) [ f (t)dt] f ( x).
例 设随机变量X
ae x , x 0;
的分布函数为
F ( x) b, 0 x 1; 1 ae x1 , x 1
求(1)a,b的值;(2)X的密度函数;(3)P(X>1\3).
解 (1)由于连续型随机变量的分布函数是连续的
lim F ( x) F (0)
x 0
又 lim F ( x) F (1) x 1
lim ae x b
x 0
b 1 a
故,a b 1 2
ab
(2)X的密度函数
1 2
e
x
,
f ( x) F ( x)
又F ( x)
1
2
,
x 0; 0 x 1;
2 πσ (3) 当 x 时, f ( x) 0; (4)曲线在 x μ σ 处有拐点;
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ, 改变 μ 的大小时, f ( x) 图形的形状不变 ,只是沿 着 x 轴作平移变换;
(7) 当固定 μ, 改变 σ 的大小时, f ( x) 图形的对称轴 不变,而形状在改变 , σ 越小,图形越高越瘦,σ越大, 图形越矮越胖 .
例 某种电子元件的寿命(以小时计) X 服从指数分 布,其概率密度为
f
(
x)
1 100
e
x
100
,
x0
0,
其它.
(1) 求元件寿命至少为200小时的概率. (2) 将3只这种元件联接成为一个系统,设系统工作 的方式是至少2只元件失效时系统失效,又设3只元 件工作相互独立.求系统的寿命至少为200小时的概 率.
(4) 若f ( x )在点x 处连续,则有
F ( x) f ( x),
证明
x
F ( x) [ f (t)dt] f ( x).
例 设随机变量X
ae x , x 0;
的分布函数为
F ( x) b, 0 x 1; 1 ae x1 , x 1
求(1)a,b的值;(2)X的密度函数;(3)P(X>1\3).
解 (1)由于连续型随机变量的分布函数是连续的
lim F ( x) F (0)
x 0
又 lim F ( x) F (1) x 1
lim ae x b
x 0
b 1 a
故,a b 1 2
ab
(2)X的密度函数
1 2
e
x
,
f ( x) F ( x)
又F ( x)
1
2
,
x 0; 0 x 1;
2 πσ (3) 当 x 时, f ( x) 0; (4)曲线在 x μ σ 处有拐点;
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ, 改变 μ 的大小时, f ( x) 图形的形状不变 ,只是沿 着 x 轴作平移变换;
(7) 当固定 μ, 改变 σ 的大小时, f ( x) 图形的对称轴 不变,而形状在改变 , σ 越小,图形越高越瘦,σ越大, 图形越矮越胖 .
概率第一章第4节连续型随机变量及其概率密度讲解
7:15 之间, 或在 7:25 到 7:30 之间到达车站, 故所
求概率为
P{10 X 15} P{25 X 30}
15 1 dx 30 1 dx 1
10 30
25 30
3
即乘客候车时间少于5分钟的概率是 1/3.
指数分布
定义 若随机变量 X 的概率密度为
例1 设随机变量 X 的分布函数为
0, x 0
F
(
x
)
x
2
,
0 x 1,
1, 1 x
求 (1) 概率 P{0.3 X 0.7};
(2) X 的密度函数.
解 由连续型随机变量分布函数的性质, 有
(1) P{0.3 X 0.7} F (0.7) F (0.3) 0.72 0.32 0.4;
P{X
st
|
X
s}
P{( X
st)(X P{X s}
s)}
P{X s P{X
t} s}
1 F(s t) 1 F(s)
e(st ) e s
e t
P{ X
t }.
若 X 表示某一元件的寿命,则 (*)式表明:已知元件
使用了s 小时,它总共能使用至少 s t 小时的条件
数,简称为概率密度或密度函数.
易见概率密度具有下列性质:
(1) f ( x) 0;
y f (x)
(2)
f ( x)dx 1.
A1
Ox
x
注:上述性质有明显的几何意义.
求概率为
P{10 X 15} P{25 X 30}
15 1 dx 30 1 dx 1
10 30
25 30
3
即乘客候车时间少于5分钟的概率是 1/3.
指数分布
定义 若随机变量 X 的概率密度为
例1 设随机变量 X 的分布函数为
0, x 0
F
(
x
)
x
2
,
0 x 1,
1, 1 x
求 (1) 概率 P{0.3 X 0.7};
(2) X 的密度函数.
解 由连续型随机变量分布函数的性质, 有
(1) P{0.3 X 0.7} F (0.7) F (0.3) 0.72 0.32 0.4;
P{X
st
|
X
s}
P{( X
st)(X P{X s}
s)}
P{X s P{X
t} s}
1 F(s t) 1 F(s)
e(st ) e s
e t
P{ X
t }.
若 X 表示某一元件的寿命,则 (*)式表明:已知元件
使用了s 小时,它总共能使用至少 s t 小时的条件
数,简称为概率密度或密度函数.
易见概率密度具有下列性质:
(1) f ( x) 0;
y f (x)
(2)
f ( x)dx 1.
A1
Ox
x
注:上述性质有明显的几何意义.
连续型随机变量及其概率密度
B
A
A,B间真实距离为,测量值为X。
X的概率密度应该是什么形态?
若随机变量X的概率密度函数为
f (x)
1
e
(
x )2 2 2
2
(其中 ,为实数,>0) 则称X服从参数为 ,2的正态分布,记为X~N(, 2)。
f(x)的图像为
正态分布密度函数f(x)的性质
(1) 单峰对称 密度曲线关于直线x=对称,即 f( +x)=f( -x),x∈(-∞,+∞)
X~N(, 2),p∈(0,1),若实
数up满足P(X〉 up)=p,
p
则称up为标准正态分布的p分 位点。
O Up
x
定义 (1)标准正态分布的与下侧概率p对应的分位数up
满足条件P(X〈 up)= p,0〈 p〈1, X~N(0,1) (2)标准正态分布的与上侧概率α对应的分位数uα
满足条件P(X〉 u α )= α,0〈 α〈1, X~N(0,1) (3)标准正态分布的与双侧概率p/2对应的分位数u p/2
解 设A—乘客候车时间超过10分钟, X—乘客于某时X分钟到达,则XU(0,60)
P(A) P(10 X 15) P(25 X 45) P(55 X 60) 5 20 5 1 60 2
2、正态分布 正态分布是实践中应用最为广泛,在理论上
研究最多的分布之一,故它在概率统计中占有特 别重要的地位。
P( X
x)
x
证明
x
FX (x) P( X x)
1
e dt
(
t) 2 2
2
A
A,B间真实距离为,测量值为X。
X的概率密度应该是什么形态?
若随机变量X的概率密度函数为
f (x)
1
e
(
x )2 2 2
2
(其中 ,为实数,>0) 则称X服从参数为 ,2的正态分布,记为X~N(, 2)。
f(x)的图像为
正态分布密度函数f(x)的性质
(1) 单峰对称 密度曲线关于直线x=对称,即 f( +x)=f( -x),x∈(-∞,+∞)
X~N(, 2),p∈(0,1),若实
数up满足P(X〉 up)=p,
p
则称up为标准正态分布的p分 位点。
O Up
x
定义 (1)标准正态分布的与下侧概率p对应的分位数up
满足条件P(X〈 up)= p,0〈 p〈1, X~N(0,1) (2)标准正态分布的与上侧概率α对应的分位数uα
满足条件P(X〉 u α )= α,0〈 α〈1, X~N(0,1) (3)标准正态分布的与双侧概率p/2对应的分位数u p/2
解 设A—乘客候车时间超过10分钟, X—乘客于某时X分钟到达,则XU(0,60)
P(A) P(10 X 15) P(25 X 45) P(55 X 60) 5 20 5 1 60 2
2、正态分布 正态分布是实践中应用最为广泛,在理论上
研究最多的分布之一,故它在概率统计中占有特 别重要的地位。
P( X
x)
x
证明
x
FX (x) P( X x)
1
e dt
(
t) 2 2
2
2-3连续型随机变量及其概率密度
f
(x)
b
1
a
,
a x b,
0,
其它,
就称 X 服从[a,b] 上的均匀分布,记为 X ~ U[a,b].
【注】 X 的分布函数为
0, x a,
F ( x)
x
b
a a
,
a
x
b,
1, b x.
均匀分布与第一章中介绍的几何概型原理相通,适用于一维
的几何概型试验.此时, X 落入某区间 I 内(上)的概率为 P{X I} P{X I I [a,b]} I I [a,b]的长度 . ba
(b ) (a ) .
特别地, P{X b} (b ), P{X a} 1 ( a ) 。
其中 (a ) 和 (b ) 可查表得.
•22
例 3.5 设随机变量 X ~ N(1, 4) ,分别计算
P{X 3}, P{1 X 5} .
解 由题意知, 1, 2 .
y (x)
y
y (x) 1
1 2
O
x
O
x
•20
由于(x) 为偶函数,利用本节例 3.2 的结论,有
F(x()x)
F((x)x)
1;1;F(0()0)
1
1;;P{PX{ X
x}x}
2F(Fx)(x)1.1.
22
当 x 0 时, (x) 可以通过直接查标准正态分布表求得.
当 x 0 时, (x) 1 (x) ,再查标准正态分布表可得.
【注 7】如果 X ~ N(0,1) ,则对于任意的实数 a,b (a b) , P{a X b} (b) (a) ,
其中 (a), (b) 可查标准正态分布表计算.
•21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 均匀分布
设连续型随机变量
X
具有概率密度f
(
x)
b
1
a
,
a x b,
0,
其它,
则称 X 在区间 (a, b) 区间上服从均匀分布,记为 X ~ U (a, b).
说明:
对c, l R, 如果(c, c l ) (a, b), 则
cl
l
P(c X c l ) c
f ( x)dx ba
1
( x )2
e , 2 2
2
x
, ( 0)为常数, 则称X服从正态分布,记作:X : N(, 2).
0, 1时, X : N (0,1)
概率密度: ( x)
1
x2
e2
2
说明:
f(x)满足概率条件: f(x) 0,
+ f(x)dx 1 -
证明(2): 令 x- t, 则x t, dx dt
解 : (1) 由概率密度的定义 :
f ( x)dx 1
-
f ( x)dx
3 C(9 x2 )dx 1
-
-3
C 1 36
(2)
P{ X 0}
0 -3
1 36
(9
x2 )dx
1 36
(9x
x3 3
)
|03
1 2
P{1 X 1} 1 1 (9 x2 )dx 13
-1 36
k 0
n大,p小,np=3,用=np=3的泊松近似
上式 1 N 3k e3 0.01
k0 k !
N 3k e3 0.99
k0 k !
查泊松分布表,最小N=8。至少配8名维修工。
3. 设公汽车站每 15 分钟有一辆汽车通过,乘客在 15 分钟
内到车站是等可能的,乘客候车时间超过 10 分钟的概率 .
2 3
(2) P2 =P(A1A2A3A4 )=P(Ai)4 =[P(X>1500)]4
Байду номын сангаас(
dx ) + 1000
4
1500 x2
(
2 3
)4
16 81
(3) P3 =P(A1 U A2 U A3 U A4 )=1-P(A1)P(A2)P(A3)P(A4 )
=1-[P(A1)]4 =1-[1-P(Ai)]4 =1-[1-P(X>1500)]4
f
( x)
1 5-2
1 3
0
2<x<5 其它
5
5
P( A) P( X 3)
f ( x)dx
3
3
1 3
dx
2 3
设Y为3次独立观测中A发生的次数
Y:
b(3,
2 3
)
b(3,
P( A))
P(Y
2)
C
2 3
(
2 3
)2
1 3
C
3 3
(
2 3
)3
20 27
2. 指数分布
设连续型随机变量X 概率密度
(1)
f
(
x
)=
1 a
0
0 x<a 其它
3a
(2)
P(
a 3
X<
3a 4
)=
4 a
f ( x)dx
3
3a
4 a
1 a
dx
1 5a
a 12
5 12
3
例4 随机变量X 服从(2,5)上均匀分布,现对X 进行3次独
立重复观察,试求至少有2次观测值大于3的概率?
解:令A={观测值大于3}
X : U(2, 5),
1 0.987 0.013
k0 k !
(2) 设X为300台设备同时发生故障的台数, X~B(n, p),n=300, p=0.01
设配备N个维修工,所求的是满足P(X>N) < 0.01的最小的N.
N
P( X N ) 1 P( X N ) 1
Ck 300
(
0.01)k
(
0.99)300k
设Y为3元件中寿命大于200小时的个数 则Y : b(3, e2 )
p P{Y 2} P{Y 2} P{Y 3}
C32 (e2 )2 (1 e2 ) (e2 )3 e4 (3 2e2 ) 0.05
(三)正态分布(重点)
1、例子: 某大学男学生身高的频率直方图
红线是拟合的正态分布概率密度曲线,身高服从正态分布
(3) 如果f ( x)在x处连续, 则 P{x X x x} f ( x)x
x x
P{x X x x} x f ( x)dx f ( x)x
例1( P 35, 例2)
随机变量X
具有概率密度f
(
x
)
C
(9
x
2
)
0
3 x3 其它
(1)求常数C; (2)求概率P{ X 0}, P{1 X 1}, P{ X 2}.
解: 用 X 表示乘客的候车时间,则 X ~ U(0 ,15) .
p(
x)
1 15
,
0 ,
0 x 15 其它
15 1
51
P( X 10) p( x)dx 10
dx
10 15
15 3
或由 P(c X d ) d c (a c d b) ba
P( X 10) P(10 X 15) 得结果 .
的概率; (2)将3只这种元件联接成为一系统,设系统工作的方式是
至少2只元件失效时系统失效,又设3只元件工作相互独立.求系统
寿命至少为200小时的概率.
解 : (1)
P{ X 200}
f ( x)dx
200
200
1 100
e x /100dx
e 2
(2){系统寿命至少200小时} {3元件中至少有2只寿命大于200小时}
.
(4) 若已知一元件寿命大于1500小时,则其
寿命大于2000小时的概率是多少?
解: X为连续型随机变量, 设Ai {第i个元件寿命大于1500}(i 1, 2, 3, 4)
(1)
P1 =P(X>1500)=
+ f(x)dx
1500
=
dx + 1000 1500 x2
1000 x 1500
2、概率密度的主要性质(重点)
(1) 对a R,
P{X a}
a
f ( x)dx 0
a
启示:概率为0,不一定是不可能事件。概率为1,不一定为必然事件
(2) 若a b, 则 P{a X b} P{a X b} P{a X b}
b
P{a X b} a f ( x)dx
简证 :
P{X>s+t|X>s}=
P{X>s+t} P{X>s}
=
e -(s+t) e-s
=e-t =P{X>t}
如X表示元件的寿命,即元件对它已使用过的s小时没有记忆
例5(考研题目) 顾客到银行窗口等待服务时间X服从指数分布,
其概率密度为f
(
x)
1 5
e
x 5
x0
某顾客在窗口等待服务,
0 x 0
+
+
f ( x)dx
-
-
1
e dx
(
x )2 2 2
2
1
e dt +
t2 2
2 -
记I
+
e
t2 2
dt
,
-
则I 2
e dt +
t2 2
+
e
u2 2
du
+
e dtdu +
u2t 2
2
-
-
- -
2
+
re
r2 2
drd
2
00
由于I>0,
e dt +
t2 2
2
-
+
f ( x)dx 1 -
2. f ( x)dx=1.
3. a, b R (a b),
成立P{a X b}
b
f ( x)dx
a
则称X为连续型随机变量, f ( x)称为X的概率密度.
说明:
f(x)、x轴所围曲边梯形面积等于1
P{a<X≤b}等于 f(x)、x轴、直线x=a、x=b所围曲边梯形面积
改变f(x)在个别点的值,不影响P{a<X≤b}的值
f
(x)
1
e
x
x0
0 其它
( 0), 则称X 服从参数为的指数分布,记为X : e( )
说明:
(1)适用于各种寿命分布,如电子元件寿命、动物寿命、通话时间等
(2) 概率密度f ( x)满足: f ( x) 0,
+
f ( x)dx 1 -
(3) 无记忆性: s,t>0, P{X>s+t|X>s}=P{X>t}
用直方图近似正态分布的概率密度演示
矩形宽度代表分组个数,高度代表落在该区间样本的频率 高度越大,相应区间的样本数越多,分布越密集,反之亦然 分组越多,则频率直方图趋于一光滑曲线:概率密度
一、概率密度定义及性质(重点)
1、概率密度的定义
设X是随机变量, 如果存在非负可积函数f ( x), 满足:
1. f ( x) 0.
0
1
a
1 2
x2
1 0
(2x