人教版八年级数学下册《正方形》课件

合集下载

八年级数学下册教学课件《正方形的性质》

八年级数学下册教学课件《正方形的性质》
情境导入
仔细观察下列实际生活中的图片,你会发现这些都 是正方形的形象.
正方形是我们熟悉的图形,你还能列举出正方形在 生活中应用的其他例子吗?
情境导入
结合已有经验,类比菱形与矩形,正方形的概念是怎 样的呢?
正方形可以定义为有一组邻边相等并且有一个角 是直角的平行四边形.
下面我们一起来探讨一下正方形的性质吧!
解:有多种方法:只要两条小路 交于正方形对角线的交点且两条 小路互相垂直,则满足条件.
课后作业
5. 如图为某城市部分街道示意图,四边形ABCD为正方
形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,
小敏行走的路线为B A G E,小聪行走的路线为B A
D E F,若小敏行走的路程为3100m,则小聪行走的路程
∴C(b,d)
课后作业
2.(2)如图,四边形ABCD是菱形,C,D两点的
坐标分别是(c,0),(0,d).点A , B的在坐标轴上.求A ,
B两点的坐标.【选自教材P61,习题18.2第12题】
y
(2)∵四边形ABCD是菱形,
D
∴AO=CO,BO=DO.
A
O
Cx
Hale Waihona Puke ∵C(c,0),∴A(-c,0)
B
∵D(0,d),∴B(0,-d)
由勾股定理得BC= EC2 EB2 900 100 20 2 (m).
在Rt△ABC中,∠B=90°,AB=BC= 20 2 m,
A
D
由勾股定理得AC= AB2 BC 2 800 800 40(m).
2
S正方形ABCD BC 2 20 2 800
E
∴这块场地的面积为800m2,对角线长40m.

18.2.3正方形 正方形的判定(教学课件)-人教版数学八年级下册

18.2.3正方形   正方形的判定(教学课件)-人教版数学八年级下册

探究点
正方形的判定
归纳总结:
(1)四条边相等、四个角都是直角的四边形是正方形 从四边形出发
(2)对角线互相垂直平分且相等的四边形是正方形 (1)有一组邻边相等并且有一个角是直角的平行四边 从平行四边形 形是正方形 出发 (2)对角线互相垂直且相等的平行四边形是正方形 从矩形出发 对角线互相垂直的矩形是正方形 从菱形出发 对角线相等的菱形是正方形
A
D
∴AB=BC=CD=DA,∠A=∠C,∠B=∠D.
又∠A=90°,
ቤተ መጻሕፍቲ ባይዱ
B
C
∴易得∠A=∠B=∠C=∠D=90°.
∴四边形ABCD是正方形.
归纳总结:有一个角是直角的菱形是正方形
探究点
正方形的判定
在上面的证明过程中,是分别从矩形、菱形出 发,添加边或角的条件后得到正方形,那么还有没 有通过添加边、角、对角线的条件可以得到其他 判定正方形的方法呢? 大家想一想.
课堂总结
知识结构
四边形
平行四边形
正 矩形 方 菱形

课堂总结
知识结构
课堂总结
1. 教材P62习题18.2第13题.
课后作业
1. 如图,E,F,M,N 分别是正方形ABCD四条边上的
点,且AE=BF=CM=DN,试判断四边形EFMN是什么
图形,并证明你的结论. 【选自教材P62,习题18.2第13题】
把能活动的菱形木框的一个角变为直角(如图),
能否得到正方形?
探究点
正方形的判定
2. 有一个角是直角的菱形是正方形
正方形
可以看到,这个变化过程中只要改变菱形的一 个角,就能得到正方形.
下面我们进行证明:
探究点

人教版八年级下册数学《正方形》平行四边形研讨复习说课教学课件

人教版八年级下册数学《正方形》平行四边形研讨复习说课教学课件

A
B
O
D
C
阶段归纳
正方形判定的常用方法:
+
一个角是直角 或对角线相等
先判定菱形
矩形条件(二选一)
先判定矩形
+
一组邻边相等, 或对角线垂直
菱形条件(二选一)
正方形 正方形
阶段归纳
平行四边形、矩形、菱形、正方形的判定总结
矩形
5种判定方法 四边形
平行四边形
一个角是直角且一组邻边相等
正方形
菱形
当堂练习
6.对角线互相平分,垂直,相等的四边形是正方形
几何语言表示 ∵AC⊥BD,AC平分BD,BD平分AC,AC=BD, ∴四边形ABCD是正方形
知识点四:正方形,菱形矩形平行四边形之间的关系
归纳总结:正方形是特殊的平行四边形,还是特殊的矩
形、特殊的菱形,因此正方形具有这些图形的所有性质. 判定正方形有两个思路:(1)先判定四边形是矩形,再判定
这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形 是矩形.
例1 求证:正方形的两条对角线把这个正方形分成四个全等的 等腰直角三角形.
已知:如图,正方形ABCD中,对角线AC、BD相交于O。 求证:△ABO,△BCO,△CDO,△DAO是全等的等腰直角三角形。
证明:∵四边形ABCD是正方形。
知识点二:正方形的性质(从边,角,对角线,对称性四个方面研究)
1.角:正方形的四个角都是直角; 几何语言表示:在正方形ABCD中,∠ABC=∠BCD=∠CDA=∠DAB=90° 2.边:正方形的四条边都相等;对边平行。
几何语言表示:在正方形ABCD中,AB=BC=CD=DA,AB∥CD,AD∥BC
证一证
对角线互相垂直的矩形是正方形.

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

(1) AB=AD;
A
(2) AC=BD;
(3) ∠BAD=90;
(4) AC⊥BD。
B
D O
C
判断对错
1. 四边相等的四边形是正方形 2.四角相等的四边形是正方形 3.四条边相等且有一个角是直角的四边 形是正方形 4.对角线互相垂直平分且相等的四边形 是正方形 5.对角线垂直的平行四边形是正方形
判断对错
6.对角线互相垂直且相等的四边形是正 方形。 7.对角线互相垂直的矩形是正方形。 8.对角线相等的菱形是正方形。
活动
1.从长方形木板中怎样截出最大的正方形木板?
2.怎样使菱形的衣帽架变成正方形的衣帽架?
3.昨天,我去超市买了一条方巾,现在想请同学们帮助检验 一下方巾是否是正方形的。
1.已知:正例方形题AB解CD中析,点E、F、G 、H
正方形
菱形
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
每一条对角线平分一组对角
对称性---- 是轴对称图形.
D O
C
根据图形所具有的性质,在下表相应的空格中打 ”√”
对边平行且相 等
四边都相等
四个角都是直 角
对角线互相平 分
对角线互相垂 直
对角线相等
平行四边 形


矩形

√ √

菱形
√ √
√ √
正方形
√ √ √ √ √ √
你觉得什么样的四 边形是正方形呢?
分别是AB 、BC 、CD 、DA的中点,试判断四
边形EFGH是正方形吗?为什么?

最新人教版八年级数学下册全册完整课件

最新人教版八年级数学下册全册完整课件
初中数学
全册精品PPT课件 (2套)
每一课都有两套课件!
第十六章 二次根式
17.1.2利用勾股定理解 决简单的实际问题
16.1 二次根式
17.1.2 数轴表示根号13
16.2.1 二次根式的乘法 16.2.2 二次根式的除法 16.3.1 二次根式的加减运算 16.3.2 二次根式的混合运算
17.2.1 勾股定理的逆定 理
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《二次根式(1)》随堂检测”
回忆
活动一:定向导学
⑴什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则
这个数就叫做a的平方根。
a的平方根是 aa
⑵什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就 叫做a的算术平方根。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=___5____
20.1.1平均数
20.1.2中位数与众数
20.2 数据的波动程度
20.3 课题学习 体质健康 测试中的数据分析 小结、构建知识体系、复 习题20
《二次根式》第一课时
知识回顾 问题探究 课堂小结 随堂检测
(1)平方根:25的平方根是±5,3的平方根是 3 , 0的平方根是0,-5没有平方根.
二次根式具备哪些特点?
(1)有二次根号;
(2)被开方数不能小于0.
知识回顾 问题探究 课堂小结 随堂检测
探究一:什么样的式子是二次根式?
重点知识★
活动3 牛刀小试,初步运用
1
例1.式子:
2,

x

正方形及其性质八年级人教版数学下册习题课件

正方形及其性质八年级人教版数学下册习题课件
(2)设 AD=a,当四边形 EGFH 是正方形时,求矩形 ABCD 12.【中考·天门】如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分
线CG于点G,连接GF,求证: 解:设CD=BC=x,则CM=x-3,CN=x-2,
的面积. 把△ADN绕点A顺时针旋转90°得到△ABE.
(2)若BM=3,DN=2,求正方形ABCD的边长.
解:设CD=BC=x,则CM=x-3,CN=x-2, ∵△AEM≌△ANM,∴EM=MN. ∵BE=DN,∴MN=EM=BM+BE=BM+DN=5. ∵∠C=90°,∴MN2=CM2+CN2. 即52=(x-3)2+(x-2)2,解得x=6或-1(舍去), ∴正方形ABCD的边长为6.
证明:∵把△ ADN 绕点 A 顺时针旋转 90°得到△ ABE,∴△ADN≌△ABE, ∴∠DAN=∠BAE,DN=BE,AN=AE.
由题易知 E 在 CB 的延长线上. ∵∠DAB=90°,∠MAN=45°, ∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°. ∴∠MAE=∠MAN. 又∵MA=MA,AN=AE, ∴△AEM≌△ANM.
3.【中考·天津】如图,四边形OBCD是正方形,O,D两 点的坐标分别是(0,0),(0,6),点C在第一象限,则 点C的坐标是( D ) A.(6,3) B.(3,6) C.(0,6) D.(6,6)
4.【中考·北京】把图①中的菱形沿对角线分成四个全等的直角 三角形,将这四个直角三角形分别拼成如图②、图③所示的 正方形,则图①中菱形的面积为___1_2____.
∵正方形 ABCD 的边长为 4, ∴AD=AB=4,∠DAB=90°. ∵点 E 在 AB 上且 BE=1,∴AE=3. ∴DE= AD2+AE2= 42+32=5. ∴DE+BE=5+1=6,即△ BFE 周长的最小值为 6. 【答案】B

18.2.3.1正方形的性质(同步课件)-八年级数学下册同步精品课堂(人教版)

18.2.3.1正方形的性质(同步课件)-八年级数学下册同步精品课堂(人教版)

如图,在正方形 ABCD 中,点 F 为对角线 AC 上一点,连接 BF, DF. 你能找出图中的全等三角形吗?选择其中一对进行证明.
全等三角形有:△ AFD ≌ △AFB,
D
△CFD ≌ △CFB,△ACD ≌ △ABD.
证明:∵四边形 ABCD 为正方形,
∴AD = AB ( 正方形的四条边都相等 ).
∴∠FCE=90°, AC垂直平分BD, ∴AP=PC. 又∵PE⊥BC , PF⊥DC,
∴四边形PECF是矩形, ∴PC=EF. ∴AP=EF.
A
D
PF
B
EC
用直尺和量角器测量正方形的四条边长度、四个角度数、对角线的长度及 夹角度数和OA、OB、OC、OD的长度,并记录测量结果.
AB BC CD AD
∠ABC ∠BCD ∠ADC ∠BAD
AC BD
∠AOB OA OB OC OD
根据测量的结果,你有什么猜想?
A
D
O
B
C
已知:如图,四边形ABCD是正方形.
解:∵四边形ABCD是正方形, ∴AC⊥BD,OA=OD=2. 在Rt△AOD中,由勾股定理,得 AD AO2 OD2 2 2, ∴正方形的周长为4AD= 8 2, 面积为AD2=8.
13.如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E, PF⊥DC于F.试说明:AP=EF.
解: 连接PC,AC. ∵四边形ABCD是正方形,
证明:∵正方形ABCD是矩形, ∴AO=BO=CO=DO. ∵正方形ABCD是菱形. ∴AC⊥BD.
A
D
O
B
C
图中有 8 个等腰直角三角形.
请同学们拿出准备好的正方形纸片,折一折,观察并思考. 正方形 是不是轴对称图形?如果是,那么对称轴有几条?

人教版八年级数学下册第十八章《18.2.3 正方形》优质公开课课件

人教版八年级数学下册第十八章《18.2.3 正方形》优质公开课课件

角三角形.
A
D
思考:图中共有__四____个
O
等腰直角三
B
C
证明:∵四边形ABCD是_正__方__形_____,
∴AC=_B_D___,AC__⊥__BD,AO=_C_O___=_B_O___=_D_O___. ∴△ABO、△_B__C_O__、△_C_D__O__、△_D_A_O___是等腰直角三角 形,且△ABO≌△BCO__≌___△CDO__≌___△DAO.
“引导学生读懂数学书”课题 研究成果配套课件
新课引入 展示目标 研读课文 归纳小结 强化训练
第十课时 § 18.2.3 正方形
一、新课引入
矩形
1.四个角都___相__等___ 性 质
2.对角线__互__相__平__分__
1.有一个角是_直__角___的 __平__行__四__边__形_
判 2.有三个角是_直__角__的 定 ___四__边__形__
_______________
五、强化训练
已知:如图,△ABC中,∠C=90°,CD平分
∠ACB,DE⊥BC于E,DF⊥AC于F.
求证:四边形CFDE是正方形.
C
解:∵∠C=90°,DE⊥BC于E,
DF⊥AC于F
E
∴四边形CEDF有三个直角F,
它是矩形
A
又∵CD平分∠ACB
D
B
根据角平分线上的点都两边的距离相等,可知

2、正方形与平行四边形、矩形、菱形之间的关系有怎样的
包含关系?请填入下图中.


平行四边形

的 性
菱形
正方形 矩形

三、研读课文
例5 求证:正方形的两条对角线把这个正方形分成四个全

八年级数学下册课件: 正方形(第课时) 公开课一等奖课件

八年级数学下册课件: 正方形(第课时)  公开课一等奖课件

高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
zx``x````````k
6
六、应用新知
已知:点E、F、G、 H分别是正方形ABCD四 条边上的中点,并且E、F、 G、H分别是AB、BC、 CD、AD的中点.求证:四 边形EFGH是正方形.
A E B
H
D G
F
C
7
七、小结
1.正方形的判定方法. 2.了解正方形、矩形、菱形之间的联系与 区别,体验事物之间是相互联系但又有区别的 辩证唯物主义观点.
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分

最新整理人教版八年级数学下册第十八章《特殊的平行四边形 正方形》优质课件(2课时)

最新整理人教版八年级数学下册第十八章《特殊的平行四边形 正方形》优质课件(2课时)

矩形
中心对称图形 (对角线的交点)
即是中心对称图形, 又是轴对称图形(两条)
菱形
正方形
即是中心对称图形,
即是中心对称图形,
又是轴对称图形(两条) 又是轴对称图形(四条)
探究新知
18.2 特殊的平行四边形/
平行四边形、矩形、菱形、正方形之间关系:
平行四 边形
(1)
矩形 (3) 有一组邻边相等且 有一个角是直角
D
?E
∴AB=BC,∠1=∠2=45°,
又∵BE=BE ∴△ABE≌△CBE ∴AE=CE.
1 2
B

C
探究新知
18.2 特殊的平行四边形/
素养考点 2 利用正方形的性质求角度 例2 如图,在正方形ABCD中, ΔBEC是等边三角形,
求证: ∠EAD=∠EDA=15° . 证明:∵ ΔBEC是等边三角形,
问题1:图中CD在平移时,这个图形始终是怎样的图形?
问题2:当CD移动到CD位置,此时AD =AB,四边形
ABCD还是矩形吗? 正方形是特殊的矩形
探究新知
18.2 特殊的平行四边形/
【思考】1. 矩形一组邻边相等时变成怎样的图形呢?

正方形矩 形
探究新知
【思考】2.菱 形有一个角是 直角时变成怎 样的图形呢?
探究新知
18.2 特殊的平行四边形/
已知:如图,四边形ABCD是正方形. 求证:正方形ABCD四边都相等,四个角都是直角.
证明:∵四边形ABCD是正方形.
∴∠A=90°, AB=BC (正方形的定义).
又∵正方形是平行四边形.
A
D
∴正方形是矩形(矩形的定义),
正方形是菱形(菱形的定义).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标
• 学习目标:
1.理解正方形与平行四边形、矩形、菱形 概念之间的联系和区别; 2.能用正方形的定义、性质进行推理与计 算.
• 学习重点:
正方形与平行四边形、矩形、菱形的联 系.
自主探究 你能给正方形下一个定义吗?
矩形
平行四边形
正方形
菱形
正方形性质
边 角
D
对角线 ∟D
A
1 2 5 6
对称性
如图(2)AE⊥HF ,AE与HF相等吗?
如图(3)ME⊥HF , ME与HF相等吗?
A D A
H
D G
( 2)
A M G
H
D F C
G B
( 1)
E
F C
F C
BBE( 3) NhomakorabeaE
课堂小结
平行四 边形 对边平行且相等 四边都相等 四个角都是直角 矩形 菱形 正方形
对角线互相平分
对角线互相垂直 对角线相等
D
B
C
B
文 字 对边平行, 语 四条边都 言 相等 符 号 语 言
∵四边形ABCD 是正方形 ∴AB∥CD AD∥BC, AB=BC=CD=AD
四 个 角 都是直角
∵四边形ABCD 是正方形 ∴∠A=∠B=∠C =∠D=90°

图 形 语 言
A

A
O
C
B
7
8
3
4
C
对角线互相垂直 平分且相等,每 条对角线平分一 组对角
如图,已知正方形ABCD的边长为4, 对角线AC与BD相交于点O,点E在DC边的 延长线上.若∠CAE=15°则AE的长( ) A .4 B.2 C.8 D.16
补偿提高
如图,点E、F在正方形ABCD 的边BC、CD上, AE⊥BF ,探索 图中AE与BF的数量关系。
A D F C
G
B E
如图,在正方形ABCD中
B
,
A
O
D
C
已知:E为正方形ABCD的对角线 AC上一 点,AE=AD,过点E作AC 的垂线交CD于点F,求:∠FAD的 度数。
如图,正方形ABCD中,E为CD边上一点, F为BC延长线上一点,CE=CF.若∠BEC=80°, 则∠EFD的度数为( ) A. 20° B. 25° C. 35°D. 40°
∵四边形ABCD是正方形 ∴AC⊥BD,AC=BD, OA=OB=OC=OD, ∠1= ∠2= ∠3= ∠4= ∠5= ∠6= ∠7= ∠8=45°
轴 对 称 图 形

尝试应用
正方形对角线把正方形分成多少个 等腰直角三角形?
A
D
O
B
C
已知正方形的一条边长为2cm,则这个 正方形的周长为 , 对角线长为 面积为 .
作业布置
结合预习课件,完成自主59页
相关文档
最新文档