求最大利润问题

合集下载

最大利润问题

最大利润问题

当商店卖两种牌子的冻果汁时,
如何取得最大利润
一个小乡村里的唯一商店有两种牌子的冻果汁,当地牌子的进价每听30美分,外地牌子的进价每听40美分.店主估价,如果当地牌子的每听卖x美分,外地牌子每听卖y美分,则每天可卖出y x 4570+-听当地牌子的果汁, y x 7680-+听外地牌子的果汁.
问:店主每天以什么价格卖两种牌子的果汁可取得最大收益? 解:既然总收益为当地牌子果汁收益与外地
牌子果汁收益之和,所以每天总收益为二元
函数:
)7680)(40()4570)(30(),(y x y y x x y x f -+-++--=
于是求每天最大的总收益,就是求二元函数的最大值
),(y x f
解题过程
求),(y x f 的偏导数,得
201010-+-='y x f x
2401410+-='y x f y
令0,0='='y x f f 且
则有驻点:
x=53
Y=55
求二阶偏导数在(53,55)的值: 由多元函数求极值方法,由于
))(()(2yy xx xy
f f f ''''-'' 140100-=
040<-=
010<-=''xx
f
所以当
x=53 (美分)
y=55 (美分)
时,小店可取得最大收益.。

二次函数最大利润问题

二次函数最大利润问题

二次函数最大利润问题44.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)45.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?46.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)47.某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.48.某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件元.经市场调研发现:该款工艺品每天的销售量件与售价元之间存在着如下表所示的一次函数关系.(1)求销售量件与售价元之间的函数关系式;(2)设每天获得的利润为元,当售价为多少时,每天获得的利润最大?并求出最大值.49.某商场要经营一种新上市的文具,进价为20元/件。

求利润最大值的公式

求利润最大值的公式

求利润最大值的公式
求利润最大值的公式一般采用最优化理论来求解。

其中,利用数
学最优化方法可以解决多余变量、非线性及不可微分函数的最优化问题,也即求利润最大化的问题。

具体的求利润最大值的公式可以表示为:
有:n个决策变量:x1, x2, x3 ……xn;目标函数:Z=f(x1,
x2, x3 ……xn);因变量约束条件:gi(x1, x2, x3 ……xn)≤0
(i=1,2,3……m)
求解最优化问题即求满足所有约束条件和目标函数最大值的决策
变量值,即求最大利润z* 。

求解利润最大化问题,可以采用数学规划中的拉格朗日乘子法,
即求解其对应的对偶问题。

由拉格朗日乘子法可以得出求利润最大值
的公式为:
构造拉格朗日函数:L(x,λ)=f(x)+∑λi gi(x);
令L(x,λ)=0,即可求出最大值z*
这里,x表示一系列的决策变量,λ表示一系列的拉格朗日乘子,gi(x)表示约束条件,f(x)表示目标函数,利润最大值z*可以求解如下:
z* = max{f(x)}
s.t. gi(x)≤0 (i=1,2,3……m)
尤其在面对多变量、非线性及不可微分的情况下,以上的拉格朗
日乘子法是十分有效的,可以得到准确的求利润最大值的公式。

二次函数利润最大问题

二次函数利润最大问题

1. (2011湖南怀化,16,3)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.【答案】4【思路分析】总利润=单件产品利润×销售数量,因此y =x (8-x )=-(x -4)2+16,当x =4时,总利润y 有最大值16.【方法规律】①了解总利润的计算方法;②运用配方法求二次三项式的最值是解本题的难点;③解实际问题,要考虑所求的解是否符合实际意义.【易错点分析】配方过程易出现错误.【关键词】二次函数,二次函数与实际问题.【推荐指数】★★★☆☆【题型】常规题1. (2011广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p (元/千克)与销售月份x 的关系如图所示:②销售收入q (元/千克)与销售月份x 满足q=-32x+15 ③销售量m (千克)与销售月份x 满足m=100x+200.试解决以下问题:(1)根据图形,求与p 与x 之间的函数关系式:(2)求该种商品每月的销售利润y (元)与销售月份X 的函数关系式,并求出哪个月的销售利润最大?【答案】解:(1)根据图形可知;p 与x 之间的关系符合一次函数.故可设为p=kx+b ,并有946k b k b =+⎧⎨=+⎩解得110k b =-⎧⎨=⎩故p 与x 的函数关系式为p=-x +10.(2)根据题意,月销售利润y=(q-p)m=[(-32x+15)-(-x+10)](100x+200),化简得y=-50x²+400x+10000,所以4月份销售利润最大。

【思路分析】(1)观察图象,可以判断p 与x 之间的关系符合一次函数,于是设出其解析式,选取其中两组点坐标,利用待定系数法求解.(2)依题意,有月销售利润y=(q-p)m ,进而可以得到二次函数,并利用二次函数的性质求解.【方法规律】利用对问题的转化和待定系数法,结合函数性质求解.【易错点分析】对于(2)容易错误地认为销售利润y=pm.【关键词】一次函数、二次函数的应用 【难度】★★★★☆ 【题型】好题、综合题.3. (2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.16p (元/千克)x (月份) 49o型 号金 额Ⅰ型设备 Ⅱ型设备 投资金额x (万元)x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0)2 y 2=ax 2+bx(a≠0) 2.4 3.2 (1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【答案】解:(1)由题意得:①5k =2,k =52 ∴x y 521= ②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-= (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-= 529)3(5158515242221+--=+--=+=t t t t y y Q ∴当t =3时,Q 有最大值为529,此时10-t =7(万元) 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.【思路分析】第(1)小题考查学生求函数解析式的能力,坡度设置合理,学生上手容易,只需根据函数的解析式,直接代入就可求出,对于(2)主要考查了学生自己用函数关系表示题目中的数量关系,并进一步求二次函数的极值的方法.【方法规律】掌握待定系数法求解析式的基本方法,以及求二次函数最值的方法,即当ab x 2-=时,y 有最大(小)值a b ac 442-. 【易错点分析】对于第(2)不能正确列出函数关系式【关键词】待定系数法求函数解析式 二次函数的极值【推荐指数】★★★☆☆【题型】常规题 好题4. (2011湖北随州,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)由代数式()216041100P x =--+可知当x =60时,可获得利润最大值,即可求出5年所获利润的最大值;3495万元.所以有实施价值.(2)前两年得利润加上后三年的利润再除去前两年每年拨出的利润50万元即可.(3)不开发5年所获利润的最大值是205万元;若按规划实施,5年所获利润(扣除修路后)的最大值是3475元,有极大的实施价值.【方法规律】二次函数的实际应用问题的解题关键是理解题意,找到合适函数;取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法,要考虑其它的费用.【易错点分析】配方时易出现计算错误.6. (2011江苏常州,26,7分)某商店以6元/千克的价格购进某干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为22y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 32y21 44 69 (1)求a 、b 的值.(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)此人第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)【答案】(1)选取表中两组数据,如当t=1时,y 2=21当t=2时,y 2=44;分别代入22y at bt =+,得⎩⎨⎧+=+=ba b a 244421,解得a=1,b=20. (2)设甲级干果与乙级干果n 天销完这批货.则1140204022=+++-n n n n ,即60n=1140,解之得n=19,当n=19时,1399y =,2y =741.毛利润=399×8+741×6-1140×6=798(元).(3)第n 天甲级干果的销售量为-2n+41,第n 天乙级干果的销售量为2n+19.(2n+19)-(-2n+41)≥6解之得n≥7.【思路分析】(1)选取表中两组数据,求得a=1,b=20.(2)设n 天消完这批货,根据“甲级干果销售量+乙级干果销售量=总量”可求出n ,计算出销售量,从而可求出毛利润.(3)用前n 天的销售量减去前(n-1)天的销售量,即可求出甲、乙两种干果第n 天的的销售量,从而可列出不等式求解.【方法规律】本题第(1)问考查利用待定系数法,求二次函数关系式;(2)、(3)需要根据题目中提供的有关信息建立数学模型,进而解决问题.【易错点分析】第n 天的销售量会直接用总的销售量除以天数,从而导致错误.【关键词】待定系数法、二次函数【推荐指数】★★★☆☆【题型】应用题7. (2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?【答案】(1)y=(x -60)[300-10(x -80)]=(x -60)(300-10x+800)=(x -60)(1100-10x )=210170066000x x -+-即y=210170066000x x -+-(2)y=210170066000x x -+-=210(85)6250x --+.因为-10<0,所以当x =85时,y 有最大值,y 最大值=6250.即单价定为85元时,每月销售商品的利润最大,最大利润为6250元.【思路分析】(1)上涨x 元后,所销售的件数是[300-10(x -80)];每件的销售利润为(x -60)所以y=(x -60)[300-10(x -80)],整理得y=210170066000x x -+-;(2)根据二次函数的配方法可以求得最大利润.【方法规律】本题是综合考查二次函数的最值问题,需要熟悉二次函数的相关基本概念和配方法即可解题.要注意解题过程的完整性.【易错点分析】每件销售利润=每件销售收入-每件购进成本,这里销售利润只与进价 60元,不要把利润与定价80直接联系起来误把利润写成(x -80)元.【关键词】二次函数的应用.【推荐指数】★★★★★9. (2011山东菏泽,20,9分)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【答案】解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50;答:一次至少买50只,才能以最低价购买.(2) 220137(001[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪⎪-⎩<≤1)<<≥. (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)【思路分析】(1)由题意知最低价是16元,则可优惠4元,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可设一次购买x 只,才能以最低价购买,则可列方程0.1(x -10)=20-16求解;(2)由题意可知分3种情况,当0<x ≤10时不优惠,当10<x <50时,每多买1只,所买的全部计算器每只就降低0.10元,当x ≥50时,每只都是最低价16元;(3)当只数在10至50只之间时,y 是x 的二次函数,求出最大值即可.【方法规律】本题是考查学生用方程,函数的思想解决实际问题,本题关键要想到由自变量的取值不同分情况讨论.【易错点分析】学生不易想到分类讨论的思想【关键词】一元一次方程,函数,分类讨论【推荐指数】★★★★☆【题型】、新题,好题,难题10.(2011山东泰安,28 ,10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元.(1)当售价定为每件30元时,一个月可获利多少元?(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(30-20)[105-5(30-25)]=800(元)(2)设售价为每件x 元时,一个月的获利为y 元由题意,得:y =(x -20)[105-5(30-25)]=-5x 2+330x -4600=-5(x -33)2+845当x =33时,y 的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元.【思路分析】(1)可根据题意列出算术,并进行计算;(2)根据题意列出二次函数关系式,用配方法求得最值.【方法规律】考查了有理数的运算,二次函数最值的求法,运用了配方法求二次函数的最大值.【易错点分析】 最值时,凭直觉求得;列错算式.【关键词】二次函数的最值【推荐指数】★☆☆【题型】常规题.11. (2011山东潍坊,22,10分)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格元/千克与月份x 呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x ≤7和7≤x ≤12时,y 关于x 的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【解】(1)当17x ≤≤时,设y kx m =+,将点(1,8)、(7,26)分别代入y kx m =+,得8,726.k m k m +=⎧⎨+=⎩解之,得5,3.m k =⎧⎨=⎩ ∴函数解析式为35y x =+.当712x ≤≤时,设2y ax bx c =++,将(7,26)、(9,14)、(12,11)分别代入2y ax bx c =++,得: 49726,81914,1441211.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解之,得1,22,131.a b c =⎧⎪=-⎨⎪=⎩∴函数解析式为222131y x x =-+.(2)当17x ≤≤时,函数35y x =+中y 随x 的增大而增大,∴当1x =最小值时,3158y =⨯+=最小值.当712x ≤≤时,()22221311110y x x x =-+=-+, ∴当11x =时,10y =最小值.所以,该农产品平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值.将8x =,10x =和11x =分别代入222131y x x =-+,得19y =,11y =和10y =. ∴后5个月的月平均价格分别为19,14,11,10,11. ∴年平均价格为17719141110114615.3123y ⨯+++++==≈(元/千克). 当3x =时,1415.3y =<,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【思路分析】(1)当1≤x ≤7时,y 与x 间成一次函数关系,当7≤x ≤12时,y 与x 间成二次函数关系,运用待定系数法可求出相应的函数关系式.(2)分别结合一次函数与二次函数的性质,可确定在(1)中所求得的两个函数解析式中y 的最小值,由此可以进行分析判断.(3)要求年平均价格,需要知道该年月平均价格的和,由于1月份至7月份月平均价格呈一次函数,所以可取4x =时的月平均价格作为前7个月的平均值,在后5个月中,9月和12月的月平均价格一直,而其余3个月(8月,10月,11 月)的月平均价格可利用(1)中所求得的函数解析式求得.求出年平均价格后,把每月的平均价格与之相比即可作出判断.【规律总结】对于分段函数,在确定函数解析式时,要根据自变量的取值范围确定相对应的函数值,运用待定系数法确定函数解析式,利用函数解析式确定函数的最值时,要充分利用相应函数的性质.【易错点分析】计算量较大,在具体计算时易出现数据错误.【关键词】待定系数法,一次函数,二次函数,最值问题,平均数【推荐指数】★★★★☆【题型】新题,易错题13. (2011重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:月份x 1 2 3 45 6 7 8 9 价格y 1(元/件) 560 580 600620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025) 【解】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2( x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,设t= a﹪,整理,得10t2-99t+10=0,解得t=99940120,∵972=9409,962=9216,而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a ﹪)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.【思路分析】(1)用待定系数法求一次函数关系式;(2)分时间段求出销售该配件的利润w 关于的函数,再求出各自的最大值,最后通过比较求出去年12个月中利润的最大值;(3) 根据1至5月的总利润1700万元列一元二次方程,通过一元二次方程的解找出符合条件的答案.【方法规律】本题主要考查了用待定系数法求一次函数解析式、列代数式求二次函数的解析式,列一元二次方程求符合条件的解、二次函数的最值、合理估算等代数知识,采用了先局部后整体的思维策略解决问题,用到了待定系数法、方程思想、函数思想等数学思想方法,是一道综合性较强的题目.【易错点分析】不会分析分时间段列出二次函数的解析式,不会求分段函数的最值,不会根据题意列一元二次方程.【关键词】一次函数,二次函数及最值,一元二次方程 【难度】★★★★★ 【题型】常规题,易错题,难题,新题,综合题15. (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x=60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x,则外地投资额为100-x ,所以y=P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x=30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)根据题意把x = 60代入解析式就可以计算求出最大值;(2)根据二次函数的性质,利用其性质求解;(3)通过比较利润即可明晰何种方案的实施价值较大。

九年级数学二次函数应用之最大利润问题

九年级数学二次函数应用之最大利润问题

变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系,随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系。

(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益W(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值。

题型三:实际问题中的方案决策例3 某小区有一长100 m ,宽80m 的空地,现将其建成花园广场,设计图案如图所示。

阴影区域为绿化区域(四块绿化区域是全等矩形),空白区域为活动区域,且四周出口一样宽,宽度不小于50 m ,不大于60 m 。

预计活动区域每平方米造价60元,绿化区域每平方米造价50元。

(1)设其中一块绿化区域的长边长为xm ,写出工程总造价y (元)与x ( m )的函数式系式(写出x 的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x 为整数的所有工程方案;若不能,请说明理由。

(参考数据:732.13 )一、能力培养某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件。

已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5。

(1)若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由。

二次函数最大利润求法经典

二次函数最大利润求法经典

分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60)问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x )问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为1(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为2W =(40)x -y= (40)x -(201500x -+)= 220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时, 1W =(40)x -(300 --60202x ⨯) = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W =(40)x -(300+60402x -⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

专题 二次函数利润问题

专题 二次函数利润问题

专题八二次函数最大利润问题最大利润问题:这类问题只需围绕一点来求解,那就是:总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y,而自变量可能有两种情况:(1)自变量x是所涨价多少,或降价多少(2)自变量x是最终的销售价格例:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件,现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?(2)求销售利润y与降价x的关系式。

(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润。

(一)涨价或降价为未知数:例1:某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。

①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。

例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。

《商品利润最大问题》人教版九年级数学(下册)

《商品利润最大问题》人教版九年级数学(下册)
A
A.160元 B.180元
C.140元 D.200元
4.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一 生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是 y=-n2+15n-36,那么该企业一年中应停产的月份是( )
D
A.1月,2月 C.3月,12月
B.1月,2月,3月 D.1月,2月,3月,12月
例2 某旅馆有客房120间,每间房的日租金为160元,每天都客满.经市场调查, 如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将 每间客房的日租金提高到多少元时,客房日租金的总收入最高?最高总收入是多少?
解:设每间客房的日租金提高10x元,则每天客房出租数会 减少6x间,设客房日租金为y万元,则
③涨价多少元时,利润最大,最大利润是多少? y=-10x2+100x+6000, 当 x 100 时 5,y=-10×52+100×5+6000=6250.
2 (10)
即涨价5元时,最大利润是6250元.
例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查 反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出 18件,已知商品的进价为每件40元,如何定价才能使利润最大?
3
3
即降价 元5 时,最大利润是6050元.
3
综合由可(知1),(2应)的定讨价论58及元现时在,的才销能售使情况,你 知道应该如何定价能使利润最大了吗?
利润最大。
知识要点
求解最大利润问题的一般步骤 (1)建立利润与价格之间的函数关系式: 运用“总利润=总售价-总成本”或“总利润=单件利润 ×销售量” (2)结合实际意义,确定自变量的取值范围; (3)在自变量的取值范围内确定最大利润: 可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用 简图和性质求出.

关于最大利润的求解问题

关于最大利润的求解问题

关于最大利润的计算问题(数模组:李景明,吴方方,李元中,陈飞成)编者案:本论文通过线性规划问题求取最大利润问题,针对本问题,笔组成员采用两种方式进行求解;一方面考虑当各台设备达到负荷时,设备费用一次性支付清;另一方面,当各台设备达到负荷时,设备费用按比例支付清。

结果得到的利润基本相同。

摘要:由题意知,确定各种机床设备的单位工时,原材料费、产品销售价格、各种设备的有效台时以及满负荷操作时机床设备的费用,如何安排生产才能使获得的利润最大,故本题是一个线性规划问题,我们将利用线性规划的机关知识对其进行求解。

问题重述(略):问题分析:(1):生产产品一可在A,B任何一种规格设备上加工,则生产一的流程有以下6种可能:(A1:B1),(A1:B2),(A1:B3),(A2:B1),(A2:B2),(A2:B3);产品二可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工,则生产产品二的流程有以下2中可能:(A1:B1),(A2:B1);产品三只能在A2和B2设备上加工,则生产产品三只有一种可能:(A2:B2).(2):有题目条件可知,每套设备都有规定的有效台时数,如果超过有效台时数使用则需要支付一定的设备费用,故在本题的求解过程中应分为两种可能:1:设备在满负荷使用使用时,一次性支付清其设备费用;2:设备在满负荷使用时,按比列支付其设备费用。

(3):所谓获利最大,也就是说产品一,二,三的售价减去原料的费用,如果考虑满负荷时的状况,再减去相应的设备费用为最大。

故本题涉及到线性规划的问题。

模型假设:(1):各套设备的性能良好,即在生产产品一,二,三的过程中设备不会出现故障;(2):当设备满负荷使用时,不会对设备的性能造成影响,即设备仍能够在一定的时间内继续使用;(3):在生产产品一,二,三之前,各套设备都是停止工作的;(4):当用同一台设备生产不同的产品时,各产品之间不会相互影响,即各产品的生产过程是相互独立的;符号说明:x11:设备A1生产产品一的件数;x12:设备A2生产产品一的件数;x21:设备B1生产产品一的件数;x22:设备B2生产产品一的件数;x23:设备B3生产产品一的件数;y:设备A1生产产品二的件数;11y:设备A2生产产品二的件数;12y:设备B1生产产品二的件数;2z:设备A2或B2生产的产品三的件数;建立模型:假设一:当各台设备满负荷使用时,设备费用一次性支付:()()()()();为整数z z z z yy y x x x x x x x y x y x y x y y y x x x x x yy x x ,,,,,,,,;40007;7000114;400086;100001297;6000105;2007832503213005.08.2)(35.02)(25.025.1max 21211232221,121123222211212111121211232221121112111211<<+<+<++<+=+++=+++++--++-++-=用LINGO 运行程序如下:model :max =(x11+x12)+(y11+y12)*1.65+z*2.3-(300+321+250+783+200); x11+x12=x21+x22+x23; y11+y12=y2;5*x11+10*y11<6000;7*x12+9*y12+12*z<10000; 6*x21+8*y2<4000; 4*x22+11*z<7000; 7*x23<4000; @gin (x11); @gin (x12); @gin (x21); @gin (x22); @gin (x23); @gin (y11); @gin (y12); @gin (y2); @gin (z);假设二:各台设备满负荷使用时,设备费用按比例支付:()()()()()()()()()()()()()()()();为整数z z z z z z y y y x x x x x x x y x y x y x y y y x x x x x x x y x y x y x y yx x ,,,,,,,,;40007;7000114;400086;100001297;6000105;;;74000/2001147000/783864000/250129710000/3211056000/3005.08.235.00.225.025.1max 21211232221121123222211212111121211232221121123222211212111112111211<<+<+<++<+=+++=+⎪⎪⎪⎭⎫ ⎝⎛+++++++++--++-++-= 用LINGO 运行程序如下: model:max =((x11+x12)*(1.25-0.25)+(y11+y12)*(2.0-0.35)+z*(2.8-0.5))-((5*x11+10*y11)*0.05+(7*x12+9*y12+12*z)*(321、10000)+(6*x21+8*y2)*(250/4000))+(4*x22+11*z)*(783/7000)+7*x23*(200/4000));x11+x12=x21+x22+x23; y11+y12=y2;5*x11+10*y11<6000;7*x12+9*y12+12*z<10000; 6*x21+8*y2<4000; 4*x22+11*z<7000; 7*x23<4000; @gin (x11); @gin (x12); @gin (x21); @gin (x22); @gin (x23); @gin (y11); @gin (y12); @gin (y2); @gin (z);求解模型:假设一的求解结果如下:Global optimal solution found.Objective value: 1416.200Objective bound: 1416.200Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 22Variable Value Reduced CostX11 1200.000-1.000000X12 230.0000-1.000000Y11 0.000000-1.650000Y12 500.0000-1.650000Z 324.0000-2.300000X21 0.0000000.000000X22 859.00000.000000X23 571.00000.000000Y2 500.00000.000000Row Slack or Surplus Dual Price1 1050.2001.0000002 0.0000000.0000003 0.0000000.0000004 0.0000000.0000005 2.0000000.0000006 0.0000000.0000007 0.0000000.0000008 3.0000000.000000假设二的求解结果如下:Global optimal solution found.Objective value: 1416.464Infeasibilities: 0.000000Total solver iterations: 4Variable Value Reduced CostX11 1200.0000.000000X12 230.04930.000000Y11 0.0000000.3103448Y12 500.00000.000000Z 324.13790.000000X21 0.0000000.2530172Y2 500.00000.000000X22 858.62070.000000X23 571.42860.000000Row Slack or Surplus DualPrice1 1410.5671.0000002 0.000000 0.56551723 0.000000 1.0913794 0.000000 0.3689655E-015 0.000000 0.5806897E-016 0.000000 0.7392241E-017 0.000000 0.2709360E-018 0.000000 0.3078818E-01模型分析:根据假设一得到的结果如下:生产产品一的件数为:1430件;生产产品二的件数为:500件;生产产品三的件数为:324件;生产三种产品获得的利润:1416.2元;根据假设二得到的结果如下:生产产品一的件数为:1430件;生产产品二的件数为:500件;生产产品三的件数为:324件;生产三种产品获得的利润:1416.464元;设备A1花费的时间为:5×1200=6000;设备A2花费的时间为:7×230+9×500+12×324=9998;设备B1花费的时间为:8×500=4000;设备B2花费的时间为:4×859+11×324=7000;设备B3花费的时间为:7×571=3997;由上面的结果结合题给的结果,可以发现,设备A2有两个小时没有用完,设备B3有三个小时没有用完。

人教九年级数学上册- 最大利润问题(附习题)

人教九年级数学上册- 最大利润问题(附习题)

即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.

初三数学最大利润问题公式

初三数学最大利润问题公式

最大利润问题在初三数学中是一个常见的问题,通常涉及到成本、售价、利润等概念。

假设一件商品的成本是 c 元,售价是s 元,利润是p 元。

根据经济学和数学的基本概念,我们有以下公式:
利润p 是售价s 减去成本c,即p = s - c。

利润率r 是利润p 除以成本c,即r = p / c。

总利润T 是单个商品的利润p 乘以销售数量n,即T = n × p。

现在我们要来解这个问题,找出最大利润T 的表达式。

通过解方程和不等式,我们得到总利润T 的表达式为:T = p
最大利润T 的表达式为:T = p
因此,最大利润T 是由售价s 和成本 c 的关系决定的。

二次函数--(利润最大值问题)-顶点在范围内

二次函数--(利润最大值问题)-顶点在范围内

22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。

最大利润问题

最大利润问题

1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数. (1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).2.某旅社有客房120间,每间房的日租金为50元时,每天都客满,旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大?(总利润=总收入-总成本).4.已知a 2-5ab+6b 2=0,则abb a 等于_______5.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前七个月的利润总和与t之间的关系)为s=12t2-2t.(1)第几个月末时,公司亏损最多?为什么?(2)第几个月末时,公司累积利润可达30万元?(3)求第8个月公司所获利润是多少万元?6.启明公司生产某种产品,每件成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x( 万元)时,产品的年销售量是原销售量的y倍,且y=277101010xx-++. 如果把利润看作是销售总额减去成本和广告费:(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元, 问有几种符合要求的方式?写出每种投资方式所选的项目.7.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上. 问矩形DEFG 的最大面积是多少?F BGDCA8.如图,在Rt△ABC 中,∠ACB=90°,AB=10,BC=8,点D 在BC 上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE 的面积为y.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)x 为何值时,△ADE 的面积最大?最大面积是多少?EBDA9.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C,抛物线2(0)y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;x答案:1.(1)设y=kx+b,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k bk b=+⎧⎨=+⎩, 解得30960kb=-⎧⎨=⎩∴y=-30x+960(16≤x≤32)(2)设每月所得总利润为w元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元. 2.设每间客房的日租金提高x个5元(即5x元),则每天客房出租数会减少6x间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.3.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000=-5x2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.5.(1)s=12(t-2)2-2.故第2个月末时公司亏损最多达2万元.(2)将s=30代入s=12t2-2t,得30=12t2-2t,解得t1=10,t2=-6(舍去).即第10个月末公司累积利润达30万元.(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16,即第8个月末公司累积利润为16万元. 16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.6.(1)s=10×277101010xx⎛⎫-++⎪⎝⎭×(4-3)-x=-x2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16.∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:① 取A 、B 、E 各一股,投入资金为 5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元.② 取B 、D 、E 各一股,投入资金为 2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元 .7.过A 作AM⊥BC 于M,交DG 于N,则=16cm. 设DE=xcm,S 矩形=ycm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x). ∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.8.(1)在Rt△ABC 中=∴tanB=6384=. ∵DE∥AC,∴∠BDE=∠BCA=90°.∴DE=BD·tanB=34x,CD=BC-BD=8-x.设△ADE 中DE 边上的高为h,则∵DE∥AC,∴h=CD.∴y=12DE ·CD=1324x ⨯×(8-x) ,即y= 238x -+3x.自变量x 的取值范围是0<x<8.(2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6. 即当x=4时,△ADE 的面积最大,为6.9.解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ,························ 1分 点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-··············· 3分 ∴顶点1F ⎛ ⎝⎭ ·························· 4分 (2)存在 ······························· 5分1(0P ······························ 7分2(2P ······························ 9分。

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)1.如图,1l 表示某公司一种产品一天的销售收入与销售量的关系,2l 表示该公司这种产品一天的销售成本与销售量的关系.(1)1x 时,销售收入=______万元,销售成本=______万元,盈利(收入-成本)=______万元; (2)一天销售______件时,销售收入等于销售成本; (3)1l 对应的函数表达式是______;(4)你能写出利润与销售量间的函数表达式吗?2.消费也扶贫,万源市某村需要销售当地的优质土特产:香米和土豆,这两种商品的相关信息如下表: (1)达州市第一中学工会第一季度采购了香米和土豆共计1000袋,为该村创造利润17000元,求达州市第一中学工会采购了香米多少袋?(2)为了加大扶贫力度,达州市第一中学工会在第二季度想为该村创造20000元以上利润的目标.该工会计划购进香米和土豆共计1200袋,且香米不低于800袋,不超过1000袋.设购进香米m 袋,香米和土豆共创造利润w 元,求出w 与m 之间的函数关系式,并通过计算说明达州市第一中学工会能否实现扶贫目标?3.某水产品商店销售1千克A 种水产品的利润为10元,销售1千克B 种水产品的利润为15元,该经销商决定一次购进A 、B 两种水产品共200千克用于销售,设购进A 种水产品x 千克,销售总利润为y 元. (1)求y 与x 之间的函数关系式;(2)若其中B 种水产品的进货量不超过A 种水产品的3倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.4.某乡镇农贸公司新开设了一家网店,销售当地农产品,其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中210x <≤). (1)求y 与x 之间的函数关系式;(2)销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?5.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A 、B 两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:A 型电脑B 型电脑 进价(元/台) 4200 3600 售价(元/台)48004000设营销商计划购进A 型电脑x 台,电脑全部销售后获得的利润为y 万元. (1)试写出y 与x 的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?6.某运动鞋专卖店通过市场调研,准备销售A 、B 两种运动鞋,其中A 种运动鞋的进价比B 种运动鞋的进价高20元,已知鞋店用3200元购进A 种运动鞋的数量与用2560元购进B 种运动鞋的数量相同. (1)求两种运动鞋的进价.(2)设A 运动鞋的售价为250元/双,B 运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设总利润为W 元,A 运动鞋进货m 双,且90≤m ≤105. ①写出总利润W 元关于m 的函数关系式. ②要使该专卖店获得最大利润,应如何进货7.某水果经销商需购进甲,乙两种水果进行销售.甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为25元/千克.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)求a的值,并写出当x>40时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?8.为落实国家精准扶贫政策,某地扶贫办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为18元每千克,销售单价y(元)与每天销售量x(千克)(x为正整数)之间满足如图所示的函数关系,其中销售单价不得低于成本价.(1)求出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)当销售量为多少时,获利最大?最大利润是多少?9.某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的45.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?10.昆明斗南花卉市场是全国鲜花市场的心脏,也是亚洲最大的鲜花交易市场之一.斗南某兰花专卖店专门销售某种品牌的兰花,已知这种兰花的成本价为60元/盆.市场管理部门规定:每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.经过市场调查发现,该店某天的销售数量y(盆)与销售单价x(元/盆)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围:(2)在销售过程中,该店每天还要支付其他费用200元,求这一天销售兰花获得的利润w(元)的最大值.11.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有几天每天销售利润不低于3250元?请直接写出结果.12.2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元. (1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a (个),售完这两批盲盒所获总利润为w (元),请写出w 与a 之间的函数关系式;①商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?13.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同. (1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a 元(6080)a <<出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?14.某大型水果超市销售水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如下表关系:已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?15.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2590盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?16.九(4)班数学兴趣小组经过市场调查,整理出童威的某种高端商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程.若前49天销售获得的最17.玩具批发市场A、B玩具的批发价分别为每件30元和50元,张阿姨花1200元购进A、B两种玩具若干件,并分别以每件35元与60元价格出售.设购入A玩具为x件,B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元,则张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量,问如何购进玩具A、B的数量并全部出售才能获得最大利润,此时最大利润为多少元?18.某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系式;(2)若该经营部希望日均获利1350元,那么日均销售多少桶水?19.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且当x=80时,y=40,当x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得的利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?20.某销售商准备采购一批儿童玩具,有A,B两种品牌可供选择,其进价和售价如下:销售商购进A,B两种品牌的儿童玩具共30件.(1)若销售商购进A品牌的儿童玩具为x (件), 求销售商售完这30件儿童玩具获得的总利润y(元)与x之间的函数关系式;(2)若想使得销售完这30件儿童玩具获得的总利润为1300元,求应购进A品牌的儿童玩具多少件?(3)若购进A品牌的儿童玩具不能少于20件,求所获总利润最多为多少元?参考答案1.(1)1,1.5,-0.5;(2)2;(3)y x =;(4)112p x =- 【分析】(1)由题意根据线段中点的求法列式计算即可求出x =1时的销售收入和销售成本,根据盈利的求法计算即可得解;(2)由题意直接根据图象找出两直线的交点的横坐标即可;(3)根据题意设l 1对应的函数表达式为y =kx (k ≠0),然后利用待定系数法求一次函数解析式即可;(4)由题意结合l 1和l 2的解析式,设利润为p 然后根据利润=销售收入-销售成本列式表示即可. 【详解】解:(1)x =1时,销售收入= 212=(万元), 销售成本=121.52+=(万元), 盈利(收入-成本)= 310.52-=-(万元); 故答案为:1,1.5,-0.5;(2)由图像可知一天销售2件时,销售收入等于销售成本; 故答案为:2;(3)设l 1对应的函数表达式为:y =kx ,则2=2k ,解得:k =1, 故l 1对应的函数表达式为:y =x , 故答案为:y =x ;(4)∵l 1的表达式为y =x ,设l 2的表达式为y =kx +b (k ≠0),代入(0①1),(2①2)可得1,12k b ==, ∴l 2的表达式为112y x =+, 设利润为p ,∴利润p =11(1)122x x x -+=-,所以利润与销售量间的函数表达式为:112p x =-. 【点睛】本题考查一次函数的应用,考查了识别函数图象的能力以及利用待定系数法求一次函数解析式,准确观察图象提供的信息是解题的关键.2.(1)达州市第一中学工会采购香米400袋.(2)w 518000m =+(800≤m <1000),达州市第一中学工会能实现扶贫目标. 【分析】(1)设达州市第一中学工会采购香米x 袋,利用总利润为等量关系构建方程即可; (2)根据香米每袋利润×袋数+土豆每袋利润×袋数构建一次函数,利用一次函数的性质即可解决问题; 【详解】解:(1)设达州市第一中学工会采购香米x 袋. 由题意列方程得()()()80606045100017000x x -+--=,解得400x =,答:达州市第一中学工会采购香米400袋. (2)由题意得:()20151200w m m =+-,518000m =+(800≤m ①1000),∵800m ≥,且w 随m 的增大而增大,∴800m =时,5800180002200020000w =⨯+=>, 当m =1000时,510001800023000w =⨯+=, 2200023000w ≤<,∴达州市第一中学工会能实现扶贫目标. 【点睛】本题考查一次函数的应用、一元一次方程的应用等知识,解题的关键是理解题意,正确寻找等量关系解决问题.3.(1)y =-5x +3000;(2)购进A 水产品50kg 、B 种150kg 时,利润最大是2750元 【分析】(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,根据等量关系表示出函数解析式即可;(2)由题意得:2003x x -≤,解得:50x ≥,即50200x ≤<,根据53000y x =-+的性质得y 随x 的增大而减小,则当50x =时,销售利润最大,把50x =代入53000y x =-+即可得.【详解】解:(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,1015(200)y x x =+-10300015y x x =+-即53000y x =-+,则y 与x 之间的函数关系式为:53000y x =-+;(2)由题意得:2003x x -≤,4200x ≥解得:50x ≥,∴50200x ≤<,∵53000y x =-+,50-<,∴y 随x 的增大而减小,∴当50x =时,销售利润最大,55030002750y =-⨯+=,200-50=150(千克),故购进A 种水产品50千克,购进B 种水产品150千克,销售总利润最大,总利润的最大值为2750元.【点睛】本题考查了一次函数的应用,解题的关键是根据题意找出等量关系表示出函数解析式.4.(1)600(25)40800(510)x y x x <≤⎧=⎨-+<≤⎩;(2)当销售单价x 为10元时,每天的销售利润最大,最大利润是3200元.【分析】1)运用待定系数法计算即可;(2)列出二次函数解析式,计算最值即可.【详解】(1)当25x <≤时,600y =;当510x <≤时,设(0)y kx b k =+≠,把(5,600),(10,400)代入得:560010400k b k b +=⎧⎨+=⎩,解得40800k b =-⎧⎨=⎩,40800y x ∴=-+,综上,y 与x 之间的函数关系式为:600(25)40800(510)x y x x <≤⎧=⎨-+<≤⎩(2)设每天的销售利润为w 元,当25x <≤时,600(2)6001200w x x =-=-,6000> w 随x 的增大而增大∴当5x =时,600512001800w =⨯-=最大(元)当510x <≤时,(40800)(2)w x x =-+-2240880160040(11)3240x x x =-+-=--+400-<抛物线开口向下对称轴为直线11x =,∴当11x <时,w 随x 的增大而增大510x <≤ ∴当10x =时,40132403200w =-⨯+=最大(元)32001800> 10x ∴=时,w 最大答:当销售单价x 为10元时,每天的销售利润最大,最大利润是3200元.【点睛】本题考查了二次函数的最值,一次函数的解析式,熟练掌握待定系数法,灵活运用二次函数的最值是解题的关键.5.(1)y =200x +12000;(2)该经销商有三种购进电脑的方案可供选择;(3)当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元【分析】(1)根据利润的计算公式,先求出A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,购进A 型电脑x 台,则购进B 型电脑为()30x -台,即可得出y 与x 的函数关系;(2)根据题意列出相应不等式组,求解,然后依据电脑台数为整数即可确定有几种方案;(3)根据(1)中一次函数性质,可得当x 取最大值22时,获利最大,代入即可求出最大利润.【详解】解(1)根据题意:购进A 型电脑x 台,则购进B 型电脑为()30x -台,A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,依据题意可得:y 与x 的函数关系式为:()()()480042004000360030?20012000y x x x =-+--=+, 即为:20012000y x =+;(2)由题意得:200120001600042003600(30)121200x x x +≥⎧⎨+-≤⎩解得2022x ≤≤,∵x 为整数 ,∴x 取20、21或22,即该经销商有三种购进电脑的方案可供选择;(3)由(1)知:20012000y x =+,∵2000>,∴y 随x 的增大而增大,即当x 取最大值22, 308x -=时,y 有最大值,y 最大=200×22+12000=16400(元)∴当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元.【点睛】题目主要考查一次函数的应用、不等式的应用,理解题意列出相应方程时解题关键. 6.(1)A 种运动鞋的进价为100元/双,B 种运动鞋的进价是80元/双;(2)①W =50m +20000;②要使该专卖店获得最大利润,此时应购进A 种运动鞋105双,购进B 种运动鞋95双【分析】(1)设B 种运动鞋的进价x 元,根据等量关系:用3200元购进A 种运动鞋的数量=用2560元购进B 种运动鞋的数量,列出分式方程并解分式方程即可;(2)①根据总利润=A 种运动鞋的利润+B 种运动鞋的利润,即可列出W 关于m 的函数关系式;②根据W 与m 的函数关系式及m 的取值范围,可确定W 的最大值.【详解】(1)设B 种运动鞋的进价x 元,则A 种运动鞋的进价(20)x +元,则3200256020x x=+ 解得:80x = 经检验80x =是原分式方程的解,且符合题意.①208020100x+=+=故A种运动鞋的进价为100元/双,B种运动鞋的进价是80元/双.(2)①W=(250-100)m+(180-80)(200-m)=50m+20000即总利润W元关于m的函数关系式为W=50m+20000②∵W=50m+20000①50>0,W随m的增大而增大又①90≤m≤105①当m=105时,W取得最大值,200-m=95故要使该专卖店获得最大利润,此时应购进A种运动鞋105双,购进B种运动鞋95双.【点睛】本题考查了分式方程与一次函数的实际应用,对于分式方程的应用,关键是理解题意,找到相等关系并列出方程;对于一次函数的应用,关键是掌握它的性质.注意解分式方程要检验.7.(1)a=30,y=24x+240;(2)甲水果应购进30克,乙水果购进50克时,才能使经销商付款总金额w最少.【分析】(1)先根据图象求出a的值,再根据一次购买超过40千克,超过部分的价格打八折写出函数关系式;(2)先根据甲种水果不少于30千克,但又不超过50千克求出x的取值范围,在分30≤x≤40和40<x≤50两种情况写出函数解析式,再根据函数的性质求最值.【详解】解:(1)由图象知:a=1200÷40=30(元),当x>40时,y=30×40+(x-40)×30×80%=24x+240,∴当x>40时,y与x之间的函数关系式为y=24x+240,a的值为30;(2)由题意,得:30≤x≤50,①当30≤x≤40时,w=30x+25(80-x)=5x+2000,∵5>0,∴w随x的增大而增大,∴当x=30时,w最小,最小值=5×30+2000=2150(元);②当40<x≤50时,w=24x+240+25(80-x)=-x+2240,∵-1<0,∴w 随x 的增大而减小,∴当x =50时,w 最小,最小值=-50+2240=2190(元),∵2150<2190,∴x =30,∴甲水果应购进30克,乙水果购进50克时,才能使经销商付款总金额w 最少.【点睛】本题考查了一次函数的应用,关键是根据x 的取值确定函数解析式.8.(1)40(020)150(2064)2x x y x x x <≤⎧⎪=⎨-+<≤⎪⎩且为正整数且为正整数;(2)当32x =时,获利最大,最大利润是512元.【分析】(1)当0<x ≤20且x 为整数时,y =40;当x >20时,设y =kx +b ,由待定系数法求得函数解析式;(2)设所获利润为w (元),分两种情况:①当0<x ≤20且x 为整数时,②当20<x ≤64且x 为整数时,分别得出w 的表达式,并分别得出w 的最大值,然后两者比较即可得出答案.【详解】解:(1)当020x <≤且x 为整数时,40y =;当20x >时,设y kx b +=,代入(20,40)和(50,25)得:20405025k b k b +=⎧⎨+=⎩,解得1250k b ⎧=-⎪⎨⎪=⎩. ∴1502y x =-+. 当18y =时,代入1502y x =-+,得64x =. ∴2064x <≤且x 为整数,综上所述,y 与x 之间所满足的函数关系式为40(020)150(2064)2x x y x x x <≤⎧⎪=⎨-+<≤⎪⎩且为正整数且为正整数. (2)设所获利润为w (元),当020x <≤且x 为整数时,y =40,∴(4018)22w x x ==﹣.∵22>0,∴w 随着x 的增大而增大,则当x =20时,w 有最大值,最大值为440;当2064x <≤且x 为整数时,1502y x =-+, ∴22111(5018)32(32)512222w x x x x x =-+-=-+=--+, ∵102-<, ∴当x =32时,w 最大,最大值为512元.∵512440>,∴当x =32时,获利最大,最大利润是512元.【点睛】本题主要考查了一次函数与二次函数实际应用问题中的销售问题,利用二次函数的性质求得最值以及数形结合思想是解题的关键.9.(1)甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元【分析】(1)设甲品牌洗衣液每瓶的进价是x 元,则乙品牌洗衣液每瓶的进价是(x -6)元,根据数量=总价÷单价,结合用1800元购进乙品牌洗衣液数量的45,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设可以购买m 瓶乙品牌洗手液,则可以购买(100-m )瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设甲品牌洗衣液进价为x 元/瓶,则乙品牌洗衣液进价为()6x -元/瓶, 由题意可得,180********x x =⋅-, 解得30x =,经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.(2)设利润为y 元,购进甲品牌洗衣液m 瓶,则购进乙品牌洗衣液()120m -瓶,由题意可得,()30241203120m m +-≤,解得40m ≤,由题意可得,()()()363028*********y m m m =-+--=+,∵20k =>,∴y 随m 的增大而增大,∴当40m =时,y 取最大值,240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元①【点睛】本题考查分式方程的应用,一次函数的应用,一元一次不等式的应用,解题的关键是灵活运用所学知识解决问题.10.(1)140y x =-+,自变量x 的取值范围是60120x ≤≤;(2)这一天销售兰花获得的利润的最大值为1400元.【分析】(1)根据函数图象和图象中的数据,可知该函数为一次函数,过点(80,60),(110,30),然后代入函数解析式,即可得到y 与x 之间的函数关系式,再根据每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.即可得到x 的取值范围;(2)根据题意,可以得到w 与x 的函数关系式,将函数关系式化为顶点式,即可得到这一天销售兰花获得的利润w (元)的最大值.【详解】解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,把(80,60)和(110,30)代入,得806011030k b k b +=⎧⎨+=⎩, 解得1140k b =-⎧⎨=⎩; ∴y 与x 之间的函数关系式为140y x =-+,①每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.①60≤x ≤120,由上可得,y 与x 之间的函数关系式为140y x =-+(60120)x ≤≤;(2)根据题意,得6010()(0)402w x x =--+-22008600x x =-+-21001400()x =--+;∵10-<∴当100x =时,w 有最大值,为1400.答:这一天销售兰花获得的利润的最大值为1400元.【点睛】本题考查二次函数的应用、待定系数法求一次函数解析式,解答本题的关键是明确题意,求出一次函数解析式,利用二次函数的性质求出w 的最大值.11.(1)221202250(140)1108250(4070)x x x y x x ⎧-++≤<=⎨-+≤≤⎩;(2)第30天时,当天销售利润最大,最大利润是4050元;(3)共有36天每天销售利润不低于3250元【分析】(1)根据总利润=(售价-进价)×数量,列式整理即可;(2)结合二次函数和一次函数的性质,分别求解在各自变量范围内的最值,从而对比即可得出结论;(3)分别利用两个范围内的函数解析式建立方程或不等式,并结合自变量的取值范围求解即可.【详解】解:(1)当140x ≤<时,()()45301502y x x =+--⎡⎤⎣⎦,整理得:221202250y x x =-++;当4070x ≤≤时,()()85301502y x =--,整理得:1108250y x =-+;∴221202250(140)1108250(4070)x x x y x x ⎧-++≤<=⎨-+≤≤⎩; (2)对于函数221202250y x x =-++,整理可得:()22304050y x =--+,∵20-<,∴当30x =时,y 取得最大值,最大值为4050;对于函数1108250y x =-+,∵1100-<,∴y 随x 的增大而减小,∵4070x ≤≤,∴当40x =时,y 取得最大值,最大值为3850,∵4050>3850,∴第30天时,当天销售利润最大,最大利润是4050元;(3)当140x ≤<时,由题意,2212022503250x x -++=,解得:10x =或50x =,由(2)中,二次函数的性质可得:当1040x ≤<时,每天销售利润不低于3250元,共有30天;当4070x ≤≤时,由题意,11082503250x -+≥, 解得:54511x ≤, ∴当4045x ≤≤时,每天销售利润不低于3250元,共有6天;∴30+6=36(天),∴共有36天每天销售利润不低于3250元.【点睛】本题考查二次函数与一次函数的综合实际应用,理解二次函数和一次函数的基本性质,准确建立不等式并分类讨论是解题关键.12.(1)甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元;(2)①w =1230+3a ;①购进甲种盲盒33个,则购进乙种盲盒17个,最大利润是1329元.【分析】(1)设甲种盲盒的进货单价为x 元,则乙种盲盒的进货单价为(x -2)元,根据题意即可列出一元一次方程,即可求解;(2)①设购进甲种盲盒a 个,则购进乙种盲盒(50- a )个,根据题意得到a 的取值,再列出w 关于a 的一次函数;①根据一次函数的性质即可求解.【详解】解:(1)设甲种盲盒的进货单价为x 元,则乙种盲盒的进货单价为(x -2)元,根据题意得10x +15(x -2)=1570解得x =64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a 个,则购进乙种盲盒(50-a )个,依题意可得()2500a a a ⎧≤-⎨≥⎩解得10003a ≤≤ ∴w =(83-64)(10+a )+(78-62)(50-a +15)=1230+3a①①w =1230+3a ,故w 随a 的增大而增大故当a =33时,50-a =17.w 最大=1230+3×33=1329(元).∴第二批进货方案为:购进甲种盲盒33个,购进乙种盲盒17个.售完第二批盲盒最多获得总利润1329元.【点睛】此题主要考查一元一次方程、一次函数以及不等式组的应用,解题的关键是根据题意找到数量关系列方程或函数进行求解.13.(1)甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【分析】(1)依据用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同列方程解答; (2)根据题意列不等式组解答;(3)设总利润为w ,表示出w 与x 的函数解析式,再分三种情况:①当6070a <<时,②当70a =时,③当7080a <<时,分别求出利润的最大值即可得到答案.【详解】解:(1)依题意得:3000270010m m =-,整理,得:3000(10)2700m m -=,解得:100m =,经检验,100m =是原方程的根,答:甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)设购进甲种衬衫x 件,乙种衬衫(300)x -件,根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩, 解得:100110x , x 为整数,110100111-+=,答:共有11种进货方案;(3)设总利润为w ,则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+,①当6070a <<时,700a ->,w 随x 的增大而增大,∴当110x =时,w 最大,此时应购进甲种衬衫110件,乙种衬衫190件;②当70a =时,700a -=,27000w =,(2)中所有方案获利都一样;③当7080a <<时,700a -<,w 随x 的增大而减小,∴当100x =时,w 最大,此时应购进甲种衬衫100件,乙种衬衫200件.综上:当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,(2)中所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【点睛】此题考查分式方程的实际应用,不等式组的实际应用,一次函数的性质,正确理解题意熟练应用各知识点解决问题是解题的关键.14.(1)y =﹣5x +380;(2)56元.【分析】(1)设y 与x 的函数解析式为y =kx +b (k ≠0),根据表格中的数据,利用待定系数法即可求出y 与x 的函数解析式;(2)利用该超市每天销售水蜜桃获得的利润=每箱的利润×每天的销售量,即可得出关于。

二次函数(利润问题)

二次函数(利润问题)

应用实践
某宾馆有 50 个房间供游客居住,当每个房间的定 价为每天 180 元时,房间会全部住满 . 当每个房 间每天的定价每增加 10 元时,就会有一个房间空 闲 . 如果游客居住房间,宾馆需对每个房间每天支 出 20 元的各种费用 . 房价定为多少时,宾馆利润 最大?
归纳总结
通过本节课的学习,我的收获是什么?
二次函数是一类最优化问题的数学模型, 能指导我们解决生活中的实际问题,同学 们,认真学习数学吧,因为数学来源于生 活,更能优化我们的生活。
注意:在应用二次函数模型解决实际问题 时,一定要说明自变量的取值范围。
③在自变量的取值范围内确定最大利润 ;
④可以利用配方法或公式求出最大利润;也可以画 出函数的简图,利用简图和性质求出 .
牛刀小试
某商店购进一批单价为20元的日用品,如果以 单价30元销售,那么半个月内可以售出400件.根据 销售经验,提高单价会导致销售量的减少,即销售 单价每提高1元,销售量相应减少20件.售价提高多 少元时,才能在半个月内获得最大利润?
22.3 二次函数 ----利润最大
在日常生活中存在着许许多多的与数学知识有 关的实际问题 . 商品买卖过程中,作为商家追 求利润最大化是永恒的追求 .如果你是商场经 理,如何定价才能使商场获得最大利润呢?
我们需要了解关于销售、利润、成本、单价、利润 率之间的关系式. (1) 销售额= 售价×销售量 ; (2) 利润= 销售额-总成本=单件利润×销售量; (3) 单件利润=售价-进价 ;
如:某商品现在的售价为每件 60 元,每星期可卖 出 300 件,已知商品的进价为每件40元,则每星期 销售额是 元,销售利润 元.
问题探究
问题:已知某商品的进价为每件40元。现在的售价 是每件60元,每星期可卖出300件。市场调查反映: 如调整价格 ,每涨价一元,每星期要少卖出10件; 如何定价才能使每周的利润最大?

9利润最大问题

9利润最大问题
2
10分
产品的销售价应定为25元,此时每日获得最大销售利 润为225元。 12分
3. 某宾馆有50个房间供游客居住,当每 个房间的定价为每天180元时,房间会全部 住满。当每个房间每天的定价每增加10元时, 就会有一个房间空闲。如果游客居住房间, 宾馆需对每个房间每天支出20元的各种费用. 房价定为多少时,宾馆利润最大?
10 x 1100 x
2
10x 55 30250.
2
归纳小结:
求实际问题的最大值和最小值的一般步骤 : 求出函数解析式和自变量的取值范围 配方变形,或利用公式求它的最大值或最 小值。 检查求得的最大值或最小值对应的自变量 的值必须在自变量的取值范围内 。
2. 某产品每件成本10元,试销阶段每件产品的销售 价 x(元)与产品的日销售量 y(件)之间的关系如下 表:
如何获得最大利润问题
旅行社何时营业额最大
1.某旅行社组团去外地旅游,30人起组团,每人 单价800元.旅行社对超过30人的团给予优惠,即 旅行团每增加一人,每人的单价就降低10元.你 能帮助分析一下,当旅行团的人数是多少时,旅 行社可以获得最大营业额?
设旅行团人数为x人,营业额为y元,则
y x800 10x 30
1分
15k b 25 则 20k b 20
解得:k=-1,b=40。 所以一次函数解析为 y x 40。 5分 6分
(2)设每件产品的销售价应定为 x 元,所获销售利润 为 w 元。则 7分
w x 10 x 40 x 2 50x 400 x 25 225
x(元) 15 20 30 …
y(件)
25
20
10

最大利润问题

最大利润问题

实际问题与二次函数学习目标:1.掌握商品经济等问题中的相等关系的寻找方法,并会应用函数关系式求利润的最值;2.会应用二次函数的性质解决实际问题.基础练习:1.如何求二次函数y=ax2+bx+c (a ≠0)的最值?有哪几种方法?写出求二次函数最值的公式.(1)配方法求最值 (2)公式法求最值2.当x= 时,二次函数y=-x2+2x -2有最大值.3、某种品牌的电脑进价为3000元,售价3580元.①十月份售出20台,则每台电脑的利润为 ,十月份的利润为 .②十一月份每台售价降低100元,结果比十月份多售出10台,则销售每台电脑的利润为 ,十一月份的利润为 .销售问题常用数量关系:每件产品的利润=售价 - 进价销售总利润=每件产品的利润×销售数量一、自主初学问题1. 某商品现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价 格 ,每涨价1元,每星期要少卖出10件;已知商品的进价为每件40元,要想获得 6000元的利润,该商品应定价为多少元?问题2. 某商品现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价 格 ,每涨价1元,每星期要少卖出10件,已知商品的进价为每件40元.该商品定价 为多少元时,商场能获得最大利润?解这类题目的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;2b ac b x=-y a 4a 4-当时,有最大(小)值2二、小组合学某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?三、迁移再学:某超市经销一种成本为每件40元的商品.据市场调查,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?本课小结:1、谈谈这节课你的收获。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用
求最大利润问题
学习目标
1.经历探索T恤衫销售中最大利润等问题 的过程,体会二次函数是一类最优化问题 的数学模型,并感受数学的应用价值。 2.能够分析和表示实际问题中变量之间的 二次函数,并运用二次函数是知识求出实 际问题的最大(小)值,发展解决问题的 能力。
情境导入
将二次函数y=ax2+bx+c(a≠0)改写为顶点式, 并写出它的对称轴和顶点坐标。
顶点式、对称轴和顶点坐标公式:
y a x
b
2
4ac
b2
.
2a
4a
直线x b
顶点(
b
4ac b2
,
)
2a
2a 4a
利润= 售价-进价 总利润= 每件利润×销售额
做一做
某商店经营T恤衫,已知成批购进时单价是6.5元. 根据市场调查,销售量与单价满足如下关系:在一段 时间内,单价是13.5元时,销售量是500件,而单价每降 低1元,就可以多售出200件.请你帮助分析,销售单价 是多少时,可以获利最多?
运用新知
还记得章一开始涉及的“种多少棵橙子树” 的问题吗?
我们还曾经利用列表的方法得到一个数据,现 在请你验证一下你的猜测(增种多少棵橙子树时,总产 量最大?)是否正确.
与同伴进行交流你是怎么做的.
议一议: 何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树,那 么树之间的距离和每一棵树所接受的阳光就会减少.根据 经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
若设销售价为x元(x≤13.5元),那么
销售量可表示为 : 500 20013.5 x 件;
销售额可表示为: x500 20013.5 x 元;
所获利润可表示为: x 6.5 500 200 13.5 x 元;
当销售单价为 11.25 元时,可以获得最大利润,最大利 润是4512.5 元.
如果增种x棵树,果园橙 子的总产量为y个,那么何时 总产量y值最大?
y=(600-5x)(100+x ) =-5x²+100x+60000
解: y=(600-5x)(100+x ) =-5x²+100x+60000 =-5(x-10)2+60500
∵当x=10时,y最大=60500 ∴增种10棵树时, 总产量最多,是60500个
当堂检测
某宾馆有120个房间供游客住宿,当每 个房间的房价为每天160元时,房间会 全部住满.当每个房间每天的房价每增 加10元时,就会有 6个房间空闲.不考 虑其他因素,旅馆将每间客房的房价提 高到多少元时,客房房价的总收入最高?
时间是个常数,但也是个变数。 勤奋的人无穷多,懒惰的人无穷少。
——字严
相关文档
最新文档