积分法求梁的位移.ppt

合集下载

工程力学第2节 确定梁位移的积分法

工程力学第2节 确定梁位移的积分法

例10-3 如图图示简支梁, l 4m ,弯曲刚度EI 1640N m2。在无限接近右支座 B 处受到矩为的集中 力偶 M e 120 N m 作用,试求 (1)转角方程和位移方 程;(2)梁的最大挠度。
解:(1)转角方程和 位移方程 x
Me FA FB l
梁的弯矩方程为
5
3
4
令 x 0,得B截面的挠度为
ql yB ( ) 30 EI
Me 2 x C (1) 将上式一次积分得转角 y' 2EIl
Me M ( x) x l
转角方程
Me 2 y' x C 2EIl
(1)
再次积分,可得挠度方程:
Me 3 y x Cx D (2) 6EIl 边界条件: x 0 时,y0 0 ; x l 时,yl 0 M el D0 C 6EI M e 2 M el 2 0 . 00915 x 0.0488 x 2EIl 6EI M e 3 M el 3 x 0.0488x y x x 0.00305 6EIl 6EI
再次积分,可得挠度方程:
1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24
1 1 1 3 2 ( qlx qx ) C EI 4 6 1 1 1 3 4 y ( qlx qx ) Cx D EI 12 24 边界条件: x 0 时,y0 0 ; x l 时,yl 0
补充例 悬臂梁AB在三角形分布载荷作用下,跨 度为l,抗弯刚度为EI,如图所示。试求B截面的挠度。 解:与B截面距离为 x 的任一截面的载荷集度为
x q( x) q l
(0 x l )

用积分法求梁的变形

用积分法求梁的变形
3

M ( x) EI Z
d 2 M ( x) 2 dx EI Z
d 2 M ( x) 2 dx EI Z
o
M
M
x
o
x
d2y 0 2 dx
y y
M
d2y 0 2 dx
M
d 2 M ( x) 2 dx EI Z
梁挠曲线近似微分方程
d 2 M ( x) 2 dx EI Z
x0


x0
L b 3
1 L 2
一般认为梁的最大挠度就发生在跨中
b0
3 L 0.577 L 3
例题 5.4
画出挠曲线大致形状。图中C为中间铰。
F
A
两根梁由中间铰连接,挠曲线在 中间铰处,挠度连续,但转角不 连续。
1 2
1 2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
y
A
C

B

x
C
B
tan
d dx
d dx
M ( x) EI Z dx C1

M ( x ) 在小变形情况下,任一截面的转角等于挠曲线 在该截面处的切线斜率。 dx dx C1 x C2 EI Z
通过积分求弯曲位移的特征: 1、适用于细长梁在线弹性范围内、小变形情况下的对称弯曲。
B
2M ( x ) d d Fx dx C C EI Fxdx EI C z 11 z 1 dx dx 2 EI Z
x
y
边界条件
2 3 Fx C xC Fx EI dx z 2 EI z 1 x C2 26 C1

梁的位移

梁的位移

F
A
B
a
y
q
EI z
L
Cx
挠曲线方程应分两段AB,BC. 共有四个积分常数
边界条件
xa
xaL
连续条件
B 0 C 0
xa
B1 B2 B1 B2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
挠曲线方程应分两段AB,BC.
共有四个积分常数
q
边界条件
A
Cx
B
EI z
k
x 0 A 0
l2
l2
xL
C

Fc k
qL 8k
y
连续条件
x L 2
B1 B2 B1 B2
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
yA 0
yB 0
在悬臂梁 中,固定端处的挠度 yA
A
B
和转角 A 都应等于零。
yA 0
θA0
例题 5.1
求图所示悬臂梁A端的挠度与转角。
F
x
A A
A
l
M x Fx
B
x
ddEExIIzzddxFx22MEI(CFZx1x) ddxxCC11
y
挠曲线方程(Equation of deflection curve)为 w f ( x)
式中,x 为梁变形前轴线上任一点的横坐标,w 为该点的挠度.
A
挠曲线
C C'

积分法计算梁的变形

积分法计算梁的变形
工程力学
积分法计算梁的变形
步骤:(EI为常量) 1、根据荷载分段列出弯矩方程 M(x)。 2、根据弯矩方程列出挠曲线的近似微分方程并进行积分
EIw(x) M (x)
EIw(x) M (x)dx C1 EIw (x) ( M (x)dx)dx C1x C2
积分法计算梁的变形
3、根据弯曲梁变形的边界条件和连续条件确
C1
C2
Fb 6L
(L2
b2 );
D1 D2 0
确定挠曲线和转角方程
w1
F b x1 6LEI
L2 b2 x12
w2
Fb 6LEI
L b
(x2
a)3
x23
(L2
b2
)x2
1
w1
Fb 6LEI
(L2 b2 ) 6x12
2
w2
Fb 2LEI
L b
(x2
a)2
x22
1 3
(L2
5、计算任意截面的挠度、转角;挠度的最大 值、转角的最大值。
例:求图示悬臂梁自由端的挠度及转角( EI=常数)。
w
x
L
F
x
解:建立坐标系并写出弯矩方程
M (x) F(L x)
写出微分方程并积分 EIw FL Fx
EIw
FLx
1 2
Fx
2
C1
EIw
FLx2 2
Fx3 6
C1x
C2
EIw
q
确定积分常数
x =0 , w=0 ; x=L , w=0 .
C1
ql3 24,C2 0A NhomakorabeaB
L
最大挠度及最大转角
确定挠曲线和转角方程 w qx (l3 2lx2 x3 )

静定结构的位移计算—结构位移公式及应用(工程力学课件)

静定结构的位移计算—结构位移公式及应用(工程力学课件)

【例4】求图示桁架k点水平位移. (各杆EA相同)
P
P
0
NP 0
P a
2P k
a
1
1 2 2 Ni
Δ= FN FNP l
EA
1
1
解:
kx
1 [(1)(P)a EA
(1)( P )a
2 2P 2a] 2(1 2) Pa () EA
ds
FN FNP EA
ds
1. 梁和刚架
在梁和刚架中,由于轴向变形及剪切变形产 生的位移可以忽略,故位移计算公式为:
2. 桁架
Δ=
MMP EI
ds
Δ=
FN FNP ds FN FNP ds FN FNPl
EA
EA
EA
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
ds
若结构只有荷载作用,则位移计算一般公式为:
1 (M ds FQ 0 FN )ds
MP
EI
0
kFQ P GA
FNP
EA
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
ds
适用条件:小变形、线弹性
➢ 正负号规则
1
MMP EI
ds
kFQ FQP GA
ds
FN FNP EA
M、FQ、FN、FRK :单位载荷 FP1 1在结构中产生
的内力和支座反力
➢ 单位荷载法
一次计算一种位移
求绝对位移!
BF
C
D
q
实际状态
(位移状态)
CH求、CV、C

弯曲时的位移.ppt

弯曲时的位移.ppt
q (P1P2 Pn ) q1(P1 ) q 2(P2 ) q n (Pn )
w(P1P2 Pn ) w1(P1) w2 (P2 ) wn (Pn )
2、结构形式叠加(逐段刚化法):
目录
弯曲变形
一、载荷叠加:几个荷载共同作用下梁任意横截面上的变形,
2.转角:梁横截面绕中性轴转动的角度q。
三、转角与挠度的关系(小变形下):
q tanq dw w(x)
dx
目录
弯曲变形
§5-2 挠曲线的近似微分方程及其积分
一、挠曲线近似微分方程
M>0
f (x) 0 f
M<0
f
f (x) 0
1 M z (x)
x
EI z
1
弯曲变形
梁变形前后横截面位置的变化称为位移。
梁在横向荷载作用下产生弯曲变形的同时, 使得横截面产生位移。
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核;
②解超静定梁(变形几何条件提供补充方程)。
目录
§5-1 梁的位移---挠度及转角
弯曲变形
q
x
F
A
q wB
x
w
B1
一、梁的弯曲变形 挠曲线
3、能用积分法计算单跨静定梁在简单荷载 作用下的转角和挠度方程,
4、能熟练使用叠加法计算指定截面的挠 度和转角位移。
目录
重难点:
弯曲变形
1、挠曲线近似微分方程的理解和梁位移边 界条件的应用。
2、积分法求解单跨静定梁在简单荷载作用下 的位移
3、叠加法求梁的位移。
目录
注意:
梁变形前后轴线形状的改变称为变形。

材料力学-梁的挠度PPT课件

材料力学-梁的挠度PPT课件

40 3
最新课件 40 12 3 28
边界条件:当 x0时,y 0 ;
当 x2m时, yl2.2 910 3m
代入上式得 C 1.1 1 4 1 5 3 , 0D 0
故 y3 1 2 ( 0 2x 0 4 2x 3 0 ) 1.1 1 4 1 5 30 x 40 123
当 x1m 时,y7.39 150 3m7.39 m5m 。
F1x 2EI
积分后得:
1(x1)y2 E FIx1d1xC14 E FxI12C1
y1(x1)4 E FIx12d1xC1x1最D 新1课件1E F 2xI13C1x1D 1
16
BC段:由于 y2 M E 2(x2I)E F(I2 3lx2) ,积分后得:
2(x2)y E FI(2 3lx2)d2 xC 2 E F(2 3 Il2 x x 2 2 2)C 2 y2(x2) E FI(2 3l2 x 1 2x2 2)d2 xC 2x2D 2 E F (4 3 Il2 2 x1 6x2 3)C 2x2D 2
y1E2FEFI(I43x13lx221F216E2lxI23x)156FE2lIx2
F3l
4E I
12((xx12))4EEFFIIx(1232 lx12F2El212Ix22)3FEl2I
由此可知:
A
1(x1
0)
Fl2 (逆时针方); 向 12EI
yC
y2(x2
3l) 2最新课件
Fl3 8EI
解:静力分析,求出支座A点的约束反力及拉杆BC所受的力 。列平衡方程:
mFyA
R F 2q0
A
B
2F 2q10 B
R 40KN,F 40kN
A

材料力学 积分法求梁的变形

材料力学  积分法求梁的变形
一、挠曲线近似微分方程
M ( x ) = r EI Z 1
1 = ± r d 2 w dx 2 d w é 2 ù 1 + ( ) ê ú dx ë û
3
±
d 2 w dx 2 d w 2 ù é 1 + ( ) ú ê dx û ë
3
M ( x ) = EI Z
边界条件、连续条件应用举例
弯矩图分三段,共6 个积分常数需6个边界条 件和连续条件 A B
P C D
w
铰连接
ω A点: A = 0, q A = 0
B 点 : w B 左 = w B 右
C点 : w C左 = w C右
D点:w D = 0
q C 左 = q C 右
边界条件、连续条件应用举例
y
边界条件
3 qL C1 = 6 EI z
EI zw =
1 (L - x )4 + C q 1 x + C 2 24
x = 0 x = 0 x = L
q = 0 w = 0
qL3 q B = 6 EI z
q =-
3 qL C2 =24 EI z
挠曲线方程应分两段AB,BC.
F A
a
q
B
EI z
L
共有四个积分常数
C
x
边界条件
x = a x = a + L
连续条件
w B = 0 wC = 0
y
x = a
w B1 = w B 2 q B1 = q B 2
例题 5.4 &
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件

积分法是求解梁变形的基本方法

积分法是求解梁变形的基本方法

C
BC刚化C
l
C
F
F
F
a
B
A
B
wA A1
B Fa w3
A
B
1. AB弯曲(BC刚化) Fa 3
w A1 3EI () 2. BC扭转(AB刚化)
wA2
B
a
Fal GI p
a
Fa 2l GI p
3. BC弯曲(AB刚化)
Fl 3
wA3 wB 3EI
wA wA1 wA2 wA3 Fa2l Fl 3 Fa3
Page5
BUAA
MECHANICS OF MATERIALS
例2:E常数, I 2 2I1 ,求 wC , C
I2
I1
A B
刚化AB段:
A B
P
C
仅考虑BC段变形:
P C
C1
Pa 2 2EI1
Pa3 wC1 3EI1
BC段刚化:
M Pa
B
C
A
B
FP
仅考虑AB段变形:
C2 B B,F B,M
材料物质点应力状况·应力微体 材态
通过构件内一点,所作各微截面的 应力状况,称为该点处的应力状态
三、怎么研究应力状态
x
研究构件内的一点的应力状态时, z
通常是围绕该点取出一个微小立方体(简 称微体)作为研究对象
y
y y
d
x
x
d
y
x
d
x
z
y
Page18
BUAA
BUAA
MECHANICS OF MATERIALS
上讲回顾
挠曲轴的近似微分方程
d 2w M(x) dx2 = EI

精品课件-材料力学(张功学)-第6章

精品课件-材料力学(张功学)-第6章
梁的抗弯刚度EI为常量,求此梁的转角方程和挠曲线方程,并 确定最大挠度值。
图6-4
6.1 引 言
解(1)求约束力。建立坐标系如图所示,求得约束力为
方向均竖直向上。
FAy
b l
F
,
FBy
a l
F
(2)写出弯矩方程。由于集中力加在两支座之间,弯矩方
程在AC、BC两段各不相同。
AC段:
M
1(
x)
b l
Fx
w(a )w(a ), (a ) (a )
(f)
利用式(e)和式(f),即可解得
D1 D2 0,
C1
C2
Fb(b 6l
2
l
2
)
于是,求得梁的转角方程和挠曲线方程分别为
6.1 引 言
AC段:
EI (x) Fb(3x2 b2 l 2 )
6l
EIw(x) Fbx[x3 (b2 l 2 )x] 6l
(a) (b) (c)
6.1 引 言
确定积分常数C和D的边界条件为:在固定端截面处,挠度 和转角均为零。即
w00, 00
将(b)、(c)两式代入,得
D0, C0
将所得积分常数代入(b)、(c)两式,得到梁的转角方程和挠
度方程分别为
(x)dw
1
Wx 2 (
Wlx )
dx EI 2
w(x) 1 (Wx 3 Wlx 2 ) EI 6 2
6.1 引 言 显然在自由端处转角与挠度最大,即当x=l时,得
m
ax
B
1 EI
(Wl 2
2
Wl
2
Wl 2 )
2EI
1 Wl 3 Wl 3 Wl 3

工程力学梁的变形教学PPT

工程力学梁的变形教学PPT

Fbl 2 16 EI
0.0625
Fbl 2 EI
26
可见在集中荷载作用于右支座附近这种极端情况下,跨中
挠度与最大挠度也只相差不到3%。因此在工程计算中,只要 简支梁的挠曲线上没有拐点都可以跨中挠度代替最大挠度。
当集中荷载F作用于简支梁的跨中时(b=l/2),最大转角
qmax和最大挠度wmax为
A
B 即选择A端固定B端自由的悬臂梁
L
FBy 作为基本静定梁。
MA
q
A
L
(2)解除A端阻止转动的支座反力
B
矩 M作A 为多余约束,即选择两端简
支的梁作为基本静定梁。
39
基本静定基选取可遵循的原则: (1) 基本静定基必须能维持静力平衡,且为几何不变 系统; (2) 基本静定基要便于计算,即要有利于建立变形协 调条件。一般来说,求解变形时,悬臂梁最为简单, 其次是简支梁,最后为外伸梁。
x3 6
C1x
C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
C1 0,C2 0
16
从而有 转角方程 q w Fxl Fx2
EI 2EI 挠曲线方程 w Fx2l Fx3
2EI 6EI
当x=L时:
qmax q
|xl
Fl 2 EI
Fl 2 2EI
Fl 2 2EI
静定梁(基本静定基) — 将超静定梁的多余约束解除,得到
相应的静定系统,该系统仅用静力平衡方程就可解出所有反力
以及内力。
多余约束 — 杆系在维持平衡的必要约束外所存在的多余约
束或多余杆件。
q
多余约束的数目=超静定次数
B 多余约束的数目=1

静定结构位移计算典型例题(附详细解题过程)

静定结构位移计算典型例题(附详细解题过程)

静定结构的位移计算——典型例题【例1】计算如图1(a)所示梁结构中跨中C 点的竖向位移,已知EI 为常数。

【解】方法一:(积分法)(1)荷载作用的实际状态以及坐标设置如图6-8(a),其弯矩方程为:(2)虚设单位力状态,以及坐标设置如图6-8(b),其弯矩方程为:(3)积分法求跨中的竖向位移图1方法二:图乘法(1)荷载作用的实际状态,其弯矩图如图1(c)所示; (2)虚设单位力状态,其弯矩图如图1(d)所示; (3)图乘计算跨中竖向位移【例2】计算如图2(a)所示半圆曲梁中点C 的竖向位移,只考虑弯曲变形。

已知圆弧半径为R ,EI 为常数。

CV ∆21102211112222P qlx x l M qlx q x l l x l ⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎛⎫⎪--<≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩1021122x x l M l l x l ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪<≤ ⎪⎪⎝⎭⎩24/20/211111113()22222232l l P CVl MM ql ds x qlxdx l qlx q x l dx EI EI EI EI ⎡⎤⎛⎫∆==⨯⨯+⨯⨯--=↓⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰⎰4222211112111311121113()222432284223232232cPCV A y MM ds EI EI ql l ql l ql ql l l l ql l EI EI EI ω∆==⎡⎤⎛⎫⎛⎫=⨯⨯⨯⨯+⨯+⨯⨯+⨯⨯⨯=↓ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑⎰CV ∆图2【解】(1)实际荷载作用下,以任意半径与x 轴的顺时针夹角θ为自变量(图2a ),弯矩方程为(截面内侧受拉为正):(2)虚设单位荷载状态如图2(b)所示,其弯矩方程为:(3)积分法求跨中的竖向位移【例3】如图3(a)所示梁的EI 为常数,在荷载F 作用下测得结点E 的竖向位移为9mm (向下),求截面B 处的角位移。

理论力学11梁的位移计算

理论力学11梁的位移计算
将b处约束去掉基本静定系静定基相当系统加上q及约束力变形协调条件marblqlvbeirb梁的位移计算本章小结挠曲线挠度转角挠曲线方程转角方程dx挠曲线微分方程dxdv梁的位移计算积分法求梁的位移边界条件和连续条件dvmdxdx叠加法求梁的位移梁的刚度条件40梁的位移计算提高梁的刚度的主要措施增大截面惯性矩
第十一章 梁的位移计算
梁的位移计算
工程实例
2
梁的位移计算
工程实例
3
梁的位移计算
工程实例
本章对平面弯曲下梁变形的基本概念、基本方法以及 简单静不定梁进行简要介绍。
4
梁的位移计算
§11-1
挠度、转角及其相互关系
挠曲线:梁变形后的轴线。
在小变形情况下,任意横 截面的形心位移是指y方向的 线位移,截面形心垂直于轴线 方向的线位移称为挠度
解 B为自由端,CB段无内力,
梁变形后CB段必保持为直线
q
A
θC
q(l / 2)ql =−vC = − 8EI128EI
33
4
4
l/2 l
C
B
θC
v B1 vB2
q (l / 2)ql 4 ql θv CB = 1− = vC = − =− 128 EI 4 6 EI48 EI qlql7ql
vB = vB1 + vB 2 = −−=−
3
16


求简支梁最大挠度,F已知,EI为常数。

1、建立挠曲线微分方程
y
dvb (0 ≤ x1 ≤ a ) EI 2 = Fx1 dxl2 dvb (a ≤ x 2 ≤ l ) EI 2 = Fx2 − F ( x2 − a ) dxl
b C x 1 b x 2 M 1 ( x 1 ) = F x1 F l l (0 ≤ x1 ≤ a ) l b (a ≤ x 2 ≤ l ) M 2 ( x2 ) = Fx2 − F ( x2 − a ) l

结构位移和刚度—梁的变形和刚度计算(建筑力学)

结构位移和刚度—梁的变形和刚度计算(建筑力学)

1.挠曲线近似微分方程 2.用积分法求变形
y(x)
M (x) EI
EI (x) M (x)dx C1
三、用叠加法求梁的变形
EIy(x) [ M (x)dx C1]dx C2
叠加法 — 梁截面的总变形,就等于各个荷载单独作用时产生变形的代数和。
课后作业:《建筑力学》 教材课后练习题

梁的变形计算
例-2 图示简支梁AB,试用叠加法求跨长中点的变形线位移yC和角位移A、B。
M0
q
A
C
B
解 :梁上作用荷载可以分为两个简
l
单荷载单独作用。
q
A
B
ycq l C B1
M0
ycq
A
B
l C B2
查书中变形附录表,采用叠加法
求代数和得
yC
yCq
yCM 0
5ql 4 384EI
M 16
l2
0
EI
1
y
(1
y2
)
3 2
从而得出挠曲线近似微分方程为 y(x) M (x)
EI
2.用积分法求变形
对于等截面直梁有EIy(x) =M(x) ,分离变量进行积分,即得转角
方程 EI (x) M (x)dx C1 ,挠曲线方程 EIy(x) [ M (x)dx C1]dx C2
梁的变形计算
例1 图示悬臂梁AB,自由端作用集中力偶M0 ,EIz为常量,试用积分法求
梁的转角方程和挠曲线方程。
M0 解:1.建立坐标确定弯矩方程
A
B
x l
M (x) M0
2.列挠曲线近似微分方程并积分,得
EI (x) M 0 x c1
EIy(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D 1 0
Fb l a 3 F l C l D 0 2 2 6 l 6
3
C a C a D 1 2 2
C 1 C 2
Fb 2 2 C C l b 求得: 1 2 6 l D D 0 1 2


Fb 12 2 2 w l b x AD段: q 1 1 2 lEI 3 Fbx 2 2 2 w l b x 1 6 lEI
b) x l 时,w 2 0
Fb l a 3 F l C l D 0 2 2 6 l 6
3
Fb2 x AD段: EI w C 1 1 2 l Fb3 EIw x C x 1 1 6 l 2 Fb x a 2 F DB段: EI w x C 2 2 2 l 2 3 Fb F x a 3 EIw x C x D 2 2 2 6 l 6

B
x
qA
x1 a wC wmax
qB
b
y
当载荷作用在梁的中点,即a=b=l/2时,其最大转 角和挠度为:
Fl qmax 16EI
2
Fl w w m ax C 48 EI
3
1. 关于分段的确定 原则:挠曲线微分方程发生了变化,均需分段。
2. 位移条件 边界条件:
w’=0,w=0 w=0
w M x 挠曲线的近似微分方程: EI
1 M 推广至横力弯曲 1. 将纯弯曲的公式 EI
2. 取w’0
x
M
y M<0 w″<0 x M y
Mx w EI Mx w EI
M>0
w″>0
EI w M x
EI w M x d x C
第5章 梁弯曲时的位移 (Displacement)
§5-1 梁的位移—挠度及转角
q (转角)
A B x C1 y
w(挠度)
挠度(Deflection): 向下为正 转角(Rotation) :顺时针为正 挠曲线方程: w=f(x) 转角方程: q tan q w f x
§7-2 梁的挠曲线近似微分方程及其积分
1. M(x)=0的区段,挠曲线为斜直线; 2. M(x)≠0的区段, 挠曲线为曲线;
3. M(x)>0的区段, 挠曲线为下凸; 4. M(x)<0的区段,挠曲线为上凸; 5. M(x)=0的截面, 挠曲线出现反弯点;
位移连续条件: a) x a 时,w 1 w 2
Fb Fb 3 3 a C a a C a D 1 2 2 6 l 6 l C a C a D 1 2 2
Fb2 x AD段: EI w C 1 1 2 l Fb3 EIw x C x 1 1 6 l 2 Fb x a 2 F DB段: EI w x C 2 2 2 l 2 3 Fb F x a 3 EIw x C x D 2 2 2 6 l 6 b) x a 时,w 1' w 2' Fb Fb 2 2 a C a C 1 2 2 l 2 l C 1 C 2
4)确定积分常数 位移边界条件: a) x 0时,w 1 0
D 1 0 Fb3 EIw x C x 1 1 6 l
பைடு நூலகம்
Fb2 x AD段: EI w C 1 1 2 l Fb3 EIw x C x 1 1 6 l 2 Fb x a 2 F DB段: EI w x C 2 2 2 l 2 3 Fb F x a 3 EIw x C x D 2 2 2 6 l 6




Fb l 2 1 2 2 2 l w x a b x DB段: q 2 2 2 lEI b 3


Fb l 3 2 2 3 w x a l bx x 2 6 lEI b


A
l/2 Ⅰ
F
C D
EIw [ M x d x ] d x Cx D
例:弯曲刚度为 EI的悬臂梁如图,求梁的挠曲线方程 及其最大挠度wmax。 q 解: x截面处弯矩方程为:
0
A
1 2 x q M l x l 0 2 y q0 2 w M x l x 梁的挠曲线方程: EI 2 q0 q 3 2 0 dx l x C EI w l x 2 6 q q 4 3 0 0 l x Cx D EIw [ ( l x ) C ] d x 24 6
Fb2 x AD段: EI w C 1 1 2 l Fb 3 EIw x C x D 1 1 1 6 l 2 Fb x a 2 F DB段: EI w x C 2 2 2 l 2 3 Fb F x a 3 EIw x C x D 2 2 2 6 l 6
w=Δ
连续条件:
w1’= w2’ , w1= w2 w1=w2
混合条件:
w1’= w2’ w1=0 w1’= w2’ w1= Δ w2= Δ
w2=0
EI w M x
EI w M x d x C
EIw [ M x d x ] d x Cx D
Fb2 x AD段: EI w C 1 1 2 l Fb 3 EIw x C x D 1 1 1 6 l 2 Fb x a 2 F DB段: EI w x C 2 2 2 l 2 3 Fb F x a 3 EIw x C x D 2 2 2 6 l 6
x B x
q 3 0 EIw ' l x C 6 q 4 0 EIw l x Cx D 24
利用位移条件确定积分常数: 边界条件: 1)x 0 处 w0
q0 4 l D0 24 q0l 4 D 24
q 3 0 EIw ' l x C 6 4 q q l 4 0 EIw l x Cx 0 24 24 0 2)x 0 处 w q0 3 l C 0 6 3 q 0l C 6 3 q l 1 q 3 0 0 ] w ' [ l x EI 6 6 3 4 q l q l 1q 4 0 0 x w [ l x 0 ] EI 24 6 24
纯弯曲时:
1 M EI
w 1 x 1w 2


3 2
2 1 w 1 因为在小变形情况下:
Mx w EI
x M
y
M>0
w″<0
x
M y M<0 w″>0
Mx w EI Mx w EI
Mx w EI
l 1 q 3 q 0 0 ] w ' [ l x EI 6 6 3 4 q q l q l 1 0 4 0 x w [ l x 0 ] EI 24 6 24
当x=l时:
3
q 0l 3 qm ax w ' xl 6 EI
q 0l 3 w w ' xl max 8 EI
例:求图示弯曲刚度为 EI 的简支梁的挠曲线和转角 方程,并确定其最大挠度和最大转角。
x
F D B x b l
A
a
y
解: 1)求弯矩方程
Fb x AD段:M 1x l Fb x x F x a DB段:M 2 l
2)梁的挠曲线方程
3)积分
b w M x F x AD段: EI 1 1 l b xa F x F w M x DB段:EI 2 2 l
相关文档
最新文档