人教九年级数学上册-中心对称(附习题)
人教版九年级上册数学同步练习《中心对称》(习题+答案)
![人教版九年级上册数学同步练习《中心对称》(习题+答案)](https://img.taocdn.com/s3/m/7f5a3e2b680203d8cf2f245a.png)
23.2中心对称内容提要1.把一个图形绕着某一个定点旋转180︒,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.3.中心对称作图的步骤:(1)首先确定对称中心和图形中的关键点;(2)作出关键点关于对称中心的对称点;(3)连接对应点部分,形成相应的图形.4.将一个图形绕着某个定点旋转180︒后能与自身重合,则这种图形叫做中心对称图形,这个定点叫做对称中心,常见的中心对称图形有:线段、平行四边形(包括:矩形、菱形、正方形)等.5.点(),--.P x y',P x y关于原点的对称点为()23.2.1中心对称基础训练1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图,ABC∆关于点O成中心对称,则下列结论不成立的是()∆和'''A B CA.点A与点'A是对称点B.'=BO B OC.''∥AB A BD.'''∠=∠ACB C A B3.如下图是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()4.如图,ABC∆绕点O转了度到达∆和DEF∆关于点O中心对称,则ABCAO OD=.DEF∆,且:5.如图,把ABC∠=∆绕边AC的中点O旋转180︒到CDA∆的位置,则BC=,BAC ,ABC∆关于点O成对称.∆与CDA6.如图,直线EF经过平行四边形ABCD的对角线的交点,若3AE cm=,四边形AEFB的面积为215cm,则CF=,四边形EDCF的面积为.7.如图,已知ABC∆与ABC∆关于点P成中心对称.A B C∆,使'''∆和点P,画出'''A B C8.如图,ABC ∆和DEF ∆关于点O 成中心对称. (1)找出它们的对称中心O ;(2)若6AB =,5AC =,4BC =,求DEF ∆的周长;(3)连接AF ,CD ,试判断四边形ACDF 的形状,并说明理由.9.在平面直角坐标系中,ABC ∆的三个顶点坐标分别为()2,1A -,()3,3B -,()0,4C -. (1)画出ABC ∆关于原点O 成中心对称的111A B C ∆; (2)画出111A B C ∆关于y 轴对称的222A B C ∆.10.如图所示,已知ABC∆中,AD是中线,(1)画出以点D为对称中心,与ABD∆成中心对称的三角形;(2)猜想2AD与AB AC+的大小关系,并说明理由.23.2.2中心对称图形基础训练1.下列交通标志中,既是轴对称图形又是中心对称图形的是()2.如图,对于它的对称性表述正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.线段是中心对称图形,它的对称中心是;平行四边形是对称图形,它的对称中心是.6.正方形是轴对称图形,它的对称轴共有条.7.如图,在数轴上,A,P两点表示的数分别是1,2,1A,2A关于点O对称,2A,3A关于1点P对称,A,4A关于点O对称,4A,5A关于点P对称……依此规律,则点14A表示的数3是.8.如图,在44⨯的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形.9.图①、图②均为76⨯的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).10.如图,将正方形ABCD中的ABD∆的位置,EF交AB于M,GF∆绕对称中心O旋转至GEF交BD于N,请猜想BM与FN有怎样的数量关系?并证明你的结论.23.2.3 关于原点对称的点的坐标基础训练1.如图所示,已知平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为()2,3-,则点C 的坐标为( ) A .()3,2-B .()2,3--C .()3,2-D .()2,3-2.在平面直角坐标系中,点()3,4P -关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如果点(),P x y 关于原点对称的点是'P ,则'P 的坐标是( ) A .(),x yB .(),x y -C .(),x y -D .(),x y --4.如图,点A ,B ,C 的坐标分别为()0,1-,()0,2,()3,0.从下面四个点()3,3M ,()3,3N -,()3,0P -,()3,1Q -中选择一个点,使以点A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .点MB .点NC .点PD .点Q5.点()2,3P -关于x 轴对称的点的坐标是 ,关于原点对称的点的坐标是 .6.以下各点中,()5,0A -,()0,2B ,()2,1C -,()2,0D ,()0,5E ,()2,1F -,()2,1G --,关于原点对称的两点是.7.点(),4A a 与点()3,B b 关于原点对称,则a =,b =.8.如图所示,PQR ∆是ABC ∆经过某种变换后得到的图形,如果ABC ∆中任意一点M 的坐标是(),a b ,那么它的对应点N 的坐标为.9.在下列网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,试在图中画出直角坐标系,并标出A ,C 两点的坐标; (3)根据(2)中的坐标系作出与ABC ∆关于原点对称的图形222A B C ∆,并标出2B ,2C 两点的坐标.10.直角坐标系第二象限内的点()22,3P x x +与另一点()2,Q x y +关于原点对称,试求2x y +的值.能力提高1.已知点()1,1A a -和()2,1B b -关于原点对称,则a b +的值为( ) A .1-B .0C .1D .3-2.如图,将ABC ∆绕点()0,1C 旋转180︒得到''A B C ∆,设点A 的坐标为(),a b ,则点'A 的坐标为( )A .(),a b --B .(),1a b ---C .(),1a b --+D .(),2a b --+3.下列命题:(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等图形;(3)两个全等的图形一定成中心对称.其中真命题的个数是( ) A .0个B .1个C .2个D .3个4.如图,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性5.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线分别交AD ,BC 于点E ,F .如果四边形AEFB 的面积为8,则平行四边形ABCD 的面积是.6.已知0a <,则点()21,3P a a ---+关于原点对称的点'P 在第象限.7.如图所示,点A ,B ,C 的坐标分别是()2,4,()5,1,()3,1-.若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为.8.如图,将等腰三角形ABC 绕底边BC 的中点O 旋转180︒. (1)画出旋转后的图形.(2)旋转后得到的三角形与原三角形拼成什么图形?说明理由.(3)要使拼成的图形为正方形,那么ABC ∆还应满足什么条件?为什么?9.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C . (1)试画出ABC ∆向左平移5个单位长度后得到的111A B C ∆; (2)试画出ABC ∆关于原点对称的222A B C ∆;(3)在x 轴上求作一点P ,使PAB ∆周长最小,试画出PAB ∆,并直接写出点P 的坐标.拓展探究1.有一块如图所示的土地,请划出一条分界线,把这块土地平均分给两户农民.(在以下的几个图形中用三种方法进行分割)2.有两块形状完全相同的不规则的四边形木板,如图所示,两位木工师傅通过测量可知∠=∠=︒,AD CD=.现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可B D90以将这两块木板拼成一个正方形.”另一位木工师傅说:“我可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.23.2 参考答案:23.2.1 中心对称 基础训练1.C 2.D 3.C 4.180 1:1 5.AD DCA ∠ 中心 6.3cm 215cm 7.略 8.(1)略 (2)15 (3)四边形ACDF 为平行四边形,因为它的对角线互相平分. 9.(1)111A B C ∆如图所示;(2)222A B C ∆如图所示. 10.(1)如图所示(2)2AD AB AC <+.理由:ABD ∆与ECD ∆成中心对称,ADB EDC ∴∆∆≌.CE AB ∴=. AE CE AC >+,2AD AB AC ∴<+.23.2.2 中心对称图形 基础训练1.D 2.B 3.B 4.B 5.线段的中点 中心 对角线的交点 6.4 7.25-8.答案不唯一,如图(1)、(2)、(3)、(4)中任何一个位置都行. 9.(1)如图(1);(2)如图(2).10.猜想:BM FN =.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,BO DO ∴=,45BDA DBA ∠=∠=︒.GEF ∆为ABD ∆绕O 点旋转所得,FO DO ∴=,F BDA ∠=∠,OB OF ∴=,OBM OFN ∠=∠,OBM OFN ∴∆∆≌,BM FN ∴=.23.2.3 关于原点对称的点的坐标 基础训练1.D 2.D 3.D 4.C 5.(2,3) (2,3)- 6.C 和F 7.3- 4- 8.(,)a b -- 9.如图所示的11AB C ∆;(2)建立如图所示的直角坐标系,点A 的坐标为(0,1),点C 的坐标为(3,1)-; (3)如图所示的222A B C ∆,点2B 的坐标为(3,5)-点2C 的坐标为(3,1)-.10.根据题意,得2(2)(2)0x x x +++=,3y =-.11x ∴=-,22x =-. 点P 在第二象限, 220x x ∴+<.1x ∴=-.27x y ∴+=-. 能力提高1.A 2.D 3.B 4.C 5.16 6.四 7.(0,1) 8.(1)略;(2)菱形,理由是它的四条边都相等; (3)90∠=︒,因为有一个角是直角的菱形是正方形.9.如图所示,A ,B C 向左平移5个单位后的坐标分别为(4,1)-,(1,2)-,(2,4)-,连接这三个点,得111A B C ∆.(2)如图所示,A ,B ,C 关于原点的对称点的坐标分别为(1,1)--,(4,2)--,(3,4)--连接这三个点,得222A B C ∆.(3)如图所示,(2,0)P .作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,则点P 即为所求作的点.拓展探究1.如图2.如图(1),将两块四边形拼成正方形,连接BD ,将DBC ∆绕D 点顺时针旋转90度,即可得出B BD '∆,此时三角形BB D '是等腰直角三角形,同理可得到正方形B EBD '.如图(2)将一个四边形拼成正方形,过点D 作DE BC ⊥于点E ,过点D 作DF BA ⊥交BA 的延长线于点F ,90FDA ADE CDE ADE ∴∠+∠=∠+∠=︒,FDA CDE ∴∠=∠,(AAS)AFD CED ∴∆∆≌,FD DE ∴=.又90B F BED ∠=∠=∠=︒,∴四边形FBED 为正方形.。
2020年人教版九年级数学上册23.2.1《中心对称》学案(含答案)
![2020年人教版九年级数学上册23.2.1《中心对称》学案(含答案)](https://img.taocdn.com/s3/m/c9f5f4a46c175f0e7dd13728.png)
11.如图,已知 AD 是△ABC 的中线. (1)画出以点 D 为对称中心与△ABD 成中心对称的三角形; (2)画出以点 B 为对称中心与(1)中所作三角形成中心对称的三角形; (3)问题(2)中所作三角形可以看作是由△ABD 作怎样的变换得到的?
12.如图,在矩形 ABCD 中,点 E 在 AD 上,EC 平分∠BED. (1)试判断△BEC 是不是等腰三角形,请说明理由; (2)在原图中画△FCE,使它与△BEC 关于 CE 的中点 O 成中心对称,此时四边形 BCFE 是什 么特殊平行四边形?请说明理由.
D.1.5
5.如图,在△ABC 中,AB=AC,△ABC 与△FEC 关于点 C 成中心对称,连接 AE,BF,当四
边形 ABFE 为矩形时,∠ACB 的度数为( )
A.90° B.30° C.60° D.45°
6.如图,直线 a,b 垂直相交于点 O,曲线 C 关于点 O 成中心对称,点 A 的对称点是点 A ′,AB⊥a 于点 B,A′D⊥b 于点 D.若 OB=3,OD=2,则阴影部分的面积之和为 ________.
2020 年人教版九年级数学Hale Waihona Puke 册23.2《中心对称》学案
1.如图,△ABC 与△A1B1C1 关于点 O 成中心对称,有下列说法: ①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC 与△A1B1C1 的面积相等. 其中正确的有( )
A.1 个
B.2 个
C.3 个
D.4 个
2.如图,△ABE 与△DCF 成中心对称,则对称中心是__________.
7.D [解析] 因为 P,O 是对称点,因此 PO 的中点是对称中心. 8.D [解析] 由于点 B,D,F,H 在同一条直线上,根据中心对称的定义可知,只能是点 B 和点 H 是对称点,点 F 和点 D 是对称点.故选 D. 9.[导学号:04402157] 解:(1)∵正方形 ABCD 与正方形 A1B1C1D1 关于某点成中心对称,∴D,D1 是对应点,∴DD1 的中点是对称中心. ∵D(0,2),D1(0,3), ∴对称中心的坐标为(0,2.5). (2)B(-2,4),C(-2,2),B1(2,1),C1(2,3). 10.解:(1)△A′B′C′如图所示.
人教版初中数学九年级上册第二十三章23.2.1中心对称
![人教版初中数学九年级上册第二十三章23.2.1中心对称](https://img.taocdn.com/s3/m/2e1a5d8cf021dd36a32d7375a417866fb84ac023.png)
△DOC中CD边上的高是( B )
A.2
B.4
C.6
D.8
C
D
O
A
B
4.如图,已知等边三角形ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于
点O成中心对称.
A B′C′ OB NhomakorabeaC
A′
例1 如图,已知四边形ABCD和点O,试画出四边形ABCD关于点O成中心对 称的图形A'B'C'D'.
C D
O
A
B
你能从图中找到哪些等量关系?你能得出什么结论?
知识要点
中心对称的性质 1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对 称中心平分.(即对称点与对称中心三点共线)
2.中心对称的两个图形是全等形.
人教版 数学 九年级 上册
问题1 观察下列图形的运动,说一说它们有什么共同点. 旋转角为180° 重 合
C
O
D
O
B
A
中心对称的定义
如果把一个图形(如△ABO)绕定点O旋转180º,它能够与另 一个图形(如△CDO)重合,那么就说这两个图形△ABO与图形 △CDO关于点O对称或中心对称,点O就是对称中心.
如图,已知△ABC与△A′B′C′中心对称,找出它们的对称中心O.
C
B A
A′ B′
C′
例2 如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,
则△DOC中CD边上的高为___8_____.
解析:设AB边上的高为h,因为△AOB的面积是 12,AB=3,易得h=8.又因为△AOB与△DOC成中 心对称,△COD≌△AOB,所以△DOC中CD边上 的高是8.
人教版九年级数学上册《23.2中心对称》同步练习题(附答案)
![人教版九年级数学上册《23.2中心对称》同步练习题(附答案)](https://img.taocdn.com/s3/m/5371d7fc0d22590102020740be1e650e52eacfe0.png)
人教版九年级数学上册《23.2中心对称》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.点关于原点的对称点坐标是()A.B.C.D.2.下列图形中,一定是中心对称但不一定是轴对称图形的是()A.菱形B.矩形C.等腰梯形D.平行四边形3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.若点的坐标为,为坐标原点,将绕点按顺时针方向旋转得到,则点的坐标是()A.B.C.D.5.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)6.如图,在平面直角坐标系中,经过中心对称变换得到,那么中心对称的坐标为().A.B.C.D.7.如图,已知△ABC与△CDA关于点O中心对称,过点O任作直线分别交AD、BC于点M、N,下列结论:①点M和点N,点B和点D分别关于点O对称;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DMOC和四边形BNOA的面积相等;⑤△AOM和△CON成中心对称.其中正确的有()A.2个B.3个C.4个D.5个8.在平面坐标系中,已知直线与轴,轴分别交于点、,线段绕点顺时针方向旋转得线段,连接,则点坐标为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .10.已知点M(﹣,3m)关于原点对称的点在第一象限,那么m的取值范围是.11.线段是中心对称图形,对称中心是;平行四边形也是中心对称图形,对称中心是.12.如图,△ABC和△DEF关于点O成中心对称,要得到△DEF,需要将△ABC绕点O旋转角是13.如图,直线垂直相交于点,曲线关于点成中心对称,点的对称点是点,于点,于点.若OB=3,OC=2,则阴影部分的面积之和为.三、解答题:(本题共5题,共45分)14.直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.15.如图,矩形ABCD与矩形AB′C′D′关于点A成中心对称,试判定四边形BDB′D′的形状,并说明你的理由.16.如图,已知△ABC中,BD是中线.(1)尺规作图:作出以D为对称中心,与△BCD成中心对称的△EAD.(2)猜想AB+BC与2BD的大小关系,并说明理由.17.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.(3)若点O的坐标为(0, 0),点B的坐标为(2, 3);写出△A1B1C1与△A2B2C2的对称中心的坐标。
最新人教版九年级数学上册同步练习:23.2.2中心对称图形及答案.docx
![最新人教版九年级数学上册同步练习:23.2.2中心对称图形及答案.docx](https://img.taocdn.com/s3/m/13083010852458fb760b563f.png)
23.2.2 中心对称图形知能演练提升能力提升1.下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.下列图案都是由字母“m”经过变形、组合而成的.其中不是中心对称图形的是( )3.经过长方形对称中心的任意一条直线,把长方形分成面积分别为S1,S2的两部分,则( )A.S1<S2B.S1=S2C.S1>S2D.S1与S2的关系由直线的位置确定4.盈盈想在图中再加一个方格,使整个图形被直线l分成的两部分全等,这个方格可放的位置有.5.如图,网格中有1个四边形和2个三角形.(1)请你画出3个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?6.如图,四边形ABCD是关于点O的中心对称图形,求证:四边形ABCD是平行四边形.7.有一块方角形的钢板如图所示,请你用一条直线将其分为面积相等的两个部分(不写作法,保留作图痕迹,在图中直接画出).创新应用8.认真观察下面的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这4个图案都具有的两个共同特征.特征一: ;特征二: .(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.★9.用9根长度相同的小棒搭成如图所示的图形,你能移动若干根小棒使这9根小棒搭成的图形成中心对称图形吗?若能,至少要移动多少根小棒?画出移动后所得的图形.答案:能力提升1.C2.B3.B4.②③放在②处时,整个图形是轴对称图形,被直线l分成的两部分全等;放在③处时,整个图形是中心对称图形,对称中心为中间正方形的中心,此时被直线l分成的两部分也全等.5.解:(1)如图.(2)有4条对称轴,至少旋转90°能与自身重合.6.分析:因为四边形ABCD是中心对称图形,所以A与C,B与D分别是关于点O的对称点,则线段AC,BD都经过点O,且被点O平分,故此四边形是平行四边形.证明:连接AC,BD.因为四边形ABCD是关于点O的中心对称图形,所以点O在AC,BD上,且AO=OC,OB=OD.所以四边形ABCD是平行四边形.7.解:答案不唯一.例如下面的图①,图②,图③.创新应用8.解:(1)特征一:都是轴对称图形;特征二:都是中心对称图形.(2)如图.9.解:至少移动两根小棒,如图是移动后所得的图形:。
人教版九年级数学上册《中心对称》拓展练习
![人教版九年级数学上册《中心对称》拓展练习](https://img.taocdn.com/s3/m/b42875e277232f60ddcca1f0.png)
《中心对称》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A.2B.2C.D.42.(5分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O43.(5分)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′4.(5分)已知四边形ABCD与四边形A′B′C′D′关于点O成中心对称,则AB与A′B′的关系是()A.相等B.垂直C.相等并且平行D.相等并且平行或相等并且在同一直线上5.(5分)若两个图形关于某点成中心对称,则以下说法正确的是()①这两个图形一定全等;②对称点的连线一定经过对称中心;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合.A.①②B.①③C.②③D.①②③二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是.7.(5分)如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为.8.(5分)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.9.(5分)如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB=6,∠BAC=40°,则CD的长度为,∠ACD的度数为°.10.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共5小题,共50.0分)11.(10分)△ABC中,AD⊥BC于D,tan∠B=,tan∠C=1,AD=6,点E沿射线DC 方向一直运动,将点E绕点D逆时针旋转90°得到点F(F在射线DA上),点G与点E 关于点D成中心对称(点G在射线DB上),连接GE、EF、FG得到△GEF.(1)求BC的长;(2)在点E的运动过程中,设DE=x,△GEF与△ABC的重叠部分面积为S,求S与x 的函数关系式.12.(10分)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.13.(10分)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.14.(10分)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.15.(10分)如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.《中心对称》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A.2B.2C.D.4【分析】根据菱形的性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:如图所示:连接BD、AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(2)=,故选:C.【点评】本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.2.(5分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O4【分析】连接任意两对对应点,连线的交点即为对称中心;【解答】解:如图,连接HC和DE交于O1,故选:A.【点评】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.3.(5分)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【分析】根据中心对称的性质即可判断.【解答】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.故选:D.【点评】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.4.(5分)已知四边形ABCD与四边形A′B′C′D′关于点O成中心对称,则AB与A′B′的关系是()A.相等B.垂直C.相等并且平行D.相等并且平行或相等并且在同一直线上【分析】根据中心对称的性质即可得到结论.【解答】解:∵四边形ABCD与四边形A′B′C′D′关于点O成中心对称,∴AB与A′B′的关系是相等并且平行或相等并且在同一直线上,故选:D.【点评】此题主要考查了中心对称的图形性质,得出对应边是解题关键.5.(5分)若两个图形关于某点成中心对称,则以下说法正确的是()①这两个图形一定全等;②对称点的连线一定经过对称中心;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合.A.①②B.①③C.②③D.①②③【分析】根据中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分进行分析即可.【解答】解:①这两个图形一定全等,说法正确;②对称点的连线一定经过对称中心,说法正确;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合,说法错误;故选:A.【点评】此题主要考查了中心对称,关键是掌握中心对称的性质.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=3,AC=1,∠D=90°,△DEC与△ABC关于点C成中心对称,则AE的长是.【分析】直接利用中心对称的性质得出DC,DE的长,进而利用勾股定理得出答案.【解答】解:∵△DEC与△ABC关于点C成中心对称,∴DC=AC=1,DE=AB=3,∴在Rt△EDA中,AE的长是:=.故答案为:.【点评】此题主要考查了中心对称以及勾股定理,正确得出DC,DE的长是解题关键.7.(5分)如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为(2,﹣1).【分析】根据中心对称定义结合坐标系确定B点位置即可.【解答】解:∵A(﹣2,1),点B与点A关于点O中心对称,∴点B的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题主要考查了中心对称,关键是掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.8.(5分)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为cm2.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n﹣1阴影部分的和.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:cm2.【点评】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.9.(5分)如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB=6,∠BAC=40°,则CD的长度为6,∠ACD的度数为40°.【分析】直接利用中心对称图形的性质得出四边形ABCD是平行四边形,进而得出答案.【解答】解:∵点O是AC的中点,△CDA与△ABC关于点O中心对称,∴四边形ABCD是平行四边形,∴AB=DC=6,AB∥DC,∴∠BAC=∠ACD=40°.故答案为:6,40.【点评】此题主要考查了中心对称图形的性质,正确得出四边形ABCD是平行四边形是解题关键.10.(5分)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=或或或秒时,点P与点C中心对称,且对称中心在直径AB上.【分析】根据中心对称的定义,可得P点的位置,根据弧长公式,可得,根据路程除以速度等于时间,可得答案.【解答】解:如图,当∠AOP1=40°时,P1与C1对称,=4π×=,t=÷π=;当∠AOP2=140°时,P2与C1对称,=4π×=π,t=÷π=;当∠AOP3=220°时,P3与C2对称,=4π×=,t=÷π=;当∠AOP4=320°时,P4与C1对称,=4π×=π,t=÷π=;故答案为:或或或.【点评】本题考查了中心对称,利用中心对称得出P点的位置是解题关键,又利用了弧长公式,要分类讨论,以防遗漏.三、解答题(本大题共5小题,共50.0分)11.(10分)△ABC中,AD⊥BC于D,tan∠B=,tan∠C=1,AD=6,点E沿射线DC 方向一直运动,将点E绕点D逆时针旋转90°得到点F(F在射线DA上),点G与点E 关于点D成中心对称(点G在射线DB上),连接GE、EF、FG得到△GEF.(1)求BC的长;(2)在点E的运动过程中,设DE=x,△GEF与△ABC的重叠部分面积为S,求S与x 的函数关系式.【分析】(1)解直角三角形求出BD,CD即可解决问题;(2)分三种情形:①如图1中,当0<x≤6时,重叠部分是△EFG.②如图2中,当6<x<12时,重叠部分是五边形ACGM.③当x≥12时,重叠部分是△ABC.分别求解即可解决问题;【解答】解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠B=,tan∠C=1,AD=6,∴CD=AD=6,BD=2AD=12,∴BC=BD+CD=18.(2)①如图1中,当0<x≤6时,重叠部分是△EFG,S=×2x×x=x2.②如图2中,当6<x<12时,重叠部分是五边形ACGM.作BK∥GF交DF的延长线于K,作MH⊥BC于H.易知:AB=6,DB=DK=12,∵FM∥BK,∴=,∴=,∴AM=(x﹣6),∵MH∥AD,∴=,∴=,∴MH=﹣x,∴S=S△ABC﹣S△BMG=×6×18﹣×(12﹣x)×(﹣x)=﹣x2+x+.③当x≥12时,重叠部分是△ABC,S=54,综上所述,S=.【点评】本题考查旋转变换,中心对称,解直角三角形,平行线的性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.(10分)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.【分析】(1)根据中心对称的性质可得AC=CD,BC=CE,然后根据对角线互相平分的四边形是平行四边形得到四边形ABDE是平行四边形,再根据平行四边形的对边互相平行且相等解答;(2)根据平行四边形的性质,对角线把四边形分成面积相等的四个部分解答;(3)∠ACB=60°.先判断出△ABC是等边三角形,根据等边三角形的三条边都相等可得AC=BC,然后求出AD=BE,再根据对角线相等的平行四边形是矩形证明.【解答】解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.【点评】本题考查了中心对称的性质,平行四边形的判定与性质,等边三角形的判定与性质,矩形的判定,熟记各性质与判定方法是解题的关键.13.(10分)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.【分析】(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线必过中心作出直线m 即可,再利用待定系数法求一次函数解析式解答.【解答】解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.【点评】本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.14.(10分)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.【分析】首先设AD与C′D′交于点F,CD与A′D交于点E,由正方形ABCD与正方形A′B′C′D′关于点O中心对称,易得四边形DED′F是正方形,又由正方形ABCD的边长为1,即可求得BD的长,继而求得OD、DE的长,则可求得y与x之间的函数关系式.【解答】解:如图,设AD与C′D′交于点F,CD与A′D交于点E,∵正方形ABCD与正方形A′B′C′D′关于点O中心对称,∴四边形DED′F是正方形,∵正方形ABCD的边长为1,∴BD==,∵OB=x,∴OD=BD﹣OB=﹣x,∴DE==(﹣x)=2﹣x,∴y=S正方形DED′F=DE2=(2﹣x)2.∴y与x之间的函数关系式为:y=(2﹣x)2.【点评】此题考查了中心对称的性质与正方形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(10分)如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.【分析】(1)根据旋转对称图形的定义得出即可;(2)利用△ACD旋转后能与△ABC重合,结合图形得出旋转中心.【解答】解:(1)这个图形是旋转对称图形,对称中心为AC的中点;(2)3个,旋转中心可以为:点A,点C,AC的中点.【点评】此题主要考查了旋转对称图形的定义,正确根据旋转的性质得出旋转中心是解题关键.。
人教版九年级上册数学《中心对称》分层作业及解答
![人教版九年级上册数学《中心对称》分层作业及解答](https://img.taocdn.com/s3/m/653f3527dc36a32d7375a417866fb84ae45cc3d6.png)
23. 2 中心对称(第三课时)◆随堂检测1、以下标记既是轴对称图形又是中心对称图形的是()A B C D2、已知点 P( - b, 2)与点 Q(3, 2a )对于原点对称,则 a +b的值是________.3、已知a0 ,则点P(a2 , a 1 )对于原点的对称点P′在()A.第一象限 B .第二象限C.第三象限D.第四象限4、如图,利用对于原点对称的点的坐标的特色,作出与线段AB?对于原点对称的图形.提示:点 P( x,y)对于原点的对称点为P′( -x , -y ).y4321 -4 -3-2-1-1B O1 2 3x A-2-3◆典例剖析已知△ ABC, A(-3 , 2), B( -2 , -1 ),C( 2,3)利用对于原点对称的点的坐标的特色,作出△ABC对于原点对称的△A 1B1C1.y3C(2,3)A2(-3,2)1-3 -2-1O 1 2 3xB(-2,-1)-1-2第12 题剖析: 要作出△ ABC 对于原点的对称图形,只需作出点A 、点B 和点C 对于原点的对称点A ′、B ′、C ′即可.依照中心对称的点的坐标特色: 点 P (x ,y )对于原点的对称点 P ′的坐标为 (-x ,-y ),可得 A ′、B ′、C ′三点的坐标.解: ∵点 P (x , y )对于原点的对称点为 P ′( -x , -y ) ,∴△ ABC 的三个端点 A ( -3 , 2), B ( -2 ,-1 ),C ( 2,3)对于原点的对称点分别为A ′( 3,-2 )、B ′( 2,1)、 C ′( -2 , -3 ).挨次连接A ′B ′、 B ′C ′、 C ′ A ′,即可获得所求作的△A ′B ′C ′.y3C (2,3 )A 2(3,2)1-3-2-1O 1 23xB -1( 2 ,-1)-2◆课下作业●拓展提升1、以下图形中,是轴对称图形但不是中心对称图形的2、已知点 A 的坐标为 (a , b) ,O 为坐标原点, 连接 OA ,将线段 OA 绕点 O 按逆时针方向旋转 90°得 OA 1 , 则点 A 1的坐标为( )A 、 ( a , b) B、 (a , b) C 、 ( b , a) D 、 (b , a)3、如图,四边形EFGH 是由四边形 ABCD 经过旋转获得的.假如用有序数对( 2,1)表示方格纸上 A 点的地点,用( 1,2)表示 B 点的地点,那么四边形 ABCD 旋转获得四边形 EFGH时的旋转中心用有序数对表示是____________.P′为________.4、直线y x 3 上有一点P(3,n ),则点P对于原点的对称点5、以下图,请在网格中作出△ABC对于点O对称的△A1B1C1,再作出△A1B1C1绕点B1逆时针旋转90°后的△A2B1C2.6、如图①、②均为7 6 的正方形网格,点A、 B、 C 在格点上.( 1)在图①中确立格点 D ,并画出以 A、B、C、D 为极点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确立格点E,并画出以A、B、C、E为极点的四边形,使其为中心对称图形.(画一个即可)A AB C B C图①图②●体验中考1、( 2009年,枣庄市)如图,方格纸中的每个小正方形的边长均为1.(1)察看图①、②中所画的“ L”型图形,而后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;( 2)补画后,图①、②中的图形是否是正方体的表面睁开图:答:①中的图形,②中的图形.2、( 2009 年,淄博市)如图,点A, B, C 的坐标分别为(填“是”或“不是”)(0, 1),(0,2),(3,0) .从下边四个点M (3,3),N (3,3) , P( 3,0) , Q( 31),中选择一个点,以A, B, C 与该点为极点的四边形不是中心对称图形,则该点是()A.M B.N C.P D.Q参照答案:◆随堂检测1、 A.2、 2.∵点 P( - b, 2)与点 Q( 3, 2 a)对于原点对称,∴ b 3, a 1 ,∴a b 2 .3、D.∵当 a 0 时,点P(a2, a 1)在第二象限,∴则点P对于原点的对称点P′在第四象限.应选D.4、解:线段 AB 的两个端点 A(0, -1 ),B( 3, 0)对于原点的对称点分别为A′( 1, 0),B′( -3 , 0) , 连接 A′ B′ , 即可获得与线段 AB对于原点对称的线段 A′ B′. ( 图略 )◆课下作业●拓展提升1、 A.2、 C.绘图可得点A1的坐标为 ( b, a) .3、( 5, 2).、(-3,-6).将点 P n)代入 y x 3 得,n 6,∴对称点 P′为(-3,-6).4(3,5、图略 .6、解:( 1)如图:( 2)如图:●体验中考1、( 1)以以下图:( 2)图①— 1(不是)或图①—2(是),图②(是)2、 C.。
人教版 九年级数学上册 23.2 中心对称(含答案)
![人教版 九年级数学上册 23.2 中心对称(含答案)](https://img.taocdn.com/s3/m/05d54129e45c3b3566ec8b1b.png)
人教版九年级数学23.2 中心对称一、选择题(本大题共10道小题)1. 如图,如果甲、乙两图关于点O对称,那么乙图中不符合题意的一块是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图所示的图案中,是中心对称图形的是()4. 若点A(-3,2)关于原点的对称点是点B,点B关于x轴的对称点是点C,则点C的坐标是()A.(3,2) B.(-3,2)C.(3,-2) D.(-2,3)5. 如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形菱形OA′B′C′,再作菱形OA′B′C′关于点O的中心对称图形菱形OA″B″C″,则点C的对应点C″的坐标是()图25-K-1A.(2,-1) B.(1,-2)C.(-2,1) D.(-2,-1)6. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O47. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H8. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点9. 如图示,在Rt△ABC中,∠ACB=90°.P是半圆AC的中点,连接BP交AC于点D.若半圆所在圆的圆心为O,点D,E关于圆心O对称,则图两个阴影部分的面积S1,S2之间的关系是()A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定10. 2020·河北模拟如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线OA 1A 2A 3A 4关于点A 4中心对称的图形,得折线A 8A 7A 6A 5A 4,再作折线A 8A 7A 6A 5A 4关于点A 8中心对称的图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t 秒.当t =2020时,点P 的坐标为( )A .(1010,3)B .(2020,32)C .(2016,0)D .(1010,32)二、填空题(本大题共8道小题)11. 王老师、杨老师两家所在的位置关于学校对称.如果王老师家距学校2千米,那么他们两家相距________千米.12. 点P (1,2)关于原点的对称点P ′的坐标为__________.13. 若点A (x +3,2y +1)与点A ′(y -5,1)关于原点对称,则点A 的坐标是________.14. 若将等腰直角三角形AOB 按图所示的方式放置,OB =2,则点A 关于原点对称的点的坐标为________.15. 如图所示,在△ABC 中,已知∠ACB =90°,AC =BC =2.若以AC 的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.16. 在平面直角坐标系中,若点A(x+1,2y+1)与点A′(y-2,x)关于原点O对称,则代数式x2-y2的值为________.17. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.18. 如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为____________.三、解答题(本大题共4道小题)19. 如图,在正方形网格中,△ABC的三个顶点都在格点上,点A,B,C的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.20. 如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.21. 如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF =CE.求证:DF=BE.22. 如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1.(2)作出点A关于x轴的对称点A′.若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.人教版九年级数学23.2 中心对称-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] .2. 【答案】C3. 【答案】D4. 【答案】A5. 【答案】A[解析] ∵点C的坐标为(2,1),∴点C′的坐标为(-2,1),∴点C″的坐标为(2,-1).故选A.6. 【答案】A[解析] 如图,连接HC和DE交于点O1.7. 【答案】D[解析] 由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.8. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.9. 【答案】C[解析] ∵P是半圆AC的中点,∴半圆关于直线OP对称,且点D,E关于圆心O对称,因而S1,S2在直径AC上面的部分面积相等.∵OD=OE,∴CD=AE.∵△CDB的底边CD与△AEB的底边AE相等,高相同,∴它们的面积相等,∴S 1=S 2.10. 【答案】A二、填空题(本大题共8道小题)11. 【答案】4 [解析] ∵王老师、杨老师两家所在的位置关于学校对称, ∴王老师、杨老师两家到学校的距离相等. ∵王老师家距学校2千米, ∴他们两家相距4千米. 故答案为4.12. 【答案】(-1,-2)13. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).14. 【答案】(-1,-1)[解析] 如图,过点A 作AD ⊥OB 于点D.∵△AOB 是等腰直角三角形,OB =2,∴OD =AD =1,∴A(1,1),∴点A 关于原点对称的点的坐标为(-1,-1).15. 【答案】25 [解析] ∵△ABC 绕AC 的中点O 旋转了180°,∴OB =OB′,∴BB′=2OB. 又∵OC =OA =12AC =1,BC =2,∴在Rt △OBC 中,OB =OC 2+BC 2=12+22=5, ∴BB′=2OB =2 5.16. 【答案】5[解析] ∵点A (x +1,2y +1)与点A ′(y -2,x )关于原点O 对称,∴⎩⎨⎧x +1+y -2=0,2y +1+x =0,解得⎩⎨⎧x =3,y =-2. 故x 2-y 2=9-4=5. 故答案为5.17. 【答案】(0,1)18. 【答案】(-a ,-b +2)[解析] 如图,过点A 作AD ⊥y 轴于点D ,过点A′作A′D′⊥y 轴于点D′,则△ACD ≌△A′CD′,∴A′D′=AD =a ,CD′=CD =-b +1,∴OD′=-b +2,∴点A′的坐标为(-a ,-b +2).三、解答题(本大题共4道小题)19. 【答案】解:(1)△ABC 关于原点O 对称的△A 1B 1C 1如图所示.(2)平移后的△A 2B 2C 2如图所示,其中点B 2的坐标为(0,-2),点C 2的坐标为(-2,-1).(3)△A 1B 1C 1 (1,-1)20. 【答案】解:(1)∵点D 和点D 1是对称点, ∴对称中心是线段DD 1的中点, ∴对称中心的坐标是(0,52).(2)B(-2,4),C(-2,2),B 1(2,1),C 1(2,3).21. 【答案】证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO.∵AF =CE ,∴AO -AF =CO -CE , 即FO =EO.在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB(SAS), ∴DF =BE.22. 【答案】【思维教练】要作△ABC 关于点O 的中心对称图形,可先分别求出点A ,B ,C 关于点O 中心对称点,再顺次连接即可;(2)先作出点A′,再根据点A′在ΔA 1B 1C 1,从而得出平移距离a 满足A′A 1<a <A′D(其中点D 是A′A 1与B 1C 1的交点). 解:(1)如解图,△A 1B 1C 1就是所求作的图形:(2分) (2)A′如图所示;(4分)a 的取值范围是4<a <6.(6分)。
九年级数学上册《中心对称》练习题及答案解析
![九年级数学上册《中心对称》练习题及答案解析](https://img.taocdn.com/s3/m/ad2b6e0e4a35eefdc8d376eeaeaad1f347931177.png)
九年级数学上册《中心对称》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.将一张圆形纸片对折再对折,得到如下左图,然后沿着虚线剪开,得到两部分.其中一部分展开后的平面图形是()A.B.C.D.2.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形BC ,BC边上的高为4,则图中阴影部分的面3.如图,在平行四边形ABCD中,AC,BD为对角线,6积为()A.3B.6C.12D.244.成中心对称的两个图形,下列说法正确的是()①一定形状相同;②大小可能不等;③对称中心必在图形上;④对称中心可能只在一个图形上;⑤对称中心必在对应点的连线上.A .①③B .③④C .④⑤D .①⑤5.如图,点A 是反比例函数()20=>y x x 的图象上任意一点,AB x ∥轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C ,D 在x 轴上,则ABCD S 为( )A .6B .5C .4D .36.如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12 B C D二、填空题7.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.8.在平面内,相交的两条直线是中心对称图形,它的对称中心是________.9.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,△BAC =90°,则AE 的长是_________.10.在Rt ABC 中,90ACB ∠=︒,8AC =,6BC =,D 是AB 中点,点F 在射线AC 上,连接DF ,将ADF 沿DF 翻折,点A 对应点为点G ,当DG AC ⊥时,线段AG 的长为______.11.如图,在菱形ABCD 中,AB =6,60ABC ∠=︒,AC 与BD 交于点O ,点N 在AC 上且AN =2,点M 在BC 上且BM =23BC ,P 为对角线BD 上一点,则PM ﹣PN 的最大值为____.12.如图,在平面直角坐标系中,等边ABC 与等边BDE 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE 的边长为12,则点C 的坐标为_________.三、解答题13.请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).14.如图,已知ABC 和A B C ''''''△ 及点O .(1)画出ABC 关于点O 对称的;(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.15.已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是_________;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示).16.全等三角形知识结构图17.在平面直角坐标系中,(),P a b 是第一象限内一点,给出如下定义:1a k b =和2k b a=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点()6,2P 的“倾斜系数”k 的值;(2)△若点(),P a b 的“倾斜系数”2k =,请写出a 和b 的数量关系,并说明理由;△若点(),P a b 的“倾斜系数”2k =,且3a b +=,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y x =运动,(),P a b 是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <a 的取值范围.参考答案与解析:1.C【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可根据折痕形成的对角线特点进行判定.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直平分.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力,以及菱形的判定.掌握“对角线互相垂直平分的四边形是菱形”是解题关键.2.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C【分析】由题意,图中阴影部分的每一块都与非阴影部分的某一块关于平行四边形的中心对称,所以可以由中心对称图形的性质得到解答.【详解】由题意,图中阴影部分的每一块关于平行四边形的中心对称图形都在平行四边形上,且都是非阴影的部分,所以由中心对称图形的性质可得:所求的面积=116412 22ABCDS=⨯⨯=.故选C.【点睛】本题考查中心对称图形的判定和性质,掌握中心对称图形的性质是解题关键.4.D【分析】根据成中心对称的图形的性质,对各小题分析判断后利用排除法求解.【详解】△成中心对称的两个图形能够完全重合,所以一定形状相同,故本小题正确;△成中心对称的两个图形能够完全重合,所以大小一定相等,故本小题错误;△对称中心不一定在图形上,故本小题错误;△对称中心不一定在任何一个图形上,故本小题错误;△对称中心为对应点连线的中点,所以必在对应点的连线上,故本小题正确.综上所述:正确的有△△.故选D.【点睛】本题考查了中心对称,是基本概念题,熟练掌握成中心对称图形的性质是解题的关键.5.B【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【详解】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x得,b=2x,则x=2b,即A的横坐标是2b;把y =b 代入y =-3x 得,b =-3x ,则x =3b ,B 的横坐标是:-3b. 则AB =2b -(-3b)=5b . 则S ▱ABCD =5b×b =5. 故选:B .【点睛】本题考查了是反比例函数与平行四边形的综合题,理解A 、B 的纵坐标是同一个值,表示出AB 的长度是关键.6.C【分析】连接DB ,AC ,OE ,利用对称得出OE =EB ,进而利用全等三角形的判定和性质得出OC =BC ,进而解答即可.【详解】解:连接DB ,AC ,OE ,△四边形ABCD 是矩形,△AC =DB ,△ABC =90°,OC =OA =OB =OD ,△点B 与点O 关于CE 对称,△OE =EB ,△OEC =△BEC ,在△COE 与△CBE 中,OE BE OEC BEC CE CE =⎧⎪∠=∠⎨⎪=⎩,△△COE△△CBE (SAS ),△OC =CB ,△AC =2BC ,△△ABC =90°,△AB,即CB :AB故选:C .【点睛】此题考查中心对称,全等三角形的性质与判定,矩形的性质,和勾股定理,利用对称得出OE=EB 是解题的关键.7.110º【分析】先根据等腰三角形的性质求出△ABC的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出△2+△ABE=180º,代入求解即可.【详解】解:△ABC是等腰三角形,△A=120º,△△ABC=△C=(180º-△A)÷2=30º,△四边形ODEF是平行四边形,△OF∥DE,△△2+△ABE=180º,即△2+30º+40º=180º,△△2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.8.两条直线的交点【分析】根据中心对称图形定义,我们可知图形绕交点旋转180°后,仍然能与原图形重合,所以两条直线的交点即为图形的对称中心.【详解】解:△两条相交直线绕他们的交点旋转180°后,仍能与原图形重合△两直线的交点就是图形的对称中心.故答案为:两条直线的交点.9.【分析】根据中心对称的性质AD=DE及△D=90゜,由勾股定理即可求得AE的长.【详解】△△DEC与△ABC关于点C成中心对称,△△ABC△△DEC,△AB=DE=2,AC=DC=1,△D=△BAC=90°,△AD=2,△△D=90°,△AE故答案为【点睛】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.10.【分析】由勾股定理求得AB 的长,延长GD 交AC 于E ,则DE △BC ,DE 是△ABC 的中位线,可得AE 、DE 、DG 的长,再由勾股定理解Rt △AGE 即可解答;【详解】解:由题意作图如下,延长GD 交AC 于E ,·Rt △ABC 中,由勾股定理得:AB 10=,△GE △AC ,BC △AC ,△DE △BC ,△D 是AB 中点,△DE 是△ABC 的中位线,△DE =12BC =3,AE =12AC =4,由折叠性质可得:DG =AD =12AB =5,Rt △AGE 中,EG =ED +DG =8,由勾股定理得:AG=故答案为:【点睛】本题考查了勾股定理,三角形的中位线,折叠的性质,正确作出辅助线是解题关键.11.2【分析】作点N 关于BD 的对称点N ',连接,MN PN '',从而可得PM PN PM PN MN ''-=-≤,再根据菱形的性质、等边三角形的判定证出CMN '△是等边三角形,然后根据等边三角形的性质可得2MN '=,由此即可得. 【详解】解:四边形ABCD 是菱形,6AB =, 6AB BC ∴==,OA OC =,AC BD ⊥,60ABC ∠=︒,ABC ∴是等边三角形,6,60AC AB ACB ∴==∠=︒,3OA OC ∴==,2AN =,1ON ∴=,如图,作点N 关于BD 的对称点N ',连接,MN PN '',则1,ON ON PN PN ''===,2,CN OC ON PM PN PM PN MN ''''∴=-=-=-≤,当且仅当,,P N M '共线时,等号成立, 23BM BC =,6BC =, 123CM BC ∴==, CMN '∴是等边三角形,2MN CM '∴==,即PM PN -的最大值为2,故答案为:2.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、轴对称的性质等知识点,熟练掌握菱形的性质是解题关键.12.(4,【分析】作CF △AB 于F ,根据位似图形的性质得到BC △DE ,根据相似三角形的性质求出OA 、AB ,根据等边三角形的性质计算,得到答案.【详解】解:作CF △AB 于F ,△等边△ABC与等边△BDE是以原点为位似中心的位似图形,△BC△DE,△△OBC△△ODE,△BC OB DE OD=,△△ABC与△BDE的相似比为13,等边△BDE边长为12,△1, 12123==+BC OBOB解得,BC=4,OB=6,△OA=2,AB=BC=4,△CA=CB,CF△AB,△AF=2,由勾股定理得,CF△OF=OA+AF=2+2=4,△点C的坐标为(4,故答案为:(4,.【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键.13.见解析【详解】试题分析:根据平行四边形的性质,过平行四边形中心的直线把平行四边形分成面积相等的两部分;根据圆的性质,过圆心的直线把圆分成面积相等的两部分,所以过平行四边形的中心与圆心的直线就是所要求作的直线.所以过平行四版型的中心和圆心的直线就是所求做的直线.解:如图所示.点睛:本题考查了中心对称图形的性质,熟悉过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.14.(1)见解析(2)见解析【分析】(1)连接三角形的各顶点与O 的连线,并延长相同长度,找到对应点,顺次连接.(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点O 就是对称点.(1)(2)【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.15.(1)BF =CF(2)成立;理由见解析 (3)62m PD =-或PD =0或62m PD =-【分析】(1)连接AF ,先根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.(1)解:BF =CF ;理由如下:连接AF ,如图所示:根据旋转可知,90DAE α∠==︒,AE =AD ,△△BAC =90°,△90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌(SAS ),△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .故答案为:BF =CF .(2)成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD ,△BAC α∠=,△EAC CAD α∠-∠=,BAD CAD α∠-∠=,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌,△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .(3)△60α=︒,AB =AC ,△△ABC 为等边三角形,△60ABC ACB BAC ∠=∠=∠=︒,AB AC BC ===,当60BAD ∠︒<时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, △1302BAF CAF BAC ∠=∠=∠=︒,△AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:△60DAE ∠=︒,AE AD =,△△ADE 为等边三角形,△△ADE =60°,△9030ADB BAC ∠=︒-∠=︒,△603090ADE ∠=︒+︒=︒,△此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌,△1302BAF CAF BAC ∠=∠=∠=︒,△AB =tan tan30BFBAF AB ∴∠=︒=,即tan304BF AB =⨯︒==,4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,△906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 16.见解析 【详解】17.(1)3(2)△a -2b 或b =2a,△OP (3)a>【分析】(1)直接由“倾斜系数”定义求解即可;(2)△由点(),P a b 的“倾斜系数”2k =,由a b =2或b a =2求解即可;△由a =2b 或b =2a ,又因a +b =3,求出a 、b 值,即可得点P 坐标,从而由勾股定理可求解;(3)当点P 与点D 重合时,且ka 有最小临界值,此时,b a 2a a+a ;当点P 与B 点重合,且ka 有最大临界值,此时,ab =2a a =-a得k <a 的取值范围.(1) 解:由题意,得632=,2163=, △3>13,△点()6,2P 的“倾斜系数”k =3;(2)解:△a =2b 或b =2a ,△点(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b ; 当ba =2时,则b =2a ,△a =2b 或b =2a ;△△(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b△3a b +=,△2b +b =3,△b =1,△a =2,△P (2,1),△OP= 当ba =2时,则b =2a ,△3a b +=,△a +2a =3,△a=1,△b=2,△P(1,2)△OP=综上,OP(3)解:由题意知,当点P与点D重合时,且ka有最小临界值,如图,连接OD,延长DA交x轴于E,此时,ba则2 aa+=解得:a;△k<则1a>;当点P与B点重合,且ka有最大临界值,如图,连接OB,延长CB交x轴于F,此时,a b =则2a a - 解得:a△k <则3a >综上,若P 的“倾斜系数”k <a>【点睛】本题考查新定义,正方形的性质,正比例函数性质,解题的关键是:(1)(2)问理解新定义,(3)问求临界值.。
九年级数学人教版(上册)23.2.2 中心对称图形
![九年级数学人教版(上册)23.2.2 中心对称图形](https://img.taocdn.com/s3/m/6c621e28f342336c1eb91a37f111f18583d00cf4.png)
6.(2021·陕西)如图,在矩形 ABCD 中,AB=4,BC=6,O 是 矩形的对称中心,点 E,F 分别在边 AD,BC 上,连接 OE,OF.若 AE=BF=2,则 OE+OF 的值为( D )
A.2 2 B.5 20 习题 T8 变式)阅读材料:对于中心对称图形,过 对称中心的任意一条直线都把这个图形分成全等的两部分,如图:
知识点 2 中心对称图形的性质 3.如图,四边形 ABCD 是菱形,O 是两条对角线的交点,过点 O 的三条直线将菱形分成阴影和空白部分.若菱形的两条对角线的 长分别为 6 和 8,则阴影部分的面积为 12 .
知识点 3 作中心对称图形 4.图 1、图 2 均为 7×6 的正方形网格,点 A,B,C 在格点上.
第二十三章 旋转
23.2 中心对称 23.2.2 中心对称图形
知识点 1 认识中心对称图形 1.(2021·长沙)下列几何图形中,是中心对称图形的是(C )
2.(2021·山西)为推动世界冰雪运动的发展,我国将于 2022 年 举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是 部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图 形的是( B )
尝试应用:将下图分成面积相等的两部分.(不写作法,保留作 图痕迹)
(1)在图 1 中确定格点 D,并画出以 A,B,C,D 为顶点的四边 形,使其为轴对称图形.(画一个即可)
解:如图 1 所示.
(2)在图 2 中确定格点 E,并画出以 A,B,C,E 为顶点的四边 形,使其成为中心对称图形.(画一个即可)
解:如图 2 所示.
5.给出下列图形:①矩形;②等边三角形;③正五边形;④正 方形;⑤线段;⑥锐角;⑦平行四边形.其中是中心对称图形的 有 ①④⑤⑦.(请将所有符合题意的序号填在横线上)
中心对称(三种题型)-2023年新九年级数学核心知识点与常见题型通关讲解练(人教版)(解析版)
![中心对称(三种题型)-2023年新九年级数学核心知识点与常见题型通关讲解练(人教版)(解析版)](https://img.taocdn.com/s3/m/cbaf9321a9114431b90d6c85ec3a87c240288a8e.png)
中心对称(三种题型)【知识梳理】一.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.二.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.三.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【考点剖析】一.中心对称(共16小题)1.(2023春•江夏区校级期末)下列说法中正确的是()A.对角线互相垂直且平分的四边形是矩形B.对角线互相平分且相等的四边形是菱形C.对角线相等且垂直的四边形是正方形D.经过平行四边形对角线交点的直线平分该平行四边形的面积【分析】根据矩形、菱形、正方形的判定以及平行四边形的性质分别进行判断即可.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故本选项说法错误,不符合题意;B、对角线互相平分且相等的四边形是矩形,故本选项说法错误,不符合题意;C、对角线相等且垂直的平行四边形是正方形,故本选项说法错误,不符合题意;D、经过平行四边形对角线交点的直线平分该平行四边形的面积,故本选项说法正确,符合题意;故选:D.【点评】本题考查了正方形、菱形、矩形的判定定理以及平行四边形的性质.注意菱形与正方形的区别与联系、矩形与正方形的区别与联系.2.(2023AG∥l∥HC.若缩小的实像是物体的,则物体(焦点F1和F2关于O点对称)到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为.【分析】首先证明四边形OHCD是矩形,再利用相似三角形的性质解决问题即可.【解答】解:∵l∥HC,CD⊥l,OH⊥l,∴四边形OHCD是矩形,∴OH=CD,∵AB∥OH,∴△ABF1∽△HOF1,∴==,∵OF1=OF2,∴=.故答案为:.【点评】本题考查相似三角形的判定和性质,中心对称,矩形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3.(2023•金水区校级一模)如图,在Rt△ABC中,∠BAC=90°,AB=20,AC=15,点D,E分别是AB、AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.【分析】如图:连接DE,作AH⊥BC于H,首先证明,要求四边形MNFG周长的取值范围,只要求MG的最大值和最小值即可.【解答】解:如图:连接DE AH⊥BC于H,在Rt△ABC中,∵∠ABC=90°,AB=20,AC=15,∴,∵,∴AH=12,∵AD=DB,AE=EC,∴,∵DG∥EF,∴四边形DGFE是平行四边形,∴,∴MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=,当G与B重合时可得周长的最大值为65,∵G不与B重合,∴49≤l<65,故答案为:49≤l<65.【点评】本题考查了旋转变换,勾股定理,平行四边形的性质,三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题.4.(2021秋•武汉期末)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,求证:四边形ADCF是矩形.【分析】先证明四边形ADCF是平行四边形,再由对角线相等证明四边形ADCF是矩形.【解答】解:∵AC=BC,点D、E分别是边AB、AC的中点,∴DE=BC,AE=AC,∵AC=BC,∴AE=DE,∵△ADE绕点E旋转180°得△CFE,∴△ADE≌△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AE=CE,DE=EF,AE=DE,∴AE=CD=DE=EF,∴AC=DF,∴四边形ADCF是矩形.【点评】本题考查矩形的判断,熟练掌握中心对称图形的性质,矩形的判定方法是解的关键.5.(2023•株洲)如图所示,在矩形ABCD中,AB>AD,AC与BD相交于点O,下列说法正确的是()A.点O为矩形ABCD的对称中心B.点O为线段AB的对称中心C.直线BD为矩形ABCD的对称轴D.直线AC为线段BD的对称轴【分析】根据矩形的性质、轴对称图形的性质和中心对称图形的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:矩形ABCD是中心对称图形,对称中心是对角线的交点O,故选项A正确,符合题意;线段AB的中点是为线段AB B错误,不符合题意;矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,故选项C错误,不符合题意;过线段BD的中点的垂线是线段BD的对称轴,故选项D错误,不符合题意;故选:A.【点评】本题考查中心对称、矩形的性质、轴对称的性质,熟记矩形即是中心对称图形也是轴对称图形是解答本题的关键.6.(2023•任丘市二模)如图由6×6个边长为1的小正方形组成,每个小正方形的顶点称为格点,△ABC的三个顶点A,B,C均在格点上,O是AC与网格线的交点,将△ABC绕着点O顺时针旋转180°.以下是嘉嘉和淇淇得出的结论,下列判断正确的是()嘉嘉:旋转后的三角形的三个顶点均在格点上;淇淇:旋转前后两个三角形可形成平行四边形A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【分析】将△ABC绕着边的中点旋转180°后根据选项依次作答.【解答】解:将△ABC绕着边的中点旋转180°后如图,旋转前后的两个三角形可形成平行四边形,正确;△ABC绕着各边的中点旋转后的△A′B′C′都在网格的格点上,正确.故选:C.【点评】本题考查了中心对称,平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.(2023•房山区二模)下列图形中,点O是该图形的对称中心的是()A.B.C.D.【分析】在平面内,把一个图形绕着某个点旋转180°,如果它能够与原来图形重合,那么就说这个图形叫中心对称图形,这个点叫做对称中心,由此即可判断.【解答】解:由中心对称图形的定义,得到选项B中的图形是中心对称图形,并且点O是该图形的对称中心,故B符合题意;选项A、C、D中的图形不是中心对称图形,故A、C、D不符合题意.故选:B.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义,8.(2023•海港区一模)如图.在平面直角坐标系中▱ABCD的顶点分别为A(1,2),B(4,2),C(7,5).(1)点D的坐标为.(2)当正比例函数y=kx的图象平分▱ABCD面积时,k的值为.【分析】(1)根据平行线的性质求解即可;(2)根据平分▱ABCD面积必过对角线交点求解即可.【解答】解:(1)∵A(1,2),B(4,2),∴AB=3,∵▱ABCD,∴AB=CD=3,∵C(7,5)∴D(4,5),故答案为:(4,5);(2)设▱ABCD对角线交点为Q,则Q为对角线AC中点,∵A(1,2),C(7,5),∴,∵正比例函数y=kx的图象平分▱ABCD面积,∴正比例函数y=kx的图象过,∴,解得,故答案为:.【点评】本题考查平行四边形的性质,求正比例函数解析式,解题的关键是根据平分平分▱ABCD面积必过对角线交点,再利用中点坐标公式求出.9.(2023•碑林区校级模拟)如图,平行四边形ABCD中,AB=2,BC=3,∠B=60°,点P在AD上,且AP=2,若直线l经过点P,将该平行四边形的面积平分,并与平行四边形的另一边交于点Q,则线段PQ 的长度为.【分析】连接AC,BD交于O C作CM⊥AD于M,由四边形ABC是平行四边形,得AB=CD=2,AD=BC=3,又PQ将平行四边形的面积平分,可知CQ=AP=2,DP=BQ=1,由含30°角的直角三角形性质可得DM=CD=1,CM=DM=,故M,P重合,再根据勾股定理可得答案.【解答】解:连接AC,BD交于O,过C作CM⊥AD于M,如图:∵四边形ABC是平行四边形,∴AB=CD=2,AD=BC=3,∵PQ将平行四边形的面积平分,∴O在PQ上,由平行四边形的中心对称性可知CQ=AP=2,∴DP=BQ=1,∵∠MDC=∠ABC=60°,∴∠MCD=30°,∴DM=CD=1,CM=DM=,∴DM=DP,∴M,P重合,∴CP=,∠PCQ=∠DPC=90°,∴PQ===,故答案为:.【点评】本题考查平行四边形的性质,涉及勾股定理及应用,含30°角的直角三角形三边关系等知识,解题的关键是掌握平行四边形的中心对称性.10.(2022秋•利川市期末)如图,将△ABC绕点O旋转180°,得到△A'B'C',当点O不在△ABC三边所在直线上时,求证:四边形BCB'C'是平行四边形.【分析】连接BB',CC',根据旋转的性质可得BO=B'O,CO=C'O,再由对角线互相平分的四边形是平行四边形即可证明.【解答】证明:连接BB',CC',∵B点绕O点旋转180°到B',∴BO=B'O,∵C点绕O点旋转180°到C',∴CO=C'O,∴四边形BCB'C'是平行四边形.【点评】本题考查旋转的性质,熟练掌握旋转的性质,平行四边形的判定方法是解题的关键.11.(2023春•瑞安市月考)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.B.C.D.【分析】先证明△BEF是等边三角形,求出EF,同理可证△DGH,△EOH,△OFG都是等边三角形,然后求出EH,GF,FG即可.【解答】解:连接BD,AC,∵四边形ABCD是菱形,∠A=120°,∴AB=BC=CD=AD=2,∠=∠DAO=60°,BD⊥AC,∴∠ABO=∠CBO=30°,∴,∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90°,在Rt△OBE中,,,在△BEO和△BFO中,,∴△BEO≌△BFO(AAS),∴OE=OF,BE=BF,∵∠EBF=60°,∴△BEF是等边三角形,∴,同法可证,△DGH,△EOH,△OFG都是等边三角形,∴,,∴四边形EFGH的周长为.故选:A.【点评】本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定与性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2023•古冶区二模)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣6,4),点B,C在x轴上,将正方形ABCD平移后,点O成为新正方形的对称中心,则正方形ABCD的平移过程可能是()A.向右平移8个单位长度,再向下平移4个单位长度B.向右平移4个单位长度,再向下平移4个单位长度C.向右平移2个单位长度,再向下平移4个单位长度D.向右平移4个单位长度,再向下平移2个单位长度【分析】先根据A点坐标推出正方形ABCD中的C点坐标,再根据正方形的性质,求出对角线交点坐标,也就是对称中心的坐标,最后由正方形的平移转化到正方形的对称中心的平移即可就出平移过程.【解答】解:∵四边形ABCD为正方形,已知B、C在x轴上,且点A的坐标为(﹣6,4),∴根据正方形的性质可得正方形的边长AB=4,∴B点坐标为(﹣6,0),C点坐标为(﹣2,0),∵正方形的对称中心为对角线的交点,正方形对角线相互平分,∴正方形ABCD的对称中心的坐标为AC的中点坐标,∴对称中心的坐标为(﹣4,2),∵将正方形ABCD平移后,点O成为新正方形的对称中心,∴正方形ABCD的平移过程即为对称中心的平移过程,∵正方形ABCD的对称中心的坐标为(﹣4,2),平移后的正方形的对称中心为坐标原点,∴可得出正方形的平移方式为向右平移4个单位长度,再向下平移2个单位长度.故选:D.【点评】本题考查中心对称,正方形的性质,点的平移等知识点,求出原来正方形的对称中心,结合对称中心点的平移方式得到正方形的平移方式是解题的关键.13.(2023•西安一模)如图,直线l平分正方形ABCD的面积,直线l分别与AB、CD交于点E、F,BH⊥直线l于H,连接AH,若AB=2,则AH长的最小值为.【分析】连接BD交EF于O,取OB中点M,连接AM,作MN⊥AB于N,由正方形的性质得到O是BD的中点,求出OB的长,得到MH,MB的长,由勾股定理求出AM的长,由三角形三边关系得到AH ≥AM﹣MH=﹣1,于是即可求出AH长的最小值.【解答】解:连接BD交EF于,取OB中点M,连接AM,作MN⊥AB于N,∵直线l平分正方形ABCD的面积,∴O是BD的中点,∵四边形ABCD是正方形,AB=2,∴BD=AB=4,∴OB=BD=2,∵BH⊥FE,∴∠BHO=90°,∵M是OB中点,∴MH=OB=1,∵MN⊥AB,∠MBN=45°,∴△NBM是等腰直角三角形,∴MN=BN=BM,∵BM=OB=1,∴MN=BN=,∴AN=AB﹣BN=2﹣=,∴AM===,∵AH≥AM﹣MH=﹣1,∴AH长的最小值是﹣1.故答案为:﹣1.【点评】本题考查中心对称,正方形的性质,三角形的三边关系,求线段长的最小值,关键是通过作辅助线,由三角形的三边关系得到AH≥AM﹣MH.14.(2023•舟山一模)如图1中,∠C=90°,AC=8cm,BC=6cm.动点P沿线段AC以5cm/s 的速度从点A向点C运动,另有一动点Q与点P同时出发,沿线段BC以相同的速度从点B向点C运动.作PD⊥AB于点D,再将△APD绕PD的中点旋转180°,得到△A′DP;作QE⊥AB于点E,再将△BQE绕QE的中点旋转180°,得到△B′EQ.设点P的运动时间为xs.(1)如图(2)当A′点落在BC边上时x的值为;(2)如图1,在点P,Q运动中,当点A′在△B'EQ内部时x的取值范围为.【分析】(1)利用锐角三角函数的意义直接求出;(2)找出分界点①A刚好到达BE边时,②A刚好到达EQ边时,利用同一条线段两种算法求出x值,即可得x的取值范围.【解答】解:(1)∵∠C=90°,AC=8cm.BC=6cm,∴AB=10cm,cos A=sin A=,tan A=,由题意得:AP=5x,∴P A=AD=AP cos∠A=×5x=4x,CP=8﹣5x,∴cos∠CP A=cos∠A===,∴x=,故答案为:.(2)同(1)可得sin B=,cos B=tan B=,①A刚好到达BE边时,由旋转可知,四边形ADAP是平行四边形,四边形BEBQ是平行四边形,∴AP∥DA,BQ∥EB,∴∠ADE=∠A,∠BED=∠B,∴∠ADE+∠AED=∠A+∠B=90°,即∠DAE=90°,∵DA=P A=BO=5x,则BE=BO•cos∠B=3x,DE==×5x=,∴4x++3x=AB=10,∴x=;②A刚好到达EQ边时,∵DQ⊥AB,∴DE=AD cos∠ADE=5x×=4x,∴4x+4x+3x=AB=10,∴x=,∴<x<.故答案为:<x<.【点评】本题属于几何变换综合题,主要考查了锐角三角函数,解直角三角形等知识,具体的规划是学会用分类讨论的思想思考问题属于中考常考题.15.(2022秋•惠济区校级月考)如图,在平行四边形ABCD中,AB=4,BC=8,∠B=60°,过平行四边形的对称中心点O的一条直线与边AD、BC分别交于点E、F,设直线EF与BC的夹角为α.(1)求证:四边形AECF是平行四边形.(2)填空:①当α的度数是时,四边形AFCE为菱形;②当α的度数是时,四边形AFCE为矩形;【分析】(1)证明OA=OC,OE=OF可得结论;(2)①当α的度数是60°时,四边形AFCE为菱形,证明四边形AFCE、四边形AFEB是平行四边形,再证明△ABE是等边三角形即可解决问题.②当α的度数是30°时,四边形AFCE为矩形,取BC中点M,连接AM,首先证明△ABM是等边三角形,推出∠OCE=30°即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形;(2)①当α的度数是60°时,四边形AFCE为菱形,理由:∴AF=CE,AF∥BC,∴AF∥BE,∵∠α=∠ABC=60°,∴AB∥EF,∴四边形AFEB是平行四边形,∴AF=BE=CE,∵BC=8,AB=4,∴AB=BE=4,∵∠B=60°,∴△ABE是等边三角形,∴AE=BE=CE,∵四边形AFCE是平行四边形,∴四边形AFCE是菱形,故答案为:60°;②当α的度数是30°时,四边形AFCE为矩形,理由:同(1)得:四边形AFCE是平行四边形,取BC中点M,连接AM,∵AB=BM=4,∠B=60°,∴△ABM是等边三角形,∴∠AMB=60°,AM=BM=AB=CM,∴∠ACM=∠MAC=30°,∴∠OEC=∠OCE,∴OE=OC,∵OE=OF,OA=OC,∴AC=EF,∴四边形AECF是矩形,故答案为:30°.【点评】本题考查菱形的判定、平行四边形的判定、矩形的判定、等边三角形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.16.(2023•滁州二模)如图,在菱形ABCD中,∠ABC=60°,AB=8,点E为AD边上一点,且AE=2,在BC边上存在一点F,CD边上存在一点G,线段EF平分菱形ABCD的面积,则△EFG周长的最小值为.【分析】作E关于CD的对称点M,过M作KT⊥BC交BC延长线于T,交AD延长线于K,连接FM交DC于G,过A作AH⊥BC于H,由∠ABC=60°,AB=8,得BH=4,AH=4,而AE=2,有DE=6,可得DN=3,EN=3,EM=2EN=6,在Rt△EMK中,KM=EM=3,EK=KE=9,故MT=KT﹣KM=AH﹣KM=,根据线段EF平分菱形ABCD的面积和菱形的对称性知CF=AE=2,可证∠EFH=∠EFT=90°,即可得FM==2,又EF+CG+EG=EF+CG+GM,知当M,G,F共线时,EF+CG+EG,即△EFG周长的最小,从而可得△EFG周长的最小值为4+2.【解答】解:作E关于CD的对称点M,过M作KT⊥BC交BC延长线于T,交AD延长线于K,连接FM交DC于G,过A作AH⊥BC于H,如图:∵∠ABC=60°,AB=8,∴BH=4,AH=4,∵AE=2,∴DE=6,∵∠EDN=60°,∠END=90°,∴∠DEN=30°,DN=3,EN=3,∴EM=2EN=6,在Rt△EMK中,KM=EM=3,EK=KE=9,∴MT=KT﹣KM=AH﹣KM=,∵线段EF平分菱形ABCD的面积,∴EF过对称中心,由菱形的对称性知CF=AE=2,∴HF=BC﹣BH﹣CF=8﹣4﹣2=2,∴HF=AE,∵HF∥AE,∠EHF=90°,∴四边形HFEA是矩形,EF=AH=4,∴∠EFH=∠EFT=90°,∴四边形EFTK是矩形,∴FT=EK=9,∴FM==2,∵EF+CG+EG=EF+CG+GM,∴当M,G,F共线时,EF+CG+EG,即△EFG周长的最小,此时△EFG周长的最小值即为EF+FM,∴△EFG周长的最小值为4+2.故答案为:4+2.【点评】本题考查了轴对称﹣最短路线问题,矩形的性质,中心对称的性质,勾股定理的应用,确定△PEF周长取值最小时,M,G,F共线是解题的关键.二.中心对称图形(共7小题)17.(2023•南宁三模)下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:选项B、C、D都能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.选项A不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.故选:A.【点评】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形.18.(2023•江夏区校级模拟)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义对四个选项进行分析.【解答】解:A、不是中心对称图形,所以不符合题意;B、不是中心对称图形,所以不符合题意;C、不是中心对称图形,所以不符合题意;D、是中心对称图形,所以符合题意.故选:D.【点评】本题主要考查了中心对称图形的定义,熟练掌握中心对称图形的定义是解题的关键.19.(2023•梁溪区模拟)给出下列4种图形:①线段,②等边三角形,③矩形,④正六边形,其中既是轴对称图形又是中心对称图形的是.(在横线上填写图形前的标号即可)【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①线段是轴对称图形,也是中心对称图形;②等边三角形是轴对称图形,不是中心对称图形;③矩形是轴对称图形,不是中心对称图形;④正六边形是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形是:①④.故答案为:①④.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两180度后两部分重合.20.(2023•富锦市校级三模)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图是中心对称图形,也是轴对称图形,故此选项符合题意;B、原图不是中心对称图形,是轴对称图形,故此选项不合题意;C、原图是中心对称图形,不是轴对称图形,故此选项不合题意;D、原图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.21.(2022•吉林二模)图1、图2、图3都是由边长为1的小菱形构成的网格,已有两个小菱形涂上了黑色,请你再涂黑两个小菱形,使得整个涂色部分图形满足下列条件.(1)图1中,整个涂色部分图形为轴对称图形,但不是中心对称图形;(2)图2中,整个涂色部分图形为中心对称图形,但不是轴对称图形;(3)图3中,整个涂色部分图形既是中心对称图形,又是轴对称图形.【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:答案不唯一.(1)(2)(3)【点评】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.22.(2023春•南京期末)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、此图形不是中心对称图形,是轴对称图形,故此选项不符合题意;B、此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C、此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;D、此图形是中心对称图形,也是轴对称图形,故此选项符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.23.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将ACD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.【分析】(1)可按阅读理解中的方法构造全等,把CF和BE转移到一个三角形中求解;(2)由(1)中的全等得到∠C=∠CBG.∵∠ABC+∠C=90°,∴∠EBG=90°,可得三边之间存在勾股定理关系.【解答】(1)证明:如图,延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)解:BE2+CF2=EF2.证明如下:∵∠A=90°,∴∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.【点评】本题主要考查了条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中,注意运用类比方法构造相应的全等三角形,难度适中.三.关于原点对称的点的坐标(共9小题)24.(2023•沁阳市模拟)在平面直角坐标系中,点(a﹣3,4)关于原点的对称点为(5,﹣b),则ab的值为()A.﹣8B.8C.6D.﹣12【分析】直接利用关于原点对称点的性质得出a,b的值,进而代入得出答案.【解答】解:∵点(a﹣3,4)关于原点的对称点为(5,﹣b),∴a﹣3=﹣5,﹣b=﹣4,解得:a=﹣2,b=4,则ab的值为:(﹣2)×4=﹣8.故选:A.【点评】此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反.25.(2023•曲阜市二模)在平面直角坐标系中,已知P(﹣3,5)和点Q(3,m﹣1)关于原点对称,则m =.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:∵P、Q两点关于原点对称,∴横、纵坐标均互为相反数,∴m﹣1=﹣5,解得m=﹣4.故答案为:﹣4.【点评】本题主要考查了平面直角坐标系内两点关于原点对称时横、纵坐标均互为相反数这一特征,熟练掌握该特征是解题的关键.26.(2022秋•锦江区期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于原点对称点的性质得出答案;(3)利用三角形面积求法得出符合题意的答案.【解答】解:(1)如图所示:△ABC的面积是:3×4﹣;故答案为:4;(2)点D与点C关于原点对称,则点D的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).【点评】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.27.(2023春•温州期末)在直角坐标系中,点A(1,4)关于原点对称的点的坐标是()A.(1,﹣4)B.(﹣1,4)C.(4,1)D.(﹣1,﹣4)【分析】根据“关于原点对称的点,横坐标,纵坐标都互为相反数”解答.【解答】解:在平面直角坐标系中,点(1,4)关于原点对称的点的坐标为(﹣1,﹣4).故选:D.【点评】本题考查了关于坐标轴对称的点的坐标的知识,牢记点的坐标的变化规律是解决此类题目的关键.28.(2023•游仙区模拟)点M(﹣2,6)关于坐标原点的中心对称点为()A.M'(﹣6,2)B.M'(2,﹣6)C.M'(﹣1,3)D.M'(3,﹣1)。
最新人教版初中九年级上册数学《中心对称》同步练习
![最新人教版初中九年级上册数学《中心对称》同步练习](https://img.taocdn.com/s3/m/4d2bbb02804d2b160b4ec065.png)
23.2 中心对称23.2.1中心对称基础题知识点1认识中心对称1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有____________.3.如图所示,两个五角星关于某一点成中心对称,指出哪一点是对称中心,并指出图中点A、B、C、D的对称点.知识点2中心对称的性质4.如图,△ABC与△A′B′C′成中心对称.ED是△ABC的中位线,已知BC=4,则E′D′=() A.2 B.3C.4 D.1.55.如图所示,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是()A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′6.如果△ABC和△A′B′C′关于点O成中心对称,那么△ABC和△A′B′C′______相同,大小______,即它们是______关系.7.(邵阳中考)如图所示,已知△ABC与△CDA关于AC的中点O成中心对称,添加一个条件________,使四边形ABCD为矩形.8.如图,△A′B′C′与△ABC关于点O成中心对称,试从图中找出几种不同的结论.(至少三种)9.如图所示,△AOB与△COD关于点O成中心对称,连接BC,AD.(1)求证:四边形ABCD为平行四边形;(2)若△AOB的面积为15 cm2,求四边形ABCD的面积.知识点3 画中心对称图形10.如图所示,△ABC 和△DEF 是成中心对称的两个三角形,请找出它的对称中心.11.如图,已知△ABC 和点O.在图中画出△A ′B ′C ′,使△A′B′C′与△ABC 关于O 点成中心对称.中档题12.如图,△ABC 和△AB′C′成中心对称,A 为对称中心,若∠C =90°,∠B =30°,BC =1,则BB′的长为( )A .4 B.33C.233D.43313.下列说法中,正确的是( )A .在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B .在成中心对称的图形中,连接对称点的线段都被对称中心平分C .若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D .以上说法都正确14.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是________.15.(齐齐哈尔中考)如图所示,在四边形ABCD 中.(1)画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称; (2)画出四边形A 2B 2C 2D 2,使四边形A 2B 2C 2D 2与四边形ABCD 关于点O 中心对称; (3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2是否对称,若对称请在图中画出对称轴或对称中心.16.如图,点O 是矩形ABCD 的对称中心,过点O 任意作直线l ,并过点B 作BE ⊥l 于E ,过点D 作DF ⊥l 于F ,求证:BE =DF.综合题17.如图所示,AD 是△ABC 的边BC 的中线.(1)画出以点D 为对称中心,与△ABD 成中心对称的三角形; (2)若AB =10,AC =12,求AD 长的取值范围.参考答案基础题1.C2.(1)(2)(3)3.点A 是对称中心,A 、B 、C 、D 关于A 点的对称点分别是A 、G 、H 、E.4.A5.D6.形状 相等 全等7.∠B =90°8.答案不唯一:如线段的相等关系:OA =OA′,OB =OB′,OC =OC′,AB =A′B′,AC =A′C′,BC =B ′C ′;三角形的全等关系:△ABC ≌△A′B′C′;平行关系:AB ∥A′B′,AC ∥A ′C′,BC ∥B ′C ′;角的相等关系:∠CAB =∠C′A′B′,∠CBA =∠C ′B ′A ′,∠BCA =∠B′C′A′. 9.(1)证明:∵△AOB 与△COD 关于点O 成中心对称,∴OA =OC ,OB =OD.∴四边形ABCD 为平行四边形.(2)四边形ABCD 的面积为60 cm 2. 10.图略,点O 即为所求. 11.图略. 中档题12.D 13.B 14.(3,-1)15.(1)图略.(2)图略.(3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2对称,对称轴为图形中的直线EF. 16.证明:连接BD.∵点O 是矩形ABCD 的对称中心,∴点B 、O 、D 三点共线,BO =DO.∵BE ⊥l ,DF ⊥l ,∴∠BEO =∠DFO =90°.在△BEO 和△DFO 中,⎩⎪⎨⎪⎧∠BEO =∠DFO ,∠BOE =∠DOF ,BO =DO ,∴△BEO ≌△DFO.∴BE=DF.综合题17.(1)图略.(2)1<AD<11.作者留言:非常感谢!您浏览到此文档。
人教版数学九年级上册第二十三章《23.2.1-中心对称》课件
![人教版数学九年级上册第二十三章《23.2.1-中心对称》课件](https://img.taocdn.com/s3/m/3944b764366baf1ffc4ffe4733687e21af45ffb4.png)
1.了解中心对称的概念
问题1 (1)如图,把其中一个图案绕点 O 旋转 180°,你有什么发 现?
旋转后两个图案能够互相重合
问题1 (2)如图,线段 AC,BD 相交于O,OA=OC,OB=OD.把 △OCD 绕点 O 旋转 180°,你有什么发现?
旋转后的△OCD与△OAB重合
问题2 你能说说上述两个旋转的共同点吗? (1)图形中旋转中心是哪一点? (点 O)
B
简记为:一连接;二延长;三截等;四连线.
3.应用中心对称性质画图
(3)如图,选择点 O 为对称中心,画出与△ABC关于点 O 对称 的△A'B'C'.
解:(3)作出A、B、C三点 关于点O的对称点A',B',C', 依次连接A'B',B'C',C'A', 则 △A'B'C'即为所求.
4.练习、巩固中心对称的性质
(1)如图,以顶点 A 为对称中心,画一个 与四边形 ABCD 成中心对称的图形.
(2)如图,已知△ABC 与△DEF成 中心对称, 点 A 和点 D 是对称点,画出对称中心 O.
5.课堂小结
(1)什么是中心对称?
把一个图形绕着某一点旋转 180°,如果它能够与另一个图形重合, 那么就说这两个图形关于这个点对称(即中心对称)
(2)旋转的角度是多少?(180°)
(3)两个图形是什么关系? (旋转180°后能够重合)
△AOB与△COD关于点O对 称
像这样,把一个图形绕着某一点旋转 180°,如果它能够与另一个图 形重合,那么就说这两个图形关于这个点对称(或中心对称),这 个点叫做对称中心.
这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.
数学知识点九年级数学上册23.2.1中心对称同步练习2(新版)新人教版【含解析】
![数学知识点九年级数学上册23.2.1中心对称同步练习2(新版)新人教版【含解析】](https://img.taocdn.com/s3/m/e8e850da58f5f61fb7366625.png)
23.2.1 中心对称要点感知1 把一个图形绕着某一点旋转____,如果它能够与另一个图形____,那么就说这两个图形关于这个点对称或____,这个点叫做____,旋转后能够重合的对应点叫做关于对称中心的____.预习练习1-1 如图所示,成中心对称的图形有____.要点感知2 中心对称的性质:中心对称的两个图形,对称点所连线段经过____,并且被对称中心所____.中心对称的两个图形是____.预习练习2-1 如果△ABC和△A′B′C′关于点O成中心对称,那么△ABC和△A′B′C′____相同,大小____,即它们是____关系.2-2 如图,已知△ABC和点O.在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点成中心对称.知识点1 认识中心对称1.下列说法中正确的有( )A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有____.知识点2 中心对称的性质3.如图所示,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′4.已知如图所示,△AOB与△COD关于点O成中心对称,连接BC,AD.(1)求证:四边形ABCD为平行四边形;(2)若△AOB 的面积为15 cm 2,求四边形ABCD 的面积.知识点3 画中心对称图形5.如图所示,△ABC 和△DEF 是成中心对称的两个三角形,请找出它的对称中心.6.如图,△ABC 和△AB ′C ′成中心对称,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB ′的长为( )A.4B.33C.332D.3347.下列说法中,正确的是( )A.在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B.在成中心对称的图形中,连接对称点的线段都被对称中心平分C.若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D.以上说法都正确8.(邵阳中考)如图所示,已知△ABC 与△CDA 关于A C 的中点O 成中心对称,添加一个条件____,使四边形ABCD 为矩形.9.如图,在平面直角坐标系中,若△ABC 与△A1B1C1关于E 点成中心对称,则对称中心E 点的坐标是____.10.分别画出下列图形关于点O 对称的图形..11.(齐齐哈尔中考)如图所示,在四边形ABCD 中.(1)画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称.(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称,若对称请在图中画出对称轴或对称中心.挑战自我12.如图所示,AD是△ABC的边BC的中线.(1)画出以点D为对称中心,与△ABD成中心对称的三角形;(2)若AB=10,AC=12,求AD长的取值范围.参考答案要点感知1 180°,重合,中心对称,对称中心,对称点.预习练习1-1 ②.要点感知2 对称中心,平分.全等图形.预习练习2-1 相同,相等,全等.2-21.C2.(1)(2) (3).3.D′4.(1)∵△AOB与△COD关于点O成中心对称,∴OA=OC,OB=OD.∴四边形ABCD为平行四边形.(2)四边形ABCD的面积为60 cm2.5.6.D7.B8.∠B=90°9.(3,-1).10.解:如图.11.(1)(2)如图所示;(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图形中的直线EF. 挑战自我12.(1)如图,△DCE为所求.(2)1<AD<11.。
人教版2020届九年级数学上学期同步测试专题23-2:中心对称 含解析
![人教版2020届九年级数学上学期同步测试专题23-2:中心对称 含解析](https://img.taocdn.com/s3/m/73446a0ed1f34693dbef3e4b.png)
专题23.2中心对称(测试)一、单选题1.下列图形,是中心对称图形的是( )A.B.C.D.【答案】C【解析】根据中心对称图形的概念可知A、B、D不是中心对称图形;C是中心对称图形. 故选C.2.下列图形中,是中心对称图形的是()A.B.C.D.【答案】B【解析】A. 正三角形不是中心对称图形;B. 平行四边形是中心对称图形;C. 半圆不是中心对称图形;D. 正五边形不是中心对称图形;故选:B.3.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个B.4个C.3个D.2个【答案】C【解析】(1)正方形绕中心旋转180︒能与自身重合;(2)等边三角形不能绕某点旋转180︒与自身重合;(3)矩形绕中心旋转180︒能与自身重合;(4)直角不能绕某个点旋转180︒能与自身重合;(5)平行四边形绕中心旋转180︒能与自身重合;综上所述,绕某个点旋转180︒能与自身重合的图形有(1)(3)(5)共3个. 故选:C .4.如图,△DEF 是△ABC 经过某种变换后得到的图形.△ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点N ,点N 的坐标是( )A .(﹣y ,﹣x )B .(﹣x ,﹣y )C .(﹣x ,y )D .(x ,﹣y )【答案】B【解析】解:如图,点M 与点N 关于原点对称,∴点N 的坐标为(﹣x ,﹣y ), 故选:B .5.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3C .5D .7【答案】C【解析】解:∵点()1,5P m -与点()3,2Q n -关于原点对称, ∴13m -=-,25n -=-, 解得:2m =-,7n =, 则275m n +=-+=6.如图,ABC △中,,AB AC ABC =与FEC 关于点C 成中心对称,连接,AE BF ,当ACB =∠( )时,四边形ABFE 为矩形.A .30︒B .45︒C .60︒D .90︒【答案】C【解析】∵ABC 与FEC 关于点C 成中心对称 ∴AC=CF,BC=EC∴四边形AEFB 是平行四边形当AF=BE 时,即BC=AC ,四边形AEFB 是矩形 又∵AB AC =∴△BCA 为等边三角形,故60ACB ∠=︒ 选C7.如图,ABC ∆与'''A B C ∆关于O 成中心对称,下列结论中不一定成立的是( )A .'''ABC A CB ∠=∠ B .'OA OA =C .''BC B C =D .'OC OC =【答案】A【解析】A. '''ABC A B C ∠=∠,本选项不一定正确; B. 'OA OA =,对应边相等; C. ''BC B C =,对应边相等; D.'OC OC =,对应边相等;8.点(1,2)-关于原点的对称点坐标是( ) A .(1,2) B .(1,2)-C .(1,2)D .(2,1)-【答案】B【解析】根据中心对称的性质,得点()1,2-关于原点的对称点的坐标为()1,2-. 故选B .9.下列图形中,不是中心对称图形的是( ) A .圆 B .菱形C .矩形D .等边三角形【答案】D 【解析】A 、B 、C 中,既是轴对称图形,又是中心对称图形;D 、只是轴对称图形. 故选:D .10.下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,也是中心对称图形,故此选项正确; D 、不是轴对称图形,是中心对称图形,故此选项错误. 故选:C .11.下面是“湖南新田”四个汉字的声母的大写,不是..中心对称图形的是 A .H B .NC .XD .T【答案】D【解析】根据中心对称图形的性质,只有T 倒置后有变化 故答案为:D12.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成中心对称....图形,那么符合条件的小正方形共有( )A .3个B .2个C .1个D .0个【答案】C【解析】如图所示,有1个使之成为中心对称图形, 故选C.13.已知正方形的对称中心在坐标原点,顶点A B C D 、、、按逆时针依次排列,若点A 的坐标为()23,,则B 点与D 点的坐标分别为( ) A .()()2,3,2,3-- B .()()3,2,3,2--C .()()3,2,2,3-- D .721721,,,22⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】解:如图,连接OA OD 、,过点A 作AF x ⊥轴于点F ,过点D 作DE x ⊥轴于点E ,易证AFO OED AAS ≌(),OE AF 3∴==DE OF 2==,D3,2(),∴-、关于原点对称,B D()∴,,B3故选:B.二、填空题14.把一个图形绕着一个定点旋转_________后,与初始图形重合,那么这个图形叫做________________,这个定点叫做__________________.【答案】180°中心对称图形对称中心【解析】把一个图形绕着一个定点旋转180°,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫对称中心.故答案为:180°,中心对称图形,对称中心.15.点A(-1,2)关于y轴的对称点坐标是____________;点A关于原点的对称点的坐标是____________。
九年级数学上册 23.2 中心对称 课时同步练习习题(含答案)
![九年级数学上册 23.2 中心对称 课时同步练习习题(含答案)](https://img.taocdn.com/s3/m/0a2e2949c5da50e2524d7fca.png)
23.2中心对称基础题1.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(3)(4)2.下列说法:(1)平行四边形是中心对称图形,其对角线的交点为对称中心;(2)只有正方形才既是中心对称图形,又是轴对称图形;(3)关于中心对称的两个图形是全等形,两个全等图形也一定成中心对称;(4)若将一个图形绕某定点旋转和另一个图形不重合,那么这两个图形不可能关于这个定点成中心对称,其中正确说法的个数是()A.1个B.2个C.3个D.4个3.国旗上的每个五角星()A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.下列图形中不是轴对称图形而是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形5.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A.2 B.3 C.4 D.56.如图将三角形绕直线旋转一周,可以得到图(E)所示的立体图形的是()A.图(A)B.图(B)C.图(C)D.图(D)7.在等腰三角形中,,,如果以的中点为旋转中心,将这个三角形旋转,点落在处,那么点与点原来位置相距____________.综合题1.如图1,在正方形中,是的中点,是延长线上的一点,.(1)求证△≌△;(2)阅读下列材料:如图2,把△沿直线平行移动线段的长度,可以变到△的位置;如图3,以为轴把△翻折,可以变到△的位置;如图4,以点为中心把△旋转,可以变到△的位置.图2 图3 图4像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△变到△的位置,答:________________________________________________.②指出图1中,线段与之间的关系.答:________________________________________________.创新题1.两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?图1参考答案基础题1.D 2.A 3.B 4.B 5.B 6.B 7.综合题1.(1)正方形有,,、均为,,,∴,∴△≌△.(3)①答△绕点逆时针旋转到△的位置;②答:且.创新题1.你要争取先放,并把第1枚硬币放在桌面的对称中心上,以后你应该根据对方所放硬币的位置,在它关于中心对称的位置上放下一枚同样大小硬币.这样,由于对称性,只要对方能放得下一枚硬币,你就保证能在其对称位置上放下一枚同样大小的硬币,因此,失败绝对轮不到你.。
最新人教版九年级上册数学第23章旋转专题2中心对称与中心对称图形
![最新人教版九年级上册数学第23章旋转专题2中心对称与中心对称图形](https://img.taocdn.com/s3/m/4f24a8e8f18583d048645909.png)
D. 既不是轴对称图形又不是中心对称图形
7. 如图D23-2-5,点O ABCD的对称中心,AD>AB,E, F是AB边上的点,且EF= AB;G,H是BC边上的点,且 GH= BC,若S1,S2分别表示△EOF和△GOH的面积,则
S1与S2之间的等量关系是_____________.
谢谢
二、中心对称图形
4. (2020深圳)下列图形中,既是轴对称图形又是中心
对称图形的是
( B)
5. (2020德州)下列图形中,是中心对称图但不是轴
对称图形的是
(B)
6. (2019绵阳)不考虑颜色,对如图D23-2-4的对称性表述,
正确的是 A. 轴对称图形
(B )
B. 中心对称图形
C. 既是轴对称图形又是中心对称图形
2. (2020台州)用四块大正方形地砖和一块小正方形地 砖拼成如图D23-2-2所示的实线图案,每块大正方形地 砖面积为a,小正方形地砖面积为b,依次连接四块大正 方形地砖的中心得到正方形ABCD. 则正方形ABCD的面积为__(_a_+_b_)__. (用含a,b的代数式表示)
3. 如图D23-2-3,正方形ABCD与正方形A1B1C1D1关于某点 中心对称,已知A,D1,D三点的坐标分别是(0,4), (0,3),(0,2). (1)求对称中心的坐标; (2)写出顶点B,C,B1,C1的坐标.
解:(1)根据对称中心的性质,可得对称中心的坐标是 D1D的中点. ∵点D1,D的坐标分别是(0,3),(0,2), ∴对称中心的坐标是(0,2.5).
(2)∵点A,D的坐标分别是(0,4),(0,2), ∴正方形ABCD与正方形A1B1C1D1的边长都是4-2=2. ∴点B,C的坐标分别是(-2,4),(-2,2). ∵点D1的坐标是(0,3), ∴点A1的坐标是(0,1). ∴点B1,C1的坐标分别是(2,1),(2,3). 综上所述,顶点B,C,B1,C1的坐标分别是(-2,4),(-2, 2),(2,1),(2,3).
人教版九年级上册数学 中心对称 同步练习
![人教版九年级上册数学 中心对称 同步练习](https://img.taocdn.com/s3/m/5e0242f133687e21ae45a901.png)
人教版九年级上册数学中心对称 同步练习一、单选题1.若两个图形关于某点成中心对称,则以下说法正确的是( )①这两个图形一定全等;②对称点的连线一定经过对称中心;③一定存在某条直线,沿该直线折叠后的两个图形能互相重合.A .①②B .①③C .②③D .①②③2.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 43.下列图形不是轴对称图形是中心对称图形的是( )A .B .C .D .4.如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12BCD 5.在平面直角坐标系xOy 中,点A (﹣2,3)关于点O 中心对称的点的坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .( 2,﹣3)6.已知点1(1,3)P ,它关于原点的对称点是点2P ,则点2P 的坐标是( )A .(3,1)B .(-3,-1)C .(1,-3)D .(-1,-3)7.若点A (3,2)与B (-3,m )关于原点对称,则m 的值是( )A .-3B .3C .2D .-28.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.直线l 1:y =﹣12x +1与直线l 2关于点(1,0)成中心对称,下列说法不正确的是( ) A .将l 1向左平移1个单位得到l 2 B .将l 1向下平移1个单位得到l 2C .将l 1向右平移2个单位,再向下平移2个单位得到l 2D .将l 1向左平移4个单位,再向上平移1个单位得到l 210.如图所示,已知△ABC 与△CDA 关于点O 对称,过O 任作直线EF 分别交AD 、BC 于点E 、F ,下面的结论:其中正确的个数为( )①四边形DEOC 与四边形BFOA 的面积必相等; ②△AOE 与△COF 成中心对称;③点E 和点F ,点B 和点D 是关于中心O 对称点; ④.直线BD 必经过点OA .1B .2C .3D .4二、填空题 11.已知六边形ABCDEF 是中心对称图形,AB=1,BC=2,CD=3,那么EF=_______.12.已知点(),1A a a +在直线122y x =+上,则点关于原点的对称点的坐标是_________ 13.如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于这一点成____对称.14.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.15.点P (2,﹣4)到x 轴的距离为_____个单位,它关于原点的对称点的坐标为_____.三、解答题16.如图,在△ABC 中,点D 是AB 边上的中点.已知AC=4,BC=6.(1)画出△BCD 关于点D 的中心对称图形; (2)根据图形说明线段CD 长的取值范围.17.如图,在7×6的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出△A 1B 1C 1,使△A 1B 1C 1和△ABC 关于点D 成中心对称;(2)在图乙中以AB 为三角形一边画出△ABC 2,使得△ABC 2为轴对称图形,且2ABC S △=3S △ABC .18.如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于原点对称的△A 1B 1C 1,并写出A 1的坐标;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2B 2C 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.2.1 中心对称
新课导入
问题1:把图①中一个图案绕 点O旋转180°,你有什么发现?
问题2:如图②,线段AC、 BD相交于点O,OA=OC,OB= OD.把△OCD绕点O旋转180°, 你又有什么发现?
图① 图②
(1)通过具体实例认识中心对称,弄清楚中心对 称及其有关概念的含义. (2)探究并归纳出中心对称的性质. (3)会作与一个图形关于某个点成中心对称的另 一个图形.
B′ A′
C′
随堂演练
1. 下列结论中,错误的是( A ) A.形状大小完全相同的两个图形一定关于某点 成中心对称 B.成中心对称的两个图形,对称中心到两对称 点的距离相等 C.成中心对称的两图形,对称中心在两对称点 的连线上 D.成中心对称的两图形,对应线段平行(或在 同一直线上)且相等
2. 如图,△ABC与△A1B1C1关于点O成中心对称,下 列说法:①∠BAC=∠B1A1C1;②AC=A1C1; ③OA=OA1;④△ABC与△A1B1C1的面积相等.其中 正确的有( D ) O
解:(1)AE∥BF,AE=BF; 理由:∵△ABC绕点C顺时针旋转180°得到 △FEC, ∴△ABC≌△FEC, ∴AB=FE,∠ABC=∠FEC, ∴AB∥FE, ∴四边形ABFE为平行四边形 (2)S四边形ABFE=4S△ABC=12 cm2.
课堂小结
中心对称
绕着某一点旋转180° 概念
推进新课 知识点1 中心对称及其相关概念
问题1:把图①中一个图 案绕点O旋转180°,你有什 么发现?
问题2:如图②,线段AC、BD相交于点O, OA=OC,OB=OD.把△OCD绕点O旋转180°,你 又有什么发现?
你发现了什么?
把一个图形 绕着某一点旋转180° ,如果 它 能够与另一个图形重合 ,那么就说这两个图 形关于这个点 对称 或 中心对称 ,这个点 叫做 对称中心(简称中心) . 这两个图形在旋 转后能重合的对应点叫做关于对称中心的对称点.
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
知识点2 中心对称的性质
按下列步骤动手画图: 第一步:用三角尺画出△ABC; 第二步:以三角尺的一个顶点O为中心, 把三角尺旋转180°,再画出△A′B′C′; 第三步:移开三角尺,并用虚线连接对应 点A、A′,B、B′,C、C′.
能够与另一个图形重合
对称点所连线段都经过对称中心, 性质 而且被对称中心所平分.
中心对称的两个图形是全等图形.
中心对称的性质
中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心所平分.
中心对称的两个图形是全等图形.
①怎样画点A关于点O的对称点? 连接AO,在AO的延长线上截取OA′=OA,
即可求得点A关于点O的对称点A′.
A′
②怎样画△ABC关于点O对称的△A′B′C′?
作出A,B,C三点关于点O的对称点A′, B′,C′,依次连接A′B′,B′C′,C′A′,就可得 到与 △ABC关于点O对称的△A′B′C′.
第一步 第二步 第三步
a. △ABC与△A′B′C′关于点O对称吗? 对称.
b. △ABC与△A′B′C′全等吗?为什么? 全等.由图形旋转的性质可知△ABC≌△A′B′C′.
c. 线段AA′、BB′、CC′有何关系? 相交于点O.
d. 点O在线段AA′、BB′、CC′的什么位置? 点O在线段AA′、BB′、CC′的中点处.
A.1个 B.2个 C.3个 D.4个
3. 如图,四边形ABCD与四边形FGHE关于点O
成中心对称,下列说法中错误的是( D )
A.AD∥EF,AB∥GF
B.BO=GOGC.D=HE,BC=GHD.DO=HO
4. 如图,在△ABC中,AB=AC,若将△ABC 绕点C顺时针旋转180°得到△FEC. (1)试猜想AE与BF有何关系?说明理由; (2)若△ABC的面积为3cm2,求四边形ABFE 的面积.
中心对称是指几个图形之间的位置关系? 一个图形绕一点旋转能与另一个图形重合就 是中心对称吗?
两个. 不一定,必须是绕一点旋转180°能与另 一个图形重合才是中心对称.
在下列四组图形中右边数字与左边数字成 中心对称的有(1)(2)(3)(4) .
(1)
(2)
(3)
(4)
思考:两个图形成中心对称需要具备什么条件?