第五章流速测量

合集下载

第五章血压测量

第五章血压测量
用充满液体(一般是生理盐水)的导管测量人体内部压力时,一般是通过液体柱将压力引到人体外部的传感器进行测量。为反映人体内导管端部的压力,应将外部传感器与测量点置于同一水平线上,但最好的办法是将外部传感器置于上述参考点的水平线上,这样就不用考虑导管的端部在体内的位置了。
第二节 血压直接测量法:导管术
在一心周期内,随着袖带压力的增加,血管的开放和闭合的时间间隔就随之减小;直到开放和闭会二点重合,该点即为收缩压。相反,当袖常压力减低时,开放和闭合之间的时间间隔增加;直到脉搏的闭合信号与下一次脉搏的开放信号相重合,这一点可确定为舒张压。
三、测振法原理 (Oscillometric measurement technique)
测振法下:首先把袖带捆在手臂上,自动对袖带充气,到一定压力(一般为180~ 230 mmHg)开始放气,当气压到一定程度,血流就能通过血管,且有一定的振荡波,振荡波通过血管传播到机器里的压力传感器,压力传感能实时检测到所测袖带内的压力及波动。逐渐放气,振荡波越来越大。再放气由于袖带与手臂的接触越松,因此压力传感器所检测的压力及波动越来越小。
2、间接测量(NIBP non-invasively blood pressure measurement): 间接法是利用脉管内压力与血液阻断开通时刻所出现的血流变化间的关系,从体表测出相应的压力值。 优点:无创 缺点:测量精度较低,不能进行连续测量以及不能用以测定心脏、静脉系统的压力。
三、血压测量的参考点
在心血液系统中,右心房压最稳定,几乎不受人体姿态变化的影响,这一重要特征,对于使人体在运动中保持循环系统的稳定,起了很重要的作用。
当对右心房血压进行测量时,体位引起的血压变化很小,故临床大多在上臂进行血压检查是很恰当的,因为它几乎与右心房在同一水平线上。而在别的高度上测量血压时,应根据高度差进行校正。这样右心房可作为血压测量的参考点,该参考点大致位于胸纵轴的中央处,具体位于胸腔左右第四肋之间的空间,中央肋软骨节前,离后背约10 cm处。此外也可由超声心动图确定从前胸壁到左心房之间的中间位置,也是一个精确的参考点。

风力等级表

风力等级表
9
风向标的设计要求
① 在小风时能反应风向的变动,即有良好 的启动性能;
② 具有良好的动态特性,即能迅速准确地 跟踪外界的风向变化。
10
传递和指示风向
• 风向标感应的风向必须传递到地面的指 示仪表上,以触点式最为简单,风向标 带动触点,接通代表风向的灯泡或记录 笔电磁铁,作出风向的指示或记录,但 它的分辨只能做到一个方位22.5°。
22-27 28-33 34-40 41-47 48-55
56-63
3.0 4.0 5.5 7.0 9.0
11.5
大树枝摇动,电线呼呼有声,打伞困难。
全树摇动,逆风步行感到困难。 树枝折断,逆风行进阻力甚大。 发生轻微的建筑破坏。 内陆少见,有些树木拔起,建筑物破坏
较重。
极少遇到,伴随着广泛的破坏。
36表示,以正北为基准,顺时针方向旋转。
4
• 风向是指风的来向。
• 风向的英文缩写符号纪录如图5.1
– 北:North
东:East
– 南:South
西:West
• 当风速低于 0.25 m/s 时称为静风。
• 风级也是一种表达风力的常用单位
5
• 1805年英国人F·蒲福根据风对地面 (或海面)物体的影响,提出风力等级 表,几经修改后得出蒲福风力等级表。
第五章 气流的测量
向卫国
1
• 空气的运动产生气流。 • 流速是一个三维空间矢量。 • 一般考虑为(xy平面)二维矢量:
– 风速——模值 – 风向——方向
• 一些特殊情况下,垂直运动也相当显著
– 如山的背风坡、强的对流云
2
• 气流场 = 大尺度的规则气流 + 随时间和 空间随机涨落的(中)小尺度湍流

流体力学 水力学 第五章

流体力学 水力学 第五章

7 H [H0 ] 9m 0.75
§5.3 有压管道恒定流 5.3.1 短管水力计算(Q、d、H) 有压流:水沿管道满管流动的水力现象。 特点:水流充满管道过水断面,管道内不存在自 由水面,管壁上各点承受的压强一般不等于大 气压强。
短管:局部水头损失和 速度水头在总水头损失 中占有相当的比重,计 算时不能忽略的管道. (一般局部损失和速度 水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
1 vc c 0
v
2 0 0
2 gH 0 2 gH 0
v hw h j 2g p c pa
2 c
1 1 流速系数: c 0 1 0
1 1 流速系数: c 0 1 0
实验得: 0.97 ~ 0.98 1 推求: 0 2 1 1 0.06 2 0.97 1
2
d2
5.126m 2g
例5 3:如图所示圆形有压涵管,管长50m, 上下游水位差3m 沿程阻力系数为0.03,局部阻力系数:进口 1=0.5。 第一个转弯 2=0.71,第二个转弯 3=0.65,出口
4=1.0,要求涵管通过流量大约3m 3 / s, 试设计管径d。
2 1 1
2g

v


v
2 2 2
2 2 2
2g
hw
2g
hw
H0 H
v
2 1 1
2g

v
2 2 2
2g
hw
hw h f h j (
l v
v d 2g 2g
2
2
l
v ) d 2g

大学物理:第五章 流体力学 (Fluid Mechanics)

大学物理:第五章 流体力学 (Fluid Mechanics)
上海交通大学 物理系
Aneurysm(动脉瘤)
若处动脉的半径增大N倍 血液流速就缩小N2倍 病灶处的压强大幅度上降 由于该处血管壁薄,使血 管容易破裂。
上海交通大学 物理系
Atherosclerosis(动脉粥样硬化)
动脉病变从内膜开始。一 般先有脂质和复合糖类积 聚、出血及血栓形成,纤 维组织增生及钙质沉着, 并有动脉中层的逐渐蜕变 和钙化,病变常累及弹性 及大中等肌性动脉,
?
? hB=0.5m
P0
?
0
1 2
v
2 c
ghc
Pc
1 2
v
2 A
ghA
PA
vc 2ghA 6 m / s
B,C点
1 2
v
2 c
ghc
Pc
1 2
v
2 B
ghB
PB
SBvB SCvC
PB P0 0.85g
PB P0 ghD
hD 0.85m
上海交通大学 物理系
一柱形容器,高1m、截面积为5x10-2 m2,储满水 ,在容器底部有一面积为2x10-4 m2 的水龙头,问 使容器中的水流尽需多少时间?
度变小,压强变大
压力
上海交通大学 物理系
马格纳斯效应
上海交通大学 物理系
机翼受到的举力
Q:用机翼上、下的流速变化,讨论其受到的升力,是否合理
上海交通大学 物理系
上海交通大学 物理系
压强的范围
太阳中心 地球中心 实验室能维持的最大压强 最深的海沟 尖鞋跟对地板 汽车轮胎 海平面的大气压 正常的血压 最好的实验室真空
四、液流连续原理(Principle of continuity of flow)

107963-制药化工原理-第五章传热-第10讲 孟娜

107963-制药化工原理-第五章传热-第10讲 孟娜

强为350mmHg,则真空度为 395mmHg

测得另一容器内的表压强为1360 mmHg,则其绝对
压强为2105 mmHg
三、流体静力学基本方程式
➢ 推导:
在静止液体中,液柱所受的向上和向
下的力达到平衡,即:
p2 A p1A A(Z1 Z2 )g
化简
p2 p1 g(Z1 Z2 )
如图1-3所示,若液柱的上底面为液面, 图图11--32以流液体面静为力基学准基的本流方体
流体及特点 ▪ (一)流体:气体和液体几乎没有抵抗变形的能力
不但整体会产生运动,其内部质点也会产生相对运动,具有 流动性,故把气体和液体统称为流体。 (二)特点:1、流动性
2、无固定形状 (三)分类:1、液体:不可压缩性流体
2、气体:可压缩性流体
流体的体积随压力温度发生变 化,
如气体
一、流体的密度
(二)流速
1.平均流速:单位时间内流体在流动方向上流 过的距离称为平均流速,以u表 示,单位为 m2 • s1 。
u VS A
A——与流动方向相垂直的管道截面积, m2 。
流速沿径向变化的,管中心的流速是最大的,靠近壁面处最小,所以通常 取整个管截面的平均流速作为流体在管内的流速
2.质量流速:单位时间内流体流过管道单位截 面积的质量称为质量流速G,单 位: kg • m2 • s1 。
小结
▲ 密度具有点特性,液体的密度基本上不随压强而变 化,随温度略有改变;气体的密度随温度和压强而 变。混合液体和混合液体的密度可由公式估算。
▲ 与位能基准一样,静压强也有基准。工程上常用绝 对压强和表压两种基准。在计算中,应注意用统一 的压强基准。
▲ 压强具有点特性。流体静力学就是研究重力场 中,静止流体内部静压强的分布规律。

流体力学第五章 管中流动-1

流体力学第五章 管中流动-1
解: (1)由表1-6(P28)查此时水的粘度为1.308×10-6
Re vd 1.0 0.1 76453 Rec 2300 6 1.308 10


管中流动为湍流。 (2) Rec vc d

vc
Rec
d
1.308 106 2300 0.03 0.1
2012年12月15日 20
5.2 圆管中的层流
本章所讨论的流体 1. 流体是不可压缩的; 2. 运动是定常的;
主要内容: • 速度分布 • 流量计算 • 切应力分布 • 沿程能量损失
2012年12月15日 21
过流截面上流速分布的两种方法
vd
我们知道当
较小,即速度和管子直径较小而粘度较大时出现层流
哈根-伯肃叶(Hagen-Poiseuille)定律, 它与精密实验的测定结果完全一致。
2012年12月15日 26
粘 度 的 测 定 方 法
利用哈根-伯肃叶(Hagen-Poiseuille)定律可以测定粘度,它是测 定粘度的依据。因为,根据公式可以导出:

pd 4
128qvl

pd 4t
4 A 4 Bh 2h 4cm S 2B vd 要使 Re H 2320 v 0.017 m / s dH

2012年12月15日 18
例题三:某段自来水管,d=100mm,v=1.0m/s,
水温10℃, (1)试判断管中水流流态? (2)若要保持层流,最大流速是多少?
(2)速度分布具有轴对称性,速度分布呈抛物线形。 (3)等径管路中,压强变化均匀。 (4)管中的质量力不影响流动性。
2012年12月15日 22
• 1.第一种方法 • 根据圆管中层流的流动特点,对N-S方程式

第五章 相似原理与量纲分析

第五章 相似原理与量纲分析

例:长度比为1/50的船舶模型,在水池中以1m/s的 速度牵引前进时,则得波浪阻力为0.02N。求(1) 原型中的波浪阻力;(2)原型中船舶航行速度; (3)原型中需要的功率?
第三节 流动相似条动,它们都应为相同 的微分方程组所描述。 2、单值条件(几何条件、边界条件、物性条件、初 始条件)相同或相似; 3、由单值条件中的物理量所组成的相似准则数相等。


四、初始条件和边界条件的相似
初始条件:适用于非恒定流。
边界条件:包含几何、运动和动力三个方面的因素。 例如固体边界上的法线流速为零,自由液 面上的压强为大气压强等 。
流动相似的含义: 1、几何相似是运动相似和动力相似的前提与依据;
2、动力相似是决定两个液流运动相似的主导因素;
3、运动相似是几何相似和动力相似的表现; 4、凡流动相似的流动,必是几何相似、运动相似 和动力相似的流动。
例:有一直径为15cm的输油管,管长5m,管中要通 过的流量为0.18m3/s ,现用水来作模型试验,当模型 管径和原型一样,水温为10℃(原型中油的运动粘度 为 0.13cm2/s),问水的模型流量应为多少时才能达 到相似?若测得5m长模型输水管两端的压差为3cm, 试求在5m长输油管两端的压差应为多少(用油柱高 表示)?
M F l kM k F kl k kl3kv2 M Fl
p Fp A k F kp k kv2 p Fp A k A
功率比例尺 动力粘度比例尺
kP
P F v k F kv k kl2 kv3 P Fv k k k k kl kv

例1:当通过油池底部的管道向外输油时,如果池内 油深太小,会形成大于油面的漩涡,并将空气吸入 输油管。为了防止这种现象,需通过模型实验确定 油面开始出现漩涡的最小油深hmin。已知输油管内 径d=250mm,qV=0.14m3/s,运动黏度ν=7.5x10-5m/s。 倘若选取的长度比例尺kl=1/5,为了保证流动相似, 模型输出管的内径、模型内液体的流量和运动黏度 应等于多少?在模型上测得h'min=60mm,油池的最 小深度hmin应等于多少?

流体力学实验_第五章

流体力学实验_第五章
28
§5.4 流动显示的光学方法
1. 适用范围 光学显示方法:利用流场的光学性质,如流体的密 度变化会造成光学折射率或传播速度的变化,通过 适当的光学装置可以显示流体的流动特性。
流场的温度、压力、浓度和马赫数等状态参数与密度 有确定的函数关系,而流体的光学折射率是其密度的 函数,因此下列流动可以采用光学流动显示的方法:
分光镜 补偿片
单色 点光 源
全反镜
风洞实验段
屏幕
40
密度均匀:干涉条纹彼此平行 密度不均匀:干涉条纹发生移动或变形,干涉条纹的改变与
流体密度的变化有关
干涉条纹 41
§5.5 流动显示技术的新发展——定量的流 动显示和测量技术
1. 激光诱导荧光(LIF)技术
激光诱导荧光技术:是一种20世纪80年代发展起来的光 致发光流动显示与测量技术,把某些物质(如碘、钠或 荧光染料等)溶解或混合于流体中,这些物质的分子在 特定波长的激光照射下能激发荧光。
照明光源:高亮度的白光碘钨灯
25
26
27
3. 荧光微丝法
采用直径为0.01 ~0.02mm的合成 纤维丝,经柔化 和抗静电处理, 使微丝染上荧光 物质,粘贴于模 型表面。
光源:采用连续 紫外光源
照相:选用合适 的滤光片
Flourescent minitufts on aircraft wing
在定常流动中,流线、迹线和染色线相同。
但在非定常流动中,是互不相同的。
4
3. 流动显示方法的分类
(1)示踪粒子流动显示:在透明无色的气流或水流中加
入一些可见的粒子,通过可见的外加粒子跟随流体微团的运 动来使各种流动现象显示出来。 固态示踪粒子:
水流(铝粉、有机玻璃粉末或聚苯乙烯小球等) 气流(烟颗粒) 液态示踪粒子:水流(牛奶、染料溶液) 气态示踪粒子:水流(氢气泡、空气泡)

生产测井第五章

生产测井第五章

第五章:生产测井解释原理(一) 专业术语持率(Y):是一种已知介质所占管内体积的百分数。

YL :持液率 Yo :持油率 Yg:持气率 Yw持水率其中持水率具体定义如下:它是指在某一定长度的管子内水流相的体积和该管段体积的百分比:Yw=Vw/V*100%含水率:是指单位时间内通过管子某一截面水流相的体积与全部流体体积的百分比。

kw=Qw/Q*100%在两相流中: Yw+Yg=1Yg+Yo=1Yo+Yw=1在三相流中:Yo+Yw+Yg=1相速度:描述多相流中多个相的平均速度中心速度:是管子中心处理想的流体速度(Vc),在层流中Vc=2V,在紊流中Vc=1.25V滑脱速度:是多相流中各相平均速度之间的差。

表观速度:主要是在多相流中用于描述没有滑脱速度影响的平均流体速度的术语。

门限速度:是流量计涡轮开始启动时最小流体速度。

视速度:是根据连续流量计计算出的管子中心流体的速度。

生产测井资料的定性分析(1)流量计测量井眼流体流速是定量解释产液剖面或吸水剖面的主要依据。

Atlas 的PLT组合仪和Sondex公司的流量计均为涡轮(spinner)流量计。

研究表明,涡轮的转速RPS与流体流速呈线性关系,且RPS与管子内径、流体黏度、流体密度有关。

一般采用井下刻度的方法求流体的流速,最精确的刻度方法用几组上、下测量数据进行刻度。

实际应用中要求至少四组上、下测流量响应RPS,电缆速度曲线。

因涡轮流量计测的是中心最大流速Vf,而流体流速V是平均速度,故根据流动流体的流态是层流、紊流,利用雷诺数校正系数换算。

考虑仪器结构的非对称性,还需作校正。

(2)测井曲线流量响应曲线主要显示量的概念,变化幅度大小,表明产出或吸入的多少。

2.流体识别测井流量识别测井主要识别井眼流体性质特征,测定各相持率,包括流体密度测井和流体持水率测井。

(1) 流体密度测井:Ⅰ.识别流体成份:油、气、水三相流体中,产层密度减小,表明产油、气,减小的幅度大,表明产轻烃;产层密度增加,表明产出水或重烃。

河流流量测验规范

河流流量测验规范

精心整理《河流流量测验规范》GB50179-93(摘录)第五章浮标法测流第一节一般规定第5.5.1条本规范规定的浮标法测流,包括水面浮标法、深水浮标法、浮杆法和五、深水浮标法和浮杆法测流适用于低流速的流量测验。

测流河段应设在无水草生长、无乱石突出、河底较平整、纵向底坡较均匀的顺直河段。

六、小浮标法测流,宜用于水深小于0.16m时的流量测验。

当小水深仅发生在测流断面内的部分区域时,可采用小浮标法和流速仪法联合测流。

七、风速过大,对浮标运行有严重影响时,不宜采用浮标法测流。

第5.1.2条采用浮标法测流的测站,浮标的制作材料、型式、入水深度等规格本站必须统一。

浮标系数应经过试验分析,不同的测流方案应使用各自相应的试验浮标系数。

当因故改用其他类型的浮标测速时,其浮标系数应另行试验分析。

第5.1.3条数的确定和选用,应符合下列规定.一、根据试验资料确定的浮标系数,应按本章第六节的规定进行校测。

校测的数。

1.0.85;2.3.大或水深较小者,宜取较小值。

四、当测验河段或测站控制发生重大改变时,应重新进行浮标系数试验,并采用新的浮标系数。

第5.1.4条对断面比较稳定和采用试验浮标系数的测站,均匀浮标法单次流量测验的允许误差,不应超过表5.1.4的规定。

均匀浮标法单次流量测验允许误差表5.1.4第六、检查和分析测流成果。

第二节水面浮标法第5.2.1条水面浮标的制作应符合下列规定:一、浮标入水部分,表面应较粗糙,不应成流线型。

浮标下面要加系重物,保持浮标在水中漂流稳定。

浮标的入水深度,不得大于水深的1/10。

浮标制作后宜放入水中试验。

二、浮标露出水面部分,应有易于识别的明显标志。

第5.2.2条采用水面浮标测流的测站,宜设置浮标投放设备。

浮标投放设备应由运行缆道和投放器构成,并应符合下列规定:一、投放浮标的运行缆道,其平面位置应设置在浮标上断面的上游一定距离处,第二、当采用浮标法和流速仪法联合测流时,浮标应投放至流速仪测流的边界以内,使两者测速区域相重叠。

第五章 流体力学

第五章 流体力学

称为伯努利方程。
伯努利方程对定常流动的流体中的任一流线也成立。
例题5-3
例题5-3:文丘里流量计。U形管中水银密度为ρ’,流量计中通 过的液体密度为ρ,其他数据如图所示。求流量。
取水平管道中心的流线。
1 2 1 2 由伯努利方程: p1 v1 p2 v 2 2 2
p 1 、 S1
得: p p e 0
gy p0
积分:

p p0
0 y dp g dy p p0 0
p0、ρ0
o
如: 0 1.293kg / m 3 , p0 1.013 10 5 Pa , y 8848 m ( 珠峰 )
得: p 0.33 p0 0.33 atm
例题5-1
1 1 2 2 动能增量:Ek V v 2 V v1 2 2
p1
v1 S1
势能增量: E p g( h2 h1 )V 外力作功:
A A'
h1
S2
v2
B
h2
B'
p2
W p1 S1l1 p2 S2 l 2 p1V p2 V
由功能原理:
θ z Δx py
Δz
x
当ΔV=0时: p y pl 无论流体时静止还是流动,以上结论都成立。
2、 静止流体中压强的分布:
(1) 静止流体中同一水平面上压强相等。 pA pA pB
A
ΔS B
pB
(2) 静止流体中高度相差h的两点间压强差为ρgh。
pB pA gh
(3) 帕斯卡原理: 密闭容器中的静止液体,当外
单位时间内,容器内水的减少等于从小孔流出的流量: 积分得:t

液压流体力学第五章流体动力学基础

液压流体力学第五章流体动力学基础
液压流体力学
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。

第五章__压力测量

第五章__压力测量

面便会产生高度差。根据液体静力学
原理可知: Δp=p1-p2=ρgh Nhomakorabea式中ρ为U形管内液体的密度。 当P2=B时,P1=B+ρgh 被测压力的大小。 h反映了
第五章 压力测量
二、单管压力计
由于U形管压力计需两次读取液面
高度,为使用方便,设计出一次 读取液面高度的单管压力计。 因 则

4 d 2 h2
第五章 压力测量 第五节 压力检测仪表的选择与校验
一、压力检测仪表的选择 1. 仪表量程的选择


被测压力较稳定:最大工作压力不应超过仪表满量程的3/4;
被测压力波动较大或测脉动压力:最大工作压力不应超过
仪表满量程的2/3;

为保证测量准确度:最小工作压力不应低于满量程的1/3; 优先满足最大工作压力条件。

活塞式:根据水压机液体传送压力的原理,将被测压力转换成活
塞面积上所加平衡砝码的质量。
第五章 压力测量 第二节 液柱式压力计

利用液柱对液柱底面产生的静压力与被测压力相平衡的原理, 通过液柱高度来反映被测压力的大小。

采用水银或水为工作液,用U形管或单管进行测量,常用于低
压、负压或压力差的检测。 被广泛用于实验室压力测量或现场锅炉烟、风道各段压力、通 风空调系统各段压力的测量。 优点:结构简单,使用方便,有相当高的准确度,在本专业中 应用很广泛。 缺点:量程受液柱高度的限制,体积大,玻璃管容易损坏及读 数不方便。
第五章 压力测量

结构简单,使用方便,价格低廉,使用范围广,
测量范围宽;

可测负压、微压、低压、中压和高压; 精度有0.5、1.0、1.5、2.5等。
第五章 压力测量 第四节 电气式压力计

【精品】第五章-明渠恒定均匀流---水力学课程主页

【精品】第五章-明渠恒定均匀流---水力学课程主页

第五章-明渠恒定均匀流---水力学课程主页第五章 明渠恒定均匀流第一节 概 述一.明渠水流1、明渠定义:人工渠道、天然河道、未充满水流的管道统称为明渠。

2、明渠水流是指在明渠中流动,具有显露在大气中的自由表面,水面上各点的压强都等于大气压强。

故明渠水流又称为无压流。

明渠水流的运动是在重力作用下形成的。

在流动过程中,自由水面不受固体边界的约束(这一点与管流不同),因此,在明渠中如有干扰出现,例如底坡的改变、断面尺寸的改变、粗糙系数的变化等,都会引起自由水面的位置随之升降,即水面随时空变化,这就导致了运动要素发生变化,使得明渠水流呈现出比较多的变化。

在一定流量下,由于上下游控制条件的不同,同一明渠中的水流可以形成各种不同形式的水面线。

正因为明渠水流的上边界不固定,故解决明渠水流的流动问题远比解决有压流复杂得多。

明渠水流可以是恒定流或非恒定流,也可以是均匀流或非均匀流,非均匀流也有急变流和渐变流之分。

本章首先学习恒定均匀流。

明渠恒定均匀流是一种典型的水流,其有关的理论知识是分析和研究明渠水流各种现象的基础,也是渠道断面设计的重要依据。

对明渠水流而言,当然也有层流和紊流之分,但绝大多数水流(渗流除外)为紊流,并且接近或属于紊流阻力平方区。

因此,本章及以后各章的讨论将只限于此种情况。

二、渠槽的断面形式(一)按横断面的形状分类渠道的横断面形状有很多种。

人工修建的明渠,为便于施工和管理,一般为规则断面,常见的有梯形断面、矩形断面、U 型断面等,具体的断面形式还与当地地形及筑渠材料有关。

天然河道 一般为无规则,不对称,分为主槽与滩地。

在今后的分析计算中,常用的是渠道的过水断面的几何要素,主要包括:过水断面面积A 、湿周χ、水力半径R 、水面宽度B 。

对梯形断面而言,其过水断面几何要素计算公式如下:2)()h m h mh b A +=+=β(h m m h b )12(1222++=++=βχχA R = h m mh b B )2(2+=+=β式中,b 为底宽;m 为边坡系数;h 为水深;β为宽深比,定义为h b =β(二)按横断面形状尺寸沿流程是否变化分类棱柱体明渠是指断面形状尺寸沿流程不变的长直明渠。

流体力学第五章习题答案

流体力学第五章习题答案

第五章习题答案选择题(单选题)5.1 速度v .长度l .重力加速度g 的无量纲集合是:(b )(a )lv g ;(b )v gl ;(c )l gv ;(d )2v gl。

5.2 速度v .密度ρ.压强p 的无量纲集合是:(d )(a )pv ρ;(b )v p ρ;(c )2pv ρ;(d )2p v ρ。

5.3 速度v .长度l .时间t 的无量纲集合是:(d )(a )v lt ;(b )t vl ;(c )2l vt ;(d )lvt。

5.4 压强差p .密度ρ.长度l .流量Q 的无量纲集合是:(d )(a )2Qpl ρ;(b )2lpQ ρ;(c )plQρ;(d 。

5.5 进行水力模型实验.要实现明渠水流的动力相似.应选的相似准则是:(b )(a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。

5.6 进行水力模型实验.要实现有压管流的动力相似.应选的相似准则是:(a )(a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。

5.7 雷诺数的物理意义表示:(c )(a )粘滞力与重力之比;(b )重力与惯性力之比;(c )惯性力与粘滞力之比;(d )压力与粘滞力之比。

5.8 明渠水流模型实验.长度比尺为4.模型流量应为原型流量的:(c )(a )1/2;(b )1/4;(c )1/8;(d )1/32。

5.9 压力输水管模型实验.长度比尺为8.模型水管的流量应为原型输水管流量的:(c )(a )1/2;(b )1/4;(c )1/8;(d )1/16。

5.10 假设自由落体的下落距离s 与落体的质量m 、重力加速度g 及下落时间t 有关.试用瑞利法导出自由落体下落距离的关系式。

解: ∵s Km g t αβγ=[]s L =;[]m M =;[]2g T L -=;[]t T =∴有量纲关系:2L M TL T αββγ-=可得:0α=;1β=;2γ= ∴2s Kgt =答:自由落体下落距离的关系式为2s Kgt =。

第五章 停留时间分布与反应器的流动模型 (1)

第五章 停留时间分布与反应器的流动模型 (1)

35
F (35) 0 E(t)dt
右边的积分值应等于图中带斜线的面积,其值为 0.523,此即t=35s时的停留时间分布函数值。
阶跃输入法
阶跃法的实质是将在系统中作定常流动的流体 切换 为流量相同的含有示踪剂的流体,或者相反。
前一种做法称为升阶法 (或称正阶跃法),后一种则叫 降阶法 (或称负阶跃法)。
返混对自催化反应等的影响
对于自催化反应,由于反应系统中需要一 定的产物浓度,因此一定程度的返混对反 应是有利的。有时候需要采用全混流反应 器 串联 活塞流反应器使用,就是出于此 目的。
返混的影响--对于某些复杂反应
对于某些复杂反应系统,如果反应组分在主 反应中的浓度级数低于其在副反应中的浓度 级数,降低反应物浓度,即存在一定的返混 则有利于反应选择性的提高。
一般情况下所说的停留时间分布是指流体粒子的寿命 分布
停留时间分布所适应的系统---------
闭式系统
一般所讨论的停留时间分布只 限于仅有一个进口和一个出口 的闭式系统。
所谓闭式系统,其基本假定是 流体粒子一旦进入系统再也不 返回到输入流体的导管中,而 由输出管流出的流体粒子也再 不返回到系统中。
流体系统的停留时间分布
对流体不能对单个分子考察其停留时间,而是对 一堆分子进行研究。这一堆分子所组成的流体, 称之为流体粒子或微团(微元)。
流体微元(物料粒子) :研究流体流动的最小单 元。
流体粒子的体积比起系统的体积小到可以忽略不 计,但其所包含的分子又足够多,具有确切的统 计平均性质。
流动体系的停留时间分布
流动系统 , 连续 流入 流出,-----比较复杂。 通常所说的停留时间---- 是指流体以进入系统时起,
到其离开系统时为止,在系统内总共经历的时间, 即流体从系统的进口至出口所耗费的时间。 同时进入系统的流体,是否也同时离开系统? 由于流体是连续的,而流体分子的运动又是无序的, 所有分子都遵循同一的途径向前移动是不可能的, 因此,流体微元的停留时间完全是一个随机过程。

水力学系统讲义课件第五章(1)-流动形态及水头损失

水力学系统讲义课件第五章(1)-流动形态及水头损失

1
v1≈0 进口
0 1
转弯 突扩
突缩 阀门
H
2 V0 Q
2
h w12 hf hj
过水断面的形状和尺寸对沿程水头损失的影响
A
A
A
A1
A2
Χ1
Χ2
Χ3
Χ4
Χ5
圆形
正方形
长方形
(a)
(b)
湿周:过水断面上被液体湿润的固体周界长度,
记为χ。
1 2 3
hf1 hf 2 hf 3
产生原因:液体的粘滞性和液体质点间的动量 交换而引起的。
1
v1≈0 进口
0 1
转弯 突扩
突缩 阀门
H
2 V0 Q
2
局部水头损失:在水流方向、断面形状和尺寸 改变以及障碍处产生,记为hj。
产生原因:局部地区产生漩涡。漩涡的产生及 维持,漩涡水体与主流之间的动量交换,漩涡 间的碰撞与摩擦均需消耗能量而引起水头损失。
形过水断面渠道的水 力半径为
b
矩形过水断面渠道的水力 半径,令m=0,则
R bh mh2 b 2h 1 m2
R bh b 2h
对于h/b<1/10的宽矩形过水断面渠道的水力半径
R h h 1 2 h b
§5-2 均匀流中沿程水头损失的计算 公式
圆管总流中取出长度为s的一段作为控制体,研 究其平衡。假设流动是恒定的均匀流,且液体 是不可压缩的。
实验结论
1.同一种液体在同一个管道中流动,当流速不 同时液体有两种不同的运动型态:
(1)层流:是指在流速较小时,液体质点作有 条不紊的直线运动,水流各层上的质点互不掺 混。 (2)紊流(湍流):是指在流速较大时,流层 逐渐不稳定,质点相互掺混,液体质点运动轨 迹极不规则的流动。

第五章 施工导流及水流控制1,松花江大顶子山航电枢纽工程(大型水电站)施工组织设计

第五章 施工导流及水流控制1,松花江大顶子山航电枢纽工程(大型水电站)施工组织设计

第五章施工导流及水流控制1 概述松花江大顶子山航电枢纽工程的二期截流主要是利用左侧28孔泄洪闸上、下游围堰,施工期导流由已建成的右岸10孔泄洪闸和船闸泄流。

二期下游围堰总长度为682.835m,其中连接左右岸两纵向围堰段长度为522.835m,右侧连接厂房尾水墙段长度为70m,左侧连接下游翼墙段长度为90m。

围堰主要工程量见下表。

注:其它工程量以现场实际发生量计。

2引用标准和规程规范(1)《防洪标准》GB50201—94;(2)《水利水电建设工程验收规程》SL223—1999;(3)《水利水电工程施工组织设计规范》SDJ338—89;(4)《水电站基本建设工程验收规程》SDJ275—88;(5)《内河通航标准》(GBJ139-90);(6)本章各专项施工技术涉及的其它章节引用的标准和规程规范。

3 施工布置施工布置分为施工供水、电系统布置及施工道路布置。

施工用水主要为施工机械用水,考虑取松花江水做为施工用水。

从坝顶公路桥桥头下游10kv供电点引接电源,采用10kv高压电缆通过坝顶公路桥引接到一期纵向围堰附近,通过变压器接至各施工部位。

填筑道路主要利用基坑内临时施工道路和1#施工道路。

4 施工程序根据大顶子山航电枢纽建设指挥部文件要求,在二期围堰截流施工时,可利用拆除一期右岸下游围堰、一期右岸连接围堰及一期基坑开挖粉细砂料进行围堰填筑施工。

采用单向进占法,在岛子及滩地围堰施工时,戗堤和围堰全断面进占,材料均采用粉细砂;进入河道后迎水面采用50cm厚泥岩防护,当泥岩防护不起作用时,采用戗堤进占,围堰滞后戗堤编织袋土填筑10~20m,戗堤填筑利用一期围堰拆除料或编织袋土进行填筑。

围堰粉细砂填筑分两期进行施工,先期进行115.00m高程以下部分的填筑(如围堰拆除料较多,应继续加高),待围堰闭气排水后,利用开挖基坑料再进行115.00~116.00m高程粉细砂填筑,汛期根据水位适当采用编织袋土对围堰加固加高,保证围堰汛期安全度汛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 热线温度高低变化,电阻值随之发生变化
• 气体流过发热体时,会带走部分热量,发热体降温 ;气流带走热量多少与风速大小有关系
• 可根据热线的电阻大小来确定气流速度值
2. 实际测量
v f (I , Rw )
• 热线阻值变化,电桥输出电压变化,气体流速可 确定;
• 电压变化与气体流速大小的关系在标准风洞中标 定。
R0[1 Tw Tf ] a ' aF
d
b Fd n1
b' vn
26
1
v
I
2
R0
1
Tw
T0
a,
(Tw
Tf
)
n
b, Tw Tf
1
v
I
2 R0
1
Tw Tf
Tf
T0
a,
(Tw
Tf
)
n
b, Tw Tf
27
四 热线风速仪的种类
1.恒温(恒电阻)式热线风速仪
气体速度变化
n
ln
U12
U
2 2
U
2 0
U
2 0
ln v1
v2
如果把温度效应加以分离,则可改写成:
U 2 (T2 T0 )( A Bvn )
其中,A、B与温度的关系很小。这个表示式通常作为自动 温度补偿分析的基础。
Davies和Patrik建议使用扩展了的KING公式:
U 2 A B v cv
这个表达公式的速度灵敏度非常接近动态校准所得到的结果。 后来又有人提出了分段拟合的表达公式:
用马赫数Ma表示可压缩气体流速:p*'、p'分别为动压管总压和静压的 读数;a为声速;ξ为动压管的校准系数
a kp
p* p*'
p p'
v 2( p*' p' ) (1 )
Ma v 2( p*' p) a k p(1 )
2. 结构型式
直角型(L形)皮托管 带半圆形头部的标准皮托管 带锥形头部的皮托管,高速气流测量,防头部发生脱体激波
热线温度变化
热线阻值变化
电桥电路失衡
输出电压变化
控制电阻值R变化
热线电流恢复
热线温度恢复
热线电阻恢复
电桥恢复平衡
R电阻变化量确定流速
2.恒流式型热线风速仪
气体速度变化
热线温度变化
热线阻值变化
桥臂电流变化
电桥电路失衡
控制电阻值Ra变化
桥臂电阻恢复
桥臂电流恢复
电桥恢复平衡
Ra电阻变化量确定流速
比较:
校准表达公式
对于接近大气压条件下大多数实用的情形,密度变化 的影响可以不考虑。于是对连续流动而言,通常用KING公 式表达如下:
U 2 A Bvn
式中,U为风速仪输出电压;A,B为依赖于热线尺 寸、流体物理性质和流动条件的常数;指数n在一定的速 度范围内恒定,在大范围内随速度而改变。
n的值可以用下式确定:
测静压正好等于皮托管放入前该点的静压值
• 其他影响因素
➢ 总压孔大小 ➢ 静压孔数量、形状 ➢ 探头与立杆的连接方式
• 保证测量准确度的方法
➢ 严格按标准制造皮托管、做试验 ➢ 标定
3. 测压管的标定
第二节 流动方向的测量
❖ 要求
能测出平面流动的方向和数值
❖ 测量原理
由三孔圆心组成的三角形,两侧孔为 方向孔,中间孔为总压孔,总压孔的 圆心在方向孔与总压孔的角平分线上 。把三孔测压管垂直插入均匀平行的 气流中,三孔都迎着气流方向,调整 方向孔1和3的压力,当孔1和孔3的压 力相等时,在三个孔决定的平面内, 过测压管截面的圆心和气流方向平行
恒流式受热线热惯性影响,流体运动变化 频率越高,测量灵敏度越低,且存在相位滞后 的缺点,故用得不多。
多。 恒温式的频率特性比恒流式好,用的比较
四. 热线风速仪的方向特性
1. 方向特性
对流放热系数K是流向角的函数.随着K减小, 热线风速仪的电桥输出电压降低.电桥输出电压 与气体流速、流向角的关系称为其方向特性
铂铹 铂铱 90-10 80-20 0.0016 0.0008 850 750
1000
典型可用直径 μm
5
电阻率
10-6Ωcm 5.5
热传导率 W/mK 178
0.5-1 10
10
10 18.4 32
69 50.1 25.5
1. 构造 探头:热线、热膜; 一元、二元、三元; 铂、钨、铂铹、铂铱
信号和数据处理系统
第五章 流速测量
学习要求 要求掌握常用的流速测量方法及相关
测量仪表(主要掌握皮托管测速、热线流 速仪、激光多普勒测速仪)的组成及测量 原理。
流速测量在热能动力机械工程中的意义
研究:进排气管、燃烧室内气流运动对工作过程的影响; 水泵叶轮内的水流运动规律 锅炉、换热器内流体运动规律 传热传质学研究,芯片散热问题
❖ 主要优点 • 几何尺寸较小,对气体流动干扰小,可测
量一般探针难以测量的地方; • 热惯性小,特别适合气流脉动(如叶栅后
的气流尾迹)测量。
一. 基本构造
材料 成分 电阻温度系数 最大可用温度 抗拉强度
单位 %
Ω/0C 0C
MPa
钨 100 0.0035 300 4200
铂 100 0.0036 800 246
监控:水文监测
流速测量方法
测压管
热线流速仪
激光测速
一维管道流理论 伯努里方程
热交换理论 热丝的温阻特性
激光技术 多普勒效应 计算机技术
PIV 粒子图像仪
激光技术 相关分析技术 计算机技术
第一节 测压管测速
发展过程
– 1732年 法国工程师 Henri Pitot 发现一段密封的直管迎着流动 的流体,可测出流体总压,减去静压能算出流速,发明了原始 的皮托管;
2. 对探头材料的要求
•电阻温度系数大;机械强度高;电阻率高;热传导率小; 最高可用温度高
二. 热线风速仪工作原理
1. 主要原理
通电探头在流体中的换热规律。忽略轴向导热、辐射换热,只考虑热丝( 膜)与流体的对流换热,有关系: 热丝(膜)电功率 = 对流换热量
• 恒定电流通过电阻丝(热线)时,热线发热
n
U 2 Ai Biv Civ2 Div3 i 1
这种分段拟合的校准表达公式给出了更好的近 似,特别是低速范围内与实际情况更为一致
校准装置:
• 从校准过程中可知,为了对一个具体的热线探头作出实用的校准曲线,就必须 事前产生已知的流动速度U,这样的装置称为校准装置。有了校准装置,就可以 对应于一个U的值,风速计上读出一个电压输出U,从而得到U-v曲线(校准曲 线),以供实验测量时使用。
k k 1
p
v2 2
k k 1
p*
*
v
2
k
k( 1
p*
*
p)
• 利用气体绝热过程的状态方程,可得
v
2
k
RT[(
p*
k 1
)k
1]
k 1 p
v
2
k
k
1
RT[1
(
p p*
)
k 1 k
]
• 考虑气体可压缩性对流速的影响,引入马赫数Ma可得
p*
p[1
k
1
Ma
2
]
k k 1
2
p* p v2 [1 1 Ma2 2 k Ma4 ...] v2 (1 )
P*
P静压力(静压)
P*总压力
笛形管测速的基本原理
p0
p
K
2
2
P0总压力 P静压力(静压)
流量较大,雷诺数较大时,边界层厚度较小 ,p可近似得到,误差工程上允许
对皮托管的要求:
尽可能保证总压孔和静压孔接收到的压力真正是被测点的 总压力和静压力。
• 静压孔N的位置对测量值的影响
➢ 皮托管头部绕流使后方实测静压力降低 ➢ 皮托管立杆滞流使前方实测静压升高 ➢ 存在一个开孔位置正好使上述两种影响互相抵消,使实
– 1943年 英国出台皮托管国家标准; – 1977年 ISO颁布关于用皮托管测速的国际标准 ISO3966—1977
由于测压管的主要测量对象为气体,故又称风速管。
测压管测速的特点 结构简单,价格低廉,制造使用方便; 在一定的流速范围内,测量精度高; 对来流方向不太敏感; 频率相应慢,只能测量稳定流动
• 校准装置的种类可以分两类,一类是直接速度传递装置;另一类是间接速度传 递装置。所谓直接速度传递装置是指流体不动,让探头按预定速度在流体运动 的原理构成的装置;典型的直接速度传递装置有:旋臂机,牵引机,旋转槽等 等。间接速度传递装置是指探头不动,让流体产生预定的流动速度。这类装置 的特点是流体速度由相对标准的流速工具(皮托管,激光风速仪)间接传递给 探头和风速计的。属于间接速度传递的校准装置有风洞,射流喷嘴等。
基于上述原因,对于每一个探头,为了获得其精 密的响应关系,必须随电子仪器和被测流场一起进行 校准。由于探头老化和环境污染等因素影响,校准应 该在测量的过程中反复进行。
校准一般要求在低紊流度,可变速的校准设备中 进行。如果紊流度过大,为了获得较精确的平均速度 与输出电压之间的关系,必须要有足够的积分时间, 紊流度过大还会有非线性误差,影响测量结果,从而 使校准曲线部分的偏离。
的方向,就是测压管的气动轴线 。
1、圆柱三孔复合测压管
三孔测速管是在圆 柱体的同一横截面的表 面上开有三个感压孔, 各自用传压管将压强引 至测压计上,测得三孔 的压强,即可测量。
三孔测速管探头上 的感压孔布置为: 两个方向孔在同一 平面内呈直角分布, 总压孔开设在两个 方向孔的角平分线 上。
相关文档
最新文档