2021年山东省高考数学总复习:三角函数及解三角形
2021高考数学6.1 三角函数的概念、同角三角函数的基本关系及诱导公式
三角函数与解三角形
高考第一轮复习 第一节 三角函数的概念、同角三角函
数的基本关系及诱导公式
1高考引航
2必备知识
3关键能力
高考引航
知识清单必备知识
答案
一条射线
图形正角负角零角
答案
x
y
sin 2α+cos 2α=1sin cos =tan α
cos αcos α
sin α-sin α
答案
答案基础训练解析C
C
答案
解析
1.2
题型归纳
题型一 任意角的三角函数
解析
关键能力
答案
答案解析A
D
题型二 扇形的弧长、面积公式的应用
解析
点拨:理清扇形的弧长与半径、弧度角的关系,熟记扇形的面积公式和周长公式.
解析
题型三 同角三角函数基本关系式的应用
解析
答案解析
D B
题型四 三角函数的诱导公式的应用
解析
解析
方法突破
方法一 数形结合思想在三角函数中的应用
解析
方法二 分类讨论思想在三角函数化简中的应用
角中含有变量n,因而需对n的奇偶进行分类讨论.利用诱导公式时,需将角
写成符合公式的某种形式,这就需要将角中的某一部分看作一个整体.
解析
谢谢观赏。
高中三角函数及解三角形知识点总结(高考复习)
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2
2021届高考数学一轮复习第五章三角函数解三角形第3节两角和与差的正弦余弦和正切公式含解析
第3节两角和与差的正弦、余弦和正切公式考试要求掌握两角和与差的正弦、余弦、正切公式.知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=错误!。
2.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β)。
(2)tan αtan β=1-错误!=错误!-1.3。
式子f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=错误! sin(α+φ)错误!或f(α)=错误!·cos(α-φ)错误!.特别地,sin α±cos α=错误!sin错误!.[常用结论与易错提醒]1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”. (1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等。
2。
运用公式时要注意审查公式成立的条件,要注意和、差角的相对性,要注意“1"的各种变通.如tan错误!=1,sin2α+cos2α=1等。
3。
在(0,π)范围内,sin α=错误!所对应的角α不是唯一的.4。
在三角求值时,常需要确定角的范围.诊断自测1。
判断下列说法的正误.(1)两角和与差的正弦、余弦公式中的角α,β是任意的。
()(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立。
()(3)在两角和、差的正切公式中,使两端分别有意义的角的范围不完全相同。
()(4)公式tan(α+β)=错误!可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立。
()解析(4)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+kπ,k∈Z.答案(1)√(2)√(3)√(4)×2.(2019·全国Ⅰ卷)tan 255°=()A.-2-错误!B.-2+错误!C.2-错误!D。
高考数学一轮总复习第四章三角函数与解三角形 3三角恒等变换第2课时三角恒等变换的综合应用课件
sin cos − cos sin = 0,即sin − = 0.因为B, ∈ 0, π ,所以 = .故
△ 为等腰三角形.故选B.
【点拨】利用三角恒等变换判断三角形的形状,主要是考虑三角形内角和为180∘ ,
结合诱导公式与和、差、倍角公式进行推断.
变式4 在△ 中,若sin − = sin ,则△ 是(
又sin =
10
= − ,所以cos
10
5
2 5
,所以cos =
.
5
5
− =
所以sin = sin [ − − ]
= sin cos − − cos sin −
=
5
3 10
×
5
10
π
4
−
2 5
×
5
所以 = .故选C.
−
10
10
=
2
.
2
3 10
.
10
= + − = − + 等.②变名,通过变换函数名称达到减少函数种类的
目的,其方法通常有“切化弦”“升幂与降幂”等.③变式,根据式子的结构特征进行变形,
使其更贴近某个公式或某个期待的目标,其方法通常有“常值代换”(如1 =
π
tan ,
4
1 = sin 2 + cos 2 )“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等.其中角
+ =
4
− .
5
3
5
于是sin = sin [ + − ] = sin + cos − cos( + )sin = ×
人教版高考总复习一轮数学精品课件 第五章 三角函数、解三角形-第二节 同角三角函数基本关系及诱导公式
故选C.
≠ .
(2)已知方程sin2 + 2sin cos − 2sin − 4cos = 0,则cos 2 − sin cos =
() B
4 3
3 4
A.− B. C.− D.
5 5
5 5
[解析]因为方程 + − − = ,
角
2π + ∈
π+
−
关于原点对称
______________
π
−
2
关于轴对称
_____________
π
+
2
图示
与角终边的关系
相同
______
角
π −
续表
角
2π + ∈
π+
图示
与角终边的关系
关于轴对称
关于直线 = 对称
−
三、诱导公式
组数
一
二
三
= ,即 = ,即 = .
因为 ∈ , ,所以 = , =
.故 − = −
C
=−
.故选C.
1
5
2或
(2)已知sin − cos = ,则tan =_____.
sin2 +cos2
=
2tan2 + 3tan − 1
=
2
tan + 1
=
sin +cos
[对点训练2](1)已知
sin −cos
高考数学一轮总复习三角函数解三角形第6节 函数y=sin(ωx+φ)的图象与性质及三角函数模型的应用
解析:由题图可知 T=
所以
||
- = (T 为 f(x)的最小正周期),即 T=π,
=π,即ω=±2,又ω>0,故 f(x)=2cos(2x+ ).
点( ,0)可看作“五点法”中的第二个点,故 2× + = ,得 =- ,
则 f(x)=2cos(2x-),所以 f()=2cos(2×-)=- .
t=+2kπ或 t= +2kπ,k∈Z,
由题图可知,ωx2+ -(ωx1+ )= -= ,
即ω(x2-x1)= ,所以ω=4.
因为 f( )=sin( + )=0,所以 + =2kπ,k∈Z,即 =- +2kπ,
[课程标准要求]
1.了解函数y=Asin(ωx+ )的物理意义,能画出y=Asin(ωx+ )
的图象,了解参数A,ω, 对函数图象变化的影响.2.会用三角函
数解决一些简单的实际问题,体会三角函数是描述周期变化现象的
重要函数模型.
积累·必备知识
回顾教材,夯实四基
1.y=Asin(ωx+ )的有关概念
√
D.0,,,,
解析:令x 依次等于 0,,π, ,2π,得 x 依次为 0,π,2π,3π,4π.
故选 C.
3.(必修第一册 P239 练习 T2 改编)为了得到函数 y=sin(x-)的图象,只要把
高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件
(1)证明: .
(2)若,,求 的周长.
解:(1)证明:因为 ,所以 .所以 .所以,即,所以 .(2)因为,所以由(1)得 .由余弦定理,得 ,则,所以 .故 ,所以.所以的周长为 .
考点二 判断三角形的形状
例3 对于 ,有如下命题:①若,则 为等腰三角形;②若,则 为直角三角形;③若,则 为钝角三角形.其中所有正确命题的序号是____.
A. B. C. D.
√
解:对于A,由正弦定理,有,原式仅当 时成立,故A错误.对于B,因为,故,原式仅当 时成立,故B错误.对于C,,由余弦定理 ,得,原式仅当 时成立,故C错误.对于D,由正弦定理,可得,即 ,故D正确.故选D.
2.在中,角,,的对边分别为,,,已知,, ,则角 ( )
第四章 三角函数与解三角形
4.6 正弦定理、余弦定理
掌握余弦定理、正弦定理,并能用它们解决简单的实际问题.
【教材梳理】
1.正弦定理、余弦定理 在中,若角,,所对的边分别是,,,为 外接圆的半径,则
类别
正弦定理
余弦定理
文字语言
在一个三角形中,各边和它所对角的_______的比相等
考点四 与三角形面积有关的问题
例5 (2023年全国甲卷)记的内角,,的对边分别为,,,已知
(1)求 ;
(2)若,求 的面积.
解:(1)因为 ,所以,解得 .(2)由正弦定理,可得 ,即 ,即 .因为,所以 .又 ,所以 .故的面积为 .
【点拨】三角形面积计算问题要选用恰当公式,其中 等公式比较常用,可以根据正弦定理和余弦定理进行边角互化.
A. B. C. D.
2021新高考第3章三角函数和解三角形 第7讲
图形
山两侧 求水平 距离
河两岸
需要测量的元 素
∠ACB=α AC=b BC=a
∠ACB=α ∠ABC=β
CB=a
返回导航
解法
用余弦定理 AB=
a2+b2-2abcos α 用正弦定理
AB=sinasiαn+αβ
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 文理合订
求 AB
图形
求水平 河对岸
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 文理合订
返回导航
题组二 走进教材
2.(必修5P14例5改编)(2019·宁夏银川一中月考)如图,设A,B两点在河的两 岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出
AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为( C)
术语名称
术语意义
仰角与 俯角
在目标视线与水平视线所 成的角中,目标视线在水平 视线上方的叫做仰角,目标 视线在水平视线下方的叫 做俯角
返回导航
图形表示
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 文理合订
术语名称
术语意义
从某点的指北方向线起按顺时针方 向到目标方向线之间的水平夹角叫 方位角 做方位角.方位角 α 的范围是 0°≤α<360°
A.mssininβα
B.sinmsαin+αβ
C.sinmsαin+ββ
D.sminsinα+αs+inββ
[解析]
∠ABC=π-(α+β),由正弦定理得sAinBβ=sin
AC ∠ABC
∴AB=sin [mπ-·sinαβ+β]=sinmsαin+ββ,故选 C.
高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理
,
= =c=csin C,
判断三角形形状的两种途径
[针对训练] (2020·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为
2
a,b,c,已知 cos (+A)+cos A=.
(1)求A;
2
(1)解:由已知得 sin A+cos A=,
2
即 cos A-cos A+=0,
sin B=2× = ,
2
由余弦定理 a =b +c -2bccos A,
2
2
得 2= +c -2× c· ,即 2c -2c-3=0,解得 c=
+
综上,b= ,c=
+
.
或 c=
-
(舍去).
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下
所以 sin B=
×
=
=
.
- = ,
(3)求sin(2A-B)的值.
解:(3)因为 cos A=- ,所以 <A<π,故 0<B< ,又 sin A=
2sin Acos A=2×
(-
,所以 c;
2.在△ABC中,已知a,b和A时,解的情况
项目
A为锐角
A为钝角或直角
图形
202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析
第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。
利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。
T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。
T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。
2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。
3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。
高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件
A.
5
π
6
3
5
− = ,则sin −
故选C.
=(
)
√
4
B.
5
解:依题意,知sin −
2π
3
2π
3
= sin[
3
C.−
5
π
π
− − ]
6
2
4
D.−
5
= −cos(
π
− )
6
= −cos
π
6
− =
3
− .
5
【巩固强化】
1
3
1.已知cos = ,且 为第四象限角,则sin =(
4
5
cos 2 = .则sin 2 = 2sin cos = −4cos2 = − .故选A.
(2)已知sin + cos =
A.−
3 5
,则tan
5
+
1
tan
B.
√
2
5
5
2
=(
C.−
)
4
5
5
4
D.
9
5
解:原式两边平方,得sin 2 + 2sin cos + cos 2 = .
A.−
√
1
2
1
2
B.
解:因为tan = −3,所以cos ≠
1
3
cos +sin
0.所以
cos −sin
)
C.−
1
3
1+ −3
1− −3
D.
=
1+tan
高考数学一轮总复习第四章三角函数与解三角形 3三角恒等变换第1课时简单的三角恒等变换课件
4
1
4
即cos cos + sin sin = .故cos − = .
故选C.
D.−
)
7
8
【点拨】和、差、倍角公式的综合应用,关键在于把握式子的结构特点,灵活应用
整体思想求解,尤其是对于含两个不相关联角的问题.
变式3(1) (2023年新课标Ⅰ卷)已知sin − =
5
π
(0, ),tan
2
2 =
C.
5
3
cos
,则tan
2−sin
=(
D.
)
15
3
cos
sin 2
2sin cos
cos
π
解:因为tan 2 =
,所以tan 2 =
=
=
.因为 ∈ (0, ),
2−sin
cos 2
1−2sin2
2−sin
2
2sin
1
cos 45∘ =
2
,D不符合.故选AC.
2
【点拨】和、差、倍角公式对使公式有意义的任意角都成立,使用中要注意观察角之
间的和、差、倍、互补、互余等关系.
变式1 【多选题】下列化简正确的是(
√
tan 48 +tan 72
C.
√1−tan 48 tan 72
A.cos 82∘ sin 52∘ − sin 82∘ cos 52∘ = −
tan 48∘ +tan 72∘
对于C,
1−tan 48∘ tan 72∘
1
sin
2
∘
15 cos 15 =
1
sin
4
高考数学复习专题训练—三角函数与解三角形解答题(含解析)
高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。
高考数学一轮总复习第四章三角函数与解三角形 4三角函数的图象与性质课件
( ×)
(2)常数函数 = 是周期函数,它没有最小正周期.
( √ )
(3) = sin 是偶函数. ( √ )
(4)已知 = sin + 1, ∈ ,则的最大值为 + 1.
(5) = tan 的对称中心是 π, 0 ∈ .
所以函数的定义域为[−4, −π] ∪ [0, π].故选D.
)
D.[−4, −π] ∪ [0, π]
√
(2)【多选题】下列函数中,最大值满足 ≥ 1的是(
A. = 2sin 2 − 1
√
)
B. = 2sin − cos
√
C. = −sin2 + 4sin − 3
D. = cos tan
(3)若是函数 的一个周期,则( ∈ 且 ≠ 0)也是 的周期.
(4)周期函数的定义域是无限集.
2.关于奇偶性的常用结论
π
2
(1) = sin + ≠ 0 ,则 为偶函数⇔ = + π ∈ .
(2) = sin + ≠ 0 ,则 为奇函数⇔ = π ∈ .
该函数的最小正周期为 =
2π
2
.
=π .
(3)由图象变换规则,知 = sin −
1
2
π
3
周期的一半,即 = × 2π = π .
π
3
的最小正周期是 = sin −
π
3
的最小正
【点拨】求三角函数周期的方法:①利用周期函数的定义.②利用公式
= sin + 和 = cos + 的最小正周期为
2021年3月新高考数学复习资料§5.4解三角形及其综合应用试题及参考答案
§5.4解三角形及其综合应用基础知识专题固本夯基【基础训练】考点一正弦定理和余弦定理1.在△ABC中,角A,B,C的对边分别为a,b,c,若sin A=3sin B,c=√5,且cos C=56,则a=() A.2√2 B.3 C.3√2 D.4【参考答案】B2.若△ABC的内角A,B,C所对的边分别为a,b,c,已知bsin 2A=asin B,且c=2b,则ab等于()A.32B.43C.√2D.√3【参考答案】D3.在△ABC中,三内角A,B,C的对边分别为a,b,c,且b2+c2-√3bc=a2,bc=√3a2,则角C的大小是()A.π6或2π3B.π3C.2π3D.π6【参考答案】A4.若△ABC的面积为√34(a2+c2-b2),且∠C为钝角,则∠B=;ca的取值范围是.【参考答案】π3;(2,+∞)5.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)·sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.【试题解析】(1)由已知,结合正弦定理,得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.又a2=b2+c2-2bccos A,所以bc=-2bccos A,即cos A=-12.由于A为三角形的内角,所以A=2π3.(2)已知2asin A=(2b+c)sin B+(2c+b)sin C,结合正弦定理,得2sin2A=(2sin B+sin C)sin B+(2sin C+sin B)sin C,即sin2A=sin2B+sin2C+sin Bsin C=sin22π3=34.又由sin B+sin C=1,得sin2B+sin2C+2sin Bsin C=1, 解得sin B=sin C=12,因为0<B<π,0<C<π,0<B+C<π,所以B =C =π6,所以△ABC 是等腰三角形.考点二 解三角形及其综合应用6.在△ABC 中,三边长分别为a,a+2,a+4,最小角的余弦值为1314,则这个三角形的面积为( )A.15√34B.154C.21√34D.35√34【参考答案】A7.如图所示,为了测量A,B 两处岛屿间的距离,小张以D 为观测点,测得A,B 分别在D 处的北偏西30°、北偏东30°方向,再往正东方向行驶40海里到C 处,测得B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A,B 两处岛屿间的距离为( )A.20√3 海里B.40√3 海里C.20(1+√3)海里D.40海里 【参考答案】B8.设锐角△ABC 的三个内角A,B,C 的对边分别为a,b,c,且c =1,A =2C,则△ABC 周长的取值范围为( ) A.(0,2+√2) B.(0,3+√3) C.(2+√2,3+√3) D.(2+√2,3+√3] 【参考答案】C9.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD = m.【参考答案】100√6综合篇知能转换【综合集训】考法一 利用正、余弦定理解三角形1.(2019湖南四校调研联考,10)△ABC 的内角A,B,C 的对边分别为a,b,c,且sinA sinB+sinC +ba+c=1,则C =( )A.π6B.π3C.2π3D.5π6【参考答案】B2.(2020届福建建瓯芝华中学高三暑假学习效果检测,7)△ABC 的内角A,B,C 的对边分别为a,b,c,若△ABC 的面积为a 2+b 2-c 24,则C=( )A.π2 B.π3 C.π4 D.π6【参考答案】C3.(2019上海金山二模,7)已知△ABC 中,tan A =14,tan B =35,AB =√17.求: (1)角C 的大小;(2)△ABC 中最短边的边长.【试题解析】(1)tan C =tan[π-(A+B)]=-tan(A+B)=-tanA+tanB1-tanAtanB =-14+351-14×35=-1,所以C =3π4.(2)因为tan A<tan B,所以最小角为A. 又因为tan A =14,所以sin A =√1717.又BC sinA =ABsinC, 所以BC =AB ·sinAsinC√17×√1717√22√2.故△ABC 中最短边的边长为√2.考法二 三角形形状的判断4.(2020届山东济宁二中10月月考,8)在△ABC 中,若sin A =2sin Bcos C,a 2=b 2+c 2-bc,则△ABC 的形状是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形 【参考答案】A5.(2018湖南师大附中12月月考,6)在△ABC 中,内角A,B,C 的对边分别是a,b,c,若bcosC ccosB =1+cos2C1+cos2B,则△ABC 的形状是( )A.等腰三角形B.直角三角形C.钝角三角形D.等腰三角形或直角三角形 【参考答案】D6.(2018江西南城一中期中,6)在△ABC 中,内角A,B,C 的对边分别为a,b,c,若tanA -tanB tanA+tanB =c -bc,则这个三角形必含有()A.90°的内角B.60°的内角C.45°的内角D.30°的内角 【参考答案】B考法三 与三角形的面积、范围有关的问题7.(2020届内蒙古杭锦后旗奋斗中学第一次月考,18)在△ABC 中,∠A =60°,c =37a. (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【试题解析】(1)在△ABC 中,因为∠A =60°,c =37a,所以由正弦定理得sin C =csinA a =37×√32=3√314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2cbcos A 得72=b 2+32-2b×3×12,得b =8或b =-5(舍).所以△ABC 的面积S =12bcsin A =12×8×3×√32=6√3.8.(2019江西临川一中12月月考,17)在△ABC 中,角A,B,C 的对边分别是a,b,c,且2csin B =3atan A. (1)求b 2+c 2a 2的值; (2)若a =2,求△ABC 的面积的最大值.【试题解析】(1)2csin B =3atan A ⇒2csin Bcos A =3asin A ⇒2bc ·cos A =3a 2,即2bc ·b 2+c 2-a 22bc=3a 2,∴b 2+c 2=4a 2, 则b 2+c 2a 2=4. (2)∵a =2,∴b 2+c 2=16,∴cos A =b 2+c 2-a 22bc =6bc. 又b 2+c 2≥2bc,即8≥bc,当且仅当b =c 时,取等号, ∴cos A ≥68=34. 由cos A =6bc 得bc =6cosA, 则A ∈(0,π2),∴S △ABC =12bcsin A =3tan A.∵1+tan 2A =1+sin 2A cos 2A =cos 2A+sin 2A cos 2A =1cos 2A, ∴tan A =√1cos 2A -1≤√169-1=√73, ∴S △ABC =3tan A ≤√7,故△ABC 的面积的最大值为√7.考法四 解三角形的实际应用9.(2018福建莆田月考,8)A 在塔底D 的正西面,在A 处测得塔顶C 的仰角为45°,B 在塔底D 的南偏东60°处,在塔顶C 处测得B 的俯角为30°,A 、B 间距84米,则塔高为( ) A.24米 B.12√5 米 C.12√7 米 D.36米 【参考答案】C10.(2018河北石家庄摸底考试,17)某学校的平面示意图如图中的五边形区域ABCDE,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB,BC,CD,DE,EA,BE 为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km. (1)求道路BE 的长度;(2)求生活区△ABE 的面积的最大值.【试题解析】(1)如图,连接BD,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CDcos ∠BCD =27100,∴BD =3√310(km).∵BC =CD,∠BCD =2π3,∴∠CBD =∠CDB =π-23π2=π6.又∠CDE =2π3,∴∠BDE =π2. ∴在Rt △BDE 中,BE =√BD 2+DE 2=(3√310)2(910)23√35km.故道路BE 的长度为3√35km. (2)设∠ABE =α,∵∠BAE =π3, ∴∠AEB =2π3-α. 在△ABE 中,AB sin ∠AEB =AE sin ∠ABE =BE sin ∠BAE =3√35sinπ3=65, ∴AB =65sin (2π3-α)km,AE =65sin α km. ∴S △ABE =12AB ·AEsin π3=9√325sin (2π3-α)sin α=9√325·[12sin (2α-π6)+14]km 2. ∵0<α<2π3, ∴-π6<2α-π6<7π6, ∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为9√325×(12+14)=27√3100, 故生活区△ABE 面积的最大值为27√3100km 2.【5年高考】考点一 正弦定理和余弦定理1.(2018课标Ⅱ,6,5分)在△ABC 中,cos C 2=√55,BC =1,AC =5,则AB =( )A.4√2B.√30C.√29D.2√5 【参考答案】A2.(2016天津,3,5分)在△ABC 中,若AB =√13,BC =3,∠C =120°,则AC =( )A.1B.2C.3D.4 【参考答案】A3.(2016课标Ⅲ,8,5分)在△ABC 中,B =π4,BC 边上的高等于13BC,则cos A =( )A.3√1010B.√1010C.-√1010D.-3√1010【参考答案】C4.(2017山东,9,5分)在△ABC 中,角A,B,C 的对边分别为a,b,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是( ) A.a =2b B.b =2a C.A =2B D.B =2A 【参考答案】A5.(2016课标Ⅱ,13,5分)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A =45,cos C =513,a =1,则b = . 【参考答案】21136.(2018浙江,13,6分)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a =√7,b =2,A =60°,则sin B = ,c = . 【参考答案】√217;37.(2019浙江,14,6分)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD = ,cos ∠ABD = . 【参考答案】12√25;7√2108.(2019课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c.设(sin B-sin C)2=sin 2A-sin Bsin C.(1)求A;(2)若√2a+b =2c,求sin C.【试题解析】本题主要考查学生对正弦定理、余弦定理以及三角恒等变换的掌握;考查了学生的运算求解能力;考查的核心素养是逻辑推理与数学运算.(1)由已知得sin 2B+sin 2C-sin 2A =sin Bsin C,故由正弦定理得b 2+c 2-a 2=bc.由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A<180°,所以A =60°.(2)由(1)知B =120°-C,由题设及正弦定理得√2sin A+sin(120°-C)=2sin C, 即√62+√32cos C+12sin C =2sin C,可得cos(C+60°)=-√22.由于0°<C<120°,所以sin(C+60°)=√22,故sin C =sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)·sin 60°=√6+√24.思路分析 (1)先借助正弦定理将角化为边,然后利用余弦定理求出角A 的余弦值,进而得出角A.(2)利用正弦定理将已知等式中的边化为角,利用三角恒等变换将原式化为含有角C 的正弦、余弦的等式,利用角度变换求出sin C. 9.(2018课标Ⅰ,17,12分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB; (2)若DC =2√2,求BC.【试题解析】(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB. 由题设知,5sin45°=2sin ∠ADB,所以sin ∠ADB =√25.由题设知,∠ADB<90°,所以cos ∠ADB =√1-225=√235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC =25+8-2×5×2√2×√25=25.所以BC =5.10.(2019天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c =2a,3csin B =4asin C. (1)求cos B 的值; (2)求sin (2B +π6)的值.【试题解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. (1)在△ABC 中,由b sinB =csinC ,得bsin C =csin B,又由3csin B =4asin C,得3bsin C =4asin C,即3b =4a. 又因为b+c =2a,得到b =43a,c =23a. 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =√1-cos 2B =√154,从而sin 2B =2sin Bcos B =-√158,cos 2B =cos 2B-sin 2B =-78,故sin (2B +π6)=sin 2Bcos π6+cos 2Bsin π6=-√158×√32-78×12=-3√5+716. 思路分析 (1)由已知边角关系:3csin B =4asin C 利用正弦定理,得三边比例关系,根据余弦定理即可求出cos B. (2)由(1)利用同角三角函数基本关系式,求出sin B,再由二倍角公式求出sin 2B 、cos 2B,代入两角和的正弦公式即可求出sin (2B +π6)的值.11.(2019北京,15,13分)在△ABC 中,a =3,b-c =2,cos B =-12. (1)求b,c 的值; (2)求sin(B-C)的值.【试题解析】本题主要考查正弦、余弦定理,同角三角函数的基本关系式,两角差的正弦公式等知识点,考查学生的运算能力. (1)由余弦定理b 2=a 2+c 2-2accos B,得b 2=32+c 2-2×3×c×(-12).因为b =c+2,所以(c+2)2=32+c 2-2×3×c×(-12).解得c =5.所以b =7. (2)由cos B =-12得sin B =√32.由正弦定理得sin C =c b sin B =5√314. 在△ABC 中,∠B 是钝角,所以∠C 为锐角. 所以cos C =√1-sin 2C =1114. 所以sin(B-C)=sin Bcos C-cos Bsin C =4√37. 12.(2019江苏,15,14分)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a =3c,b =√2,cos B =23,求c 的值; (2)若sinA a =cosB2b,求sin (B +π2)的值.【试题解析】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力. (1)因为a =3c,b =√2,cos B =23, 由余弦定理得cos B =a 2+c 2-b 22ac ,得23=(3c)2+c 2-(√2)22×3c×c, 即c 2=13.所以c =√33.(2)因为sinA a =cosB2b, 由a sinA =b sinB ,得cosB 2b =sinB b,所以cos B =2sin B.从而cos 2B =(2sin B)2,即cos 2B =4(1-cos 2B), 故cos 2B =45.因为sin B>0,所以cos B =2sin B>0,从而cos B =2√55. 因此sin (B +π2)=cos B =2√55. 考点二 解三角形及其综合应用13.(2019课标Ⅱ,15,5分)△ABC 的内角A,B,C 的对边分别为a,b,c.若b =6,a =2c,B =π3,则△ABC 的面积为 . 【参考答案】6√314.(2015课标Ⅰ,16,5分)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【参考答案】(√6-√2,√6+√2)15.(2017浙江,14,6分)已知△ABC,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD,则△BDC 的面积是 ,cos ∠BDC = . 【参考答案】√152;√10416.(2017课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA. (1)求sin Bsin C;(2)若6cos Bcos C =1,a =3,求△ABC 的周长.【试题解析】本题考查正弦定理、余弦定理以及三角恒等变换,考查学生利用三角形面积公式进行运算求解的能力.(1)由题设得12acsin B =a 23sinA ,即12csin B =a3sinA. 由正弦定理得12sin Csin B =sinA3sinA. 故sin Bsin C =23.(2)由题设及(1)得cos Bcos C-sin Bsin C =-12, 即cos(B+C)=-12.所以B+C =2π3,故A =π3. 由题设得12bcsin A =a 23sinA,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b+c)2-3bc =9,得b+c =√33. 故△ABC 的周长为3+√33.思路分析 (1)首先利用三角形的面积公式可得12acsin B =a 23sinA,然后利用正弦定理,把边转化成角的形式,即可得出sin Bsin C的值;(2)首先利用sin Bsin C 的值以及题目中给出的6cos Bcos C =1,结合两角和的余弦公式求出B+C,进而得出A,然后利用三角形的面积公式和a 的值求出bc 的值,最后利用余弦定理求出b+c 的值,进而得出△ABC 的周长. 17.(2016课标Ⅰ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c. (1)求C;(2)若c =√7,△ABC 的面积为3√32,求△ABC 的周长.【试题解析】(1)由已知及正弦定理得,2cos C(sin Acos B+sin Bcos A)=sin C,(2分) 2cos Csin(A+B)=sin C. 故2sin Ccos C =sin C.(4分) 可得cos C =12,所以C =π3.(6分) (2)由已知,得12absin C =3√32. 又C =π3,所以ab =6.(8分)由已知及余弦定理得,a 2+b 2-2abcos C =7.故a 2+b 2=13,从而(a+b)2=25.∴a+b =5.(10分)所以△ABC 的周长为5+√7.(12分)18.(2018北京,15,13分)在△ABC 中,a =7,b =8,cos B =-17. (1)求∠A; (2)求AC 边上的高.【试题解析】(1)在△ABC 中,因为cos B =-17,所以sin B =√1-cos 2B =4√37. 由正弦定理得sin A =asinB b =√32. 由题设知π2<∠B<π,所以0<∠A<π2.所以∠A =π3. (2)在△ABC 中,因为sin C =sin(A+B)=sin Acos B+cos Asin B =3√314, 所以AC 边上的高为asin C =7×3√314=3√32. 方法总结 处理解三角形相关的综合题目时,首先,要掌握正弦定理、余弦定理,其次,结合图形分析哪些边、角是已知的,哪些边、角是未知的,然后将方程转化为只含有边或角的方程,最后通过解方程求出边或角.19.(2018天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A =acos (B -π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A-B)的值.【试题解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力. (1)在△ABC 中, 由a sinA =b sinB,可得bsin A =asin B,又由bsin A =acos (B -π6),得asin B =acos (B -π6), 即sin B =cos (B -π6),可得tan B =√3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2accos B =7,故b =√7.由bsin A =acos (B -π6),可得sin A =√3√7.因为a<c,故cos A =√7.因此sin 2A =2sin Acos A =4√37,cos 2A =2cos 2A-1=17.所以,sin(2A-B)=sin 2Acos B-cos 2Asin B =4√37×12-17×√32=3√314. 解题关键 (1)利用正弦定理合理转化bsin A =acos (B -π6)是求解第(1)问的关键; (2)由余弦定理及已知条件求得sin A,利用a<c 确定cos A>0是求解第(2)问的关键.教师专用题组考点一 正弦定理和余弦定理1.(2015天津,13,5分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c =2,cos A =-14,则a 的值为 . 【参考答案】82.(2015广东,11,5分)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a =√3,sin B =12,C =π6,则b = . 【参考答案】13.(2015重庆,13,5分)在△ABC 中,B =120°,AB =√2,A 的角平分线AD =√3,则AC = . 【参考答案】√64.(2015北京,12,5分)在△ABC中,a=4,b=5,c=6,则sin2AsinC=. 【参考答案】15.(2016北京,15,13分)在△ABC中,a2+c2=b2+√2ac.(1)求∠B的大小;(2)求√2cos A+cos C的最大值.【试题解析】(1)由余弦定理及题设得cos B=a2+c2-b22ac =√2ac2ac=√22.又因为0<∠B<π,所以∠B=π4.(2)由(1)知∠A+∠C=3π4,∴∠C=3π4-∠A.∴√2cos A+cos C=√2cos A+cos(3π4-A)=√2cos A-√22cos A+√22sin A=√22cos A+√22sin A=cos(A-π4).因为0<∠A<3π4,所以当∠A=π4时,√2cos A+cos C取得最大值1.6.(2015安徽,16,12分)在△ABC中,∠A=3π4,AB=6,AC=3√2,点D在BC边上,AD=BD,求AD的长.【试题解析】设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bccos∠BAC=(3√2)2+62-2×3√2×6×cos3π4=18+36-(-36)=90,所以a=3√10.又由正弦定理得sin B=bsin∠BACa3√10√10 10,由题设知0<B<π4,所以cos B=√1-sin2B=√1-110=3√1010.在△ABD中,由正弦定理得AD=AB·sinBsin(π-2B)=6sinB2sinBcosB=3cosB=√10.7.(2015课标Ⅱ,17,12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sin∠Bsin∠C;(2)若AD=1,DC=√22,求BD和AC的长.【试题解析】(1)S△ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(2)因为S △ABD ∶S △ADC =BD∶DC,所以BD =√2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BDcos ∠ADB,AC 2=AD 2+DC 2-2AD ·DCcos ∠ADC. 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1)知AB =2AC,所以AC =1.8.(2011课标,17,12分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,acos C+√3asin C-b-c =0. (1)求A;(2)若a =2,△ABC 的面积为√3,求b,c.【试题解析】(1)由acos C+√3asin C-b-c =0及正弦定理得sin Acos C+√3sin Asin C-sin B-sin C =0. 因为B =π-A-C,所以√3sin Asin C-cos Asin C-sin C =0. 由于sin C ≠0,所以sin (A -π6)=12. 又0<A<π,故A =π3.(2)△ABC 的面积S =12bcsin A =√3,故bc =4.又a 2=b 2+c 2-2bccos A,故b 2+c 2=8.解得b =c =2.评析 本题考查了正、余弦定理和三角公式,考查了方程的思想.灵活运用正、余弦定理是求解关键.正确的转化是本题的难点.考点二 解三角形及其综合应用9.(2014课标Ⅱ,4,5分)钝角三角形ABC 的面积是12,AB =1,BC =√2,则AC =( ) A.5 B.√5 C.2 D.1 【参考答案】B10.(2014课标Ⅰ,16,5分)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,a =2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC 面积的最大值为 . 【参考答案】√311.(2011课标,16,5分)在△ABC 中,B =60°,AC =√3,则AB+2BC 的最大值为 . 【参考答案】2√712.(2017天津,15,13分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a =5,c =6,sin B =35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.【试题解析】本小题主要考查同角三角函数的基本关系,二倍角的正弦、余弦公式,两角和的正弦公式以及正弦定理、余弦定理等基础知识.考查运算求解能力.(1)在△ABC 中,因为a>b,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2accos B =13,所以b =√13.由正弦定理a sinA =b sinB,得sin A =asinB b =3√1313. 所以,b 的值为√13,sin A 的值为3√1313. (2)由(1)及a<c,得cos A =2√1313,所以sin 2A =2sin Acos A =1213,cos 2A =1-2sin 2A =-513.故sin (2A +π4)=sin 2Acos π4+cos 2Asin π4=7√226. 方法总结 1.利用正、余弦定理求边或角的步骤:(1)根据已知的边和角画出相应的图形,并在图中标出;(2)结合图形选择用正弦定理或余弦定理求解;(3)在运算和求解过程中注意三角恒等变换和三角形内角和定理的运用.2.解决三角函数及解三角形问题的满分策略:(1)认真审题,把握变形方向;(2)规范书写,合理选择公式;(3)计算准确,注意符号. 13.(2016浙江,16,14分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c =2acos B. (1)证明:A =2B;(2)若△ABC 的面积S =a 24,求角A 的大小.【试题解析】(1)由正弦定理得sin B+sin C =2sin Acos B, 故2sin Acos B =sin B+sin(A+B)=sin B+sin Acos B+cos Asin B, 于是sin B =sin(A-B). 由已知得cos B>0,则B ∈(0,π2). 又A ∈(0,π),故-π2<A-B<π. 所以,B =π-(A-B)或B =A-B, 因此A =π(舍去)或A =2B, 所以,A =2B.(2)由S =a 24得12absin C =a 24,故有sin Bsin C =12sin 2B =sin Bcos B, 因sin B ≠0,得sin C =cos B. 又B ∈(0,π2),C ∈(0,π),所以C =π2±B. 当B+C =π2时,A =π2;当C-B =π2时,A =π4. 综上,A =π2或A =π4.评析 本题主要考查三角函数及其变换、正弦定理和三角形面积公式等基础知识,同时考查运算求解能力. 14.(2016山东,16,12分)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知2(tan A+tan B)=tanA cosB +tanBcosA. (1)证明:a+b =2c; (2)求cos C 的最小值. 【试题解析】(1)由题意知2(sinA cosA +sinB cosB )=sinA cosAcosB +sinBcosAcosB, 化简得2(sin Acos B+sin Bcos A)=sin A+sin B, 即2sin(A+B)=sin A+sin B. 因为A+B+C =π,所以sin(A+B)=sin(π-C)=sin C. 从而sin A+sin B =2sin C. 由正弦定理得a+b =2c. (2)由(1)知c =a+b2, 所以cos C =a 2+b 2-c 22ab =a 2+b 2-(a+b 2)22ab=38(a b +b a )-14≥12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.评析 本题考查了三角恒等变换、正弦定理和余弦定理及基本不等式,综合性较强,重点考查了化归与转化的思想方法,属中档题. 15.(2015浙江,16,14分)在△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.【试题解析】(1)由b 2-a 2=12c 2及正弦定理得sin 2B-12=12sin 2C,所以-cos 2B =sin 2C.又由A =π4,即B+C =34π,得-cos 2B =sin 2C =2sin Ccos C, 解得tan C =2.(2)由tan C =2,C ∈(0,π)得sin C =2√55,cos C =√55. 又因为sin B =sin(A+C)=sin (π4+C), 所以sin B =3√1010. 由正弦定理得c =2√23b, 又因为A =π4,12bcsin A =3,所以bc =6√2,故b =3.评析 本题主要考查三角函数及三角恒等变换、正弦定理等基础知识,同时考查运算求解能力.16.(2015陕西,17,12分)△ABC 的内角A,B,C 所对的边分别为a,b,c.向量m =(a,√3b)与n =(cos A,sin B)平行. (1)求A;(2)若a =√7,b =2,求△ABC 的面积.【试题解析】(1)因为m ∥n ,所以asin B-√3bcos A =0, 由正弦定理,得sin Asin B-√3sin Bcos A =0, 又sin B ≠0,从而tan A =√3, 由于0<A<π,所以A =π3.(2)解法一:由a 2=b 2+c 2-2bccos A 及a =√7,b =2,A =π3,得7=4+c 2-2c,即c 2-2c-3=0,因为c>0,所以c =3. 故△ABC 的面积为12bcsin A =3√32. 解法二:由正弦定理,得√7sin π3=2sinB , 从而sin B =√217,又由a>b,知A>B,所以cos B =2√77.故sin C =sin(A+B)=sin (B +π3) =sin Bcos π3+cos Bsin π3=3√2114. 所以△ABC 的面积为12absin C =3√32. 17.(2015湖南,17,12分)设△ABC 的内角A,B,C 的对边分别为a,b,c,a =btan A,且B 为钝角. (1)证明:B-A =π2;(2)求sin A+sin C 的取值范围.【试题解析】(1)证明:由a =btan A 及正弦定理, 得sinA cosA =a b =sinAsinB, 所以sin B =cos A,即sin B =sin (π2+A). 又B 为钝角,因此π2+A ∈(π2,π),故B =π2+A,即B-A =π2. (2)由(1)知,C =π-(A+B)=π-(2A +π2)=π2-2A>0, 所以A ∈(0,π4).于是sin A+sin C =sin A+sin (π2-2A)=sin A+cos 2A =-2sin 2A+sin A+1=-2(sinA -14)2+98.因为0<A<π4,所以0<sin A<√22,因此√22<-2(sinA -14)2+98≤98.由此可知sin A+sin C 的取值范围是(√22,98].18.(2015四川,19,12分)如图,A,B,C,D 为平面四边形ABCD 的四个内角. (1)证明:tan A 2=1-cosAsinA; (2)若A+C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D 2的值.【试题解析】(1)证明:tan A 2=sin A2cos A 2=2sin 2A22sin A 2cosA 2=1-cosAsinA . (2)由A+C =180°,得C =180°-A,D =180°-B. 由(1),有tan A2+tan B 2+tan C 2+tan D 2=1-cosA sinA +1-cosB sinB +1-cos(180°-A)sin(180°-A)+1-cos(180°-B)sin(180°-B)=2sinA +2sinB.连接BD.在△ABD 中,有BD 2=AB 2+AD 2-2AB ·ADcos A, 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CDcos C, 所以AB 2+AD 2-2AB ·ADcos A =BC 2+CD 2+2BC ·CDcos A.则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD+BC ·CD)=62+52-32-422×(6×5+3×4)=37.于是sin A =√1-cos 2A =√1-(37)2=2√107. 连接AC.同理可得 cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC+AD ·CD)=62+32-52-422×(6×3+5×4)=119,于是sin B =√1-cos 2B =√1-(119)2=6√1019. 所以,tan A2+tan B 2+tan C 2+tan D 2=2sinA +2sinB 2√10+6√104√103. 评析 本题主要考查二倍角公式、诱导公式、余弦定理、简单的三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化等数学思想.19.(2013课标Ⅰ,17,12分)如图,在△ABC 中,∠ABC =90°,AB =√3,BC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求PA;(2)若∠APB =150°,求tan ∠PBA.【试题解析】(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×√3×12cos 30°=74.故PA =√72.(2)设∠PBA =α,由已知得∠PAB =30°-α,PB =sin α. 在△PBA 中,由正弦定理得√3sin150°=sinαsin(30°-α),化简得√3cos α=4sin α.所以tan α=√34,即tan ∠PBA =√34.思路分析 (1)由已知求出∠PBA,在△PAB 中利用余弦定理求解PA;(2)设∠PBA =α,则∠PAB =30°-α,在Rt △PBC 中求得PB =sin α,然后在△PBA 中利用正弦定理求得tan α.20.(2013课标Ⅱ,17,12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a =bcos C+csin B. (1)求B;(2)若b =2,求△ABC 面积的最大值.【试题解析】(1)由已知及正弦定理得sin A =sin Bcos C+sin C ·sin B.① 又A =π-(B+C),故sin A =sin(B+C)=sin Bcos C+cos Bsin C.② 由①②和C ∈(0,π)得sin B =cos B. 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12acsin B =√24ac.由已知及余弦定理得4=a 2+c 2-2accos π4.又a 2+c 2≥2ac,故ac ≤2-√2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为√2+1.方法总结 求三角形面积的最值时,常利用基本不等式求两边之积的最值,从而确定面积的最值.【三年模拟】一、单项选择题(每题5分,共35分)1.(2019北京朝阳综合练习,4)在△ABC 中,B =π6,c =4,cos C =√53,则b =( )A.3√3B.3C.32D.43【参考答案】B2.(2020届黑龙江双鸭山一中开学考,3)在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.35D.1 【参考答案】B3.(2019上海嘉定(长宁)二模,16)对于△ABC,若存在△A 1B 1C 1,满足cosA sin A 1=cosB sin B 1=cosCsin C 1=1,则称△ABC 为“V 类三角形”.“V 类三角形”一定满足( )A.有一个内角为30°B.有一个内角为45°C.有一个内角为60°D.有一个内角为75° 【参考答案】B4.(2018河北衡水中学4月模拟,11)已知△ABC 的内角A,B,C 的对边分别为a,b,c,且acos B+√3asin B =b+c,b =1,点D 是△ABC 的重心,且AD =√73,则△ABC 的外接圆的半径为( )A.1B.2C.3D.4 【参考答案】A5.(2018山东济宁二模,12)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,且acos B-bcos A =23c,则tan(A-B)的最大值为( )A.2√55B.√55C.√33D.√3【参考答案】A6.(2019河南六市3月联考,10)在△ABC 中,A,B,C 的对边分别为a,b,c,若2a -c b =cosCcosB,b =4,则△ABC 的面积的最大值为( )A.4√3B.2√3C.3√3D.√3 【参考答案】A7.(2019湘东六校3月联考,5)若△ABC 的三个内角满足6sin A =4sin B =3sin C,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能 【参考答案】C二、多项选择题(每题5分,共10分)8.(改编题)在△ABC 中,角A,B,C 所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是( ) A.sin A∶sin B∶sin C =4∶5∶6 B.△ABC 是钝角三角形C.△ABC 的最大内角是最小内角的2倍D.若c =6,则△ABC 外接圆的半径为8√77【参考答案】ACD9.(改编题)在△ABC 中,根据下列条件解三角形,其中有两解的是( ) A.b =10,A =45°,C =70° B.b =45,c =48,B =60° C.a =14,b =16,A =45° D.a =7,b =5,A =80° 【参考答案】BC三、填空题(每题5分,共10分)10.(2019安徽合肥二模,15)在锐角△ABC 中,BC =2,sin B+sin C =2sin A,则中线AD 的长的取值范围是 . 【参考答案】[√3,√132)11.(2020届黑龙江双鸭山一中开学考,15)已知A 船在灯塔C 的北偏东85°方向且A 到C 的距离为2 km,B 船在灯塔C 的北偏西65°方向且B 到C 的距离为√3 km,则A,B 两船的距离为 . 【参考答案】√13 km四、解答题(共60分)12.(2020届山东夏季高考模拟,18)在△ABC 中,∠A =90°,点D 在BC 边上.在平面ABC 内,过D 作DF ⊥BC 且DF =AC. (1)若D 为BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC; (2)若∠ABC =45°,且BD =3CD,求cos ∠CFB. 【试题解析】(1)因为CD =BD,所以CD =12BC. 由题设知DF =AC,12CD ·DF =12AB ·AC, 因此CD =AB.所以AB =12BC,因此∠ABC =60°. (2)不妨设AB =1,由题设知BC =√2. 由BD =3CD 得BD =3√24,CD =√24. 由勾股定理得CF =3√24,BF =√344. 由余弦定理得cos ∠CFB =98+178-2×3√24×√3445√1751. 13.(2020届山东济宁二中10月月考,19)在△ABC 中,a,b,c 分别是角A,B,C 的对边,已知cos 2A-3cos(B+C)=1. (1)求角A 的大小;(2)若a =√21,b+c =9,求△ABC 的面积.【试题解析】(1)在△ABC 中,cos(B+C)=cos(π-A)=-cos A, 则由cos 2A-3cos(B+C)=1,得2cos 2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0, 解得cos A =12或cos A =-2(舍去).∵0<A<π,∴A =π3.(2)由余弦定理,得a 2=b 2+c 2-2bccos π3,∵a =√21,b+c =9,∴21=b 2+c 2-bc =(b+c)2-3bc,即21=81-3bc, 解得bc =20.∴S △ABC =12bcsin A =12×20×√32=5√3.14.(2019上海浦东二模,18)已知向量m =(2sin ωx ,cos 2ωx),n =(√3cos ωx,1),其中ω>0,若函数f(x)=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f(B)=-2,BC =√3,sin B =√3sin A,求BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值. 【试题解析】(1)f(x)=m ·n =√3sin 2ωx+cos 2ωx =2sin (2ωx +π6),∵f(x)的最小正周期为π,∴T =2π2ω=π,∴ω=1. (2)设△ABC 中角A,B,C 所对的边分别是a,b,c. ∵f(B)=-2,∴2sin (2B +π6)=-2, 即sin (2B +π6)=-1,解得B =2π3. ∵BC =√3,∴a =√3,∵sin B =√3sin A, ∴b =√3a,∴b =3,由3sin 2π3=√3sinA 得sin A =12,∵0<A<π3,∴A =π6,则C =π6,∴a =c =√3, ∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =cacos B =-32. 15.(2020届湖南长沙一中第一次月考,17)已知△ABC 的内角A,B,C 的对边分别为a,b,c,满足cosA cosB +a b =2cb且b =4.(1)求角B;(2)求△ABC 周长的最大值. 【试题解析】(1)由cosA cosB +a b =2c b 及正弦定理,得cosAsinB+cosBsinA cosBsinB =2sinCsinB, 即sin(A+B)cosBsinB =2sinCsinB,∵sin(A+B)=sin C ≠0,sin B ≠0,∴cos B =12, ∵B∈(0,π),∴B =π3.(2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2accos B =a 2+c 2-ac =16.∴(a+c)2=16+3ac ≤16+3(a+c 2)2. 即a+c ≤8,当且仅当a =c 时取等号. ∴△ABC 的周长=a+b+c ≤12,∴△ABC 周长的最大值为12.16.(2020届黑龙江哈师大附中9月月考,20)已知△ABC 的内角A,B,C 的对边分别为a,b,c,asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【试题解析】(1)由asinA+C2=bsin A 及正弦定理可得sin Acos B 2=sin Bsin A,∵sin A ≠0,∴cos B 2=sin B =2sin B 2cos B 2⇒sin B 2=12(0<B<π), ∴B =π3.(2)解法一:由a sinA =c sinC得a =c sinC sin (2π3-C), ∴S △ABC =12a√32=√34(√32tanC+12)=38·1tanC +√38, 由△ABC 为锐角三角形可得{0<C <π2,0<2π3-C <π2⇒π6<C<π2⇒0<1tanC <√3, 所以△ABC 面积的取值范围为(√38,√32).解法二:由余弦定理得b =√a 2-a +1, 由题意得{a 2+1>b 2,a 2+b 2>1,b 2+1>a 2⇒12<a<2.则S =12a√32=√34a ∈(√38,√32). 即△ABC 面积的取值范围为(√38,√32).应用专题知行合一【应用集训】1.(2020届湖南长沙一中第一次月考,15)秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积”.如果把以上这段文字写成公式就是S =√14[a 2c 2-(a 2+c 2-b 22)2],其中a,b,c 是△ABC 的内角A,B,C 的对边.若sin C =2sin Acos B,且b 2,2,c 2成等差数列,则△ABC 面积S 的最大值为 . 【参考答案】2√552.(2020届宁夏银川第一次月考,18)如图,在平面直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2).将角α的终边按逆时针方向旋转π3,交单位圆于点B.记A(x 1,y 1),B(x 2,y 2). (1)若x 1=14,求x 2;(2)分别过A,B 作x 轴的垂线,垂足依次为C,D.设△AOC 的面积为S 1,△BOD 的面积为S 2若S 1=2S 2,求角α的值.21【试题解析】(1)由三角函数的定义,得x 1=cos α,x 2=cos (α+π3),因为α∈(π6,π2),cos α=14,则sin α=√1-cos 2α=√1-(14)2=√154.∴x 2=cos (α+π3)=12cos α-√32sin α=12 ×14-√32×√154=1-3√58.(2)由已知,得y 1=sin α,y 2=sin (α+π3),∴S 1=12x 1·y 1=12cos α·sin α=14sin 2α,S 2=12|x 2|·|y 2|=12[-cos (α+π3)·sin (α+π3)]=-14sin (2α+2π3).由S 1=2S 2,得sin 2α=-2sin (2α+2π3)⇒cos 2α=0.又α∈(π6,π2),∴2α∈(π3,π),∴2α=π2⇒α=π4.。
山东专用2021新高考数学一轮复习第三章三角函数解三角形课时作业24函数y=Asinωx+φ的图象
课时作业24函数y =A sin(ωx +φ)的图象及三角函数模型的应用一、选择题1.若函数y =sin2x 的图象向左平移π4个单位长度后得到y =f (x )的图象,则( C )A .f (x )=-cos2xB .f (x )=sin2xC .f (x )=cos2xD .f (x )=-sin2x解析:函数y =sin2x 的图象向左平移π4个单位长度后得到y =sin2⎝⎛⎭⎫x +π4的图象,所以f (x )=cos2x .2.要得到函数y =3sin ⎝⎛⎭⎫x -π12的图象,只需将函数y =3sin ⎝⎛⎭⎫2x -π3图象上所有点的横坐标( A )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度B .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移π4个单位长度C .缩短为原来的12(纵坐标不变),再将得到的图象向左平移5π24个单位长度D .缩短为原来的12(纵坐标不变),再将得到的图象向右平移5π24个单位长度解析:将函数y =3sin ⎝⎛⎭⎫2x -π3图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =3sin ⎝⎛⎭⎫12×2x -π3=3sin ⎝⎛⎭⎫x -π3的图象, 再将得到的图象向左平移π4个单位长度,得到y =3sin ⎝⎛⎭⎫x -π3+π4=3sin ⎝⎛⎭⎫x -π12的图象.故选A . 3.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( D )A .f (x )=2sin ⎝⎛⎭⎫12x +π6B .f (x )=2sin ⎝⎛⎭⎫12x -π6 C .f (x )=2sin ⎝⎛⎭⎫2x -π6 D .f (x )=2sin ⎝⎛⎭⎫2x +π6 解析:由函数的图象得A =2,T =4×⎝⎛⎭⎫5π12-π6=π, ∴2πω=π,∴ω=2,∴f (x )=2sin(2x +φ). ∵f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=2,∴sin ⎝⎛⎭⎫π3+φ=1, 则π3+φ=π2+2k π,k ∈Z ,∴φ=2k π+π6,k ∈Z . ∵|φ|<π2,∴φ=π6,则函数f (x )=2sin ⎝⎛⎭⎫2x +π6.故选D . 4.将函数f (x )=sin x 的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )的单调递增区间为( C )A .⎣⎡⎦⎤2k π-π12,2k π+5π12(k ∈Z ) B .⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ) C .⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) D .⎣⎡⎦⎤k π-π6,k π+5π6(k ∈Z ) 解析:将函数f (x )=sin x 的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),可得y =sin2x 的图象,再将所得图象向右平移π6个单位长度,得到函数g (x )=sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3的图象.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,可得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数g (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z .故选C . 5.为了得到函数y =sin2x 的图象,可以将y =cos ⎝⎛⎭⎫2x -π6的图象( A ) A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:y =cos ⎝⎛⎭⎫2x -π6=sin ⎝⎛⎭⎫2x +π3,将函数y =sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度后得函数y =sin2x 的图象,故选A .6.将函数y =sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度,则所得图象的对称轴方程可以为( B )A .x =-π6B .x =π4C .x =π3D .x =π2解析:由题意知,函数y =sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度后函数解析式变为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin2x ,由2x =π2+k π(k ∈Z ),平移后的图象的对称轴方程为x =π4+k π2(k ∈Z ),令k =0,则对称轴方程为x =π4.故选B .7.已知函数f (x )=12sin x +32cos x ,将函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( A )A .π6B .π4C .π3D .π2解析:由题知f (x )=sin ⎝⎛⎭⎫x +π3,将其图象向左平移m 个单位长度后得到函数g (x )=sin ⎝⎛⎭⎫x +m +π3的图象, ∵函数g (x )的图象关于y 轴对称, ∴m +π3=k π+π2(k ∈Z ),∴m =k π+π6(k ∈Z ),∵m >0,∴m 的最小值为π6,故选A .8.(多选题)已知函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=0,且f (x )在(0,π)上单调.下列说法正确的是( AC )A .ω=23B .f ⎝⎛⎭⎫-π8=6-22C .函数f (x )在⎣⎡⎦⎤-π,-π2上单调递增 D .函数y =f (x )的图象关于点⎝⎛⎭⎫3π4,0对称解析:由五点法作图知,⎝⎛⎭⎫π2,0为五点法中的第二个零点,则πω2+φ=π ①.又根据正弦函数的图象及已知条件知⎝⎛⎭⎫π8,2为靠近第二个零点的点,所以πω8+φ=3π4 ②.由①②解得ω=23,φ=2π3,所以f (x )=2sin ⎝⎛⎭⎫23x +2π3,所以f ⎝⎛⎭⎫-π8=6+22,故A 正确,B 不正确;由-π2+2k π≤23x +2π3≤π2+2k π(k ∈Z ),得-7π4+3k π≤x ≤-π4+3k π(k ∈Z ),所以函数f (x )在⎣⎡⎦⎤-π,-π2上单调递增,故C 正确;因为f ⎝⎛⎭⎫3π4=-1≠0,所以函数y =f (x )的图象不关于点⎝⎛⎭⎫3π4,0对称,故D 错误,故选AC .二、填空题9.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫7π6的值为1.解析:设f (x )的最小正周期为T ,根据题中图象可知,T 2=π2,∴T =π,故ω=2,根据2sin ⎝⎛⎭⎫2×π12+φ=0(增区间上的零点)可知,π6+φ=2k π,k ∈Z ,即φ=2k π-π6,k ∈Z ,又|φ|<π2,故φ=-π6.∴f (x )=2sin ⎝⎛⎭⎫2x -π6,∴f ⎝⎛⎭⎫7π6=2sin ⎝⎛⎭⎫14π6-π6=2sin π6=1. 10. (多填题)如图所示,弹簧挂着一个小球做上下运动,小球在t 秒时相对于平衡位置的高度h (厘米)由如下关系确定:h =2sin t +2cos t ,t ∈[0,+∞),则小球在开始运动(即t =0)时h 的值为2,小球运动过程中最大的高度差为4厘米.解析:由题可得h =2sin t +2cos t =2⎝⎛⎭⎫22sin t +22cos t =2sin ⎝⎛⎭⎫t +π4,令t =0, 可得h = 2.由振幅为2,可得小球运动过程中最大的高度差为4厘米.11.函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象如图所示,则f (1)+f (2)+f (3)+…+f (18)的值等于2+2.解析:由题图知A =2,T2=6-2=4,∴T =8,则ω=2π8=π4.∴f (x )=2sin ⎝⎛⎭⎫π4x +φ. 又∵函数图象过点(2,2),∴2sin ⎝⎛⎭⎫π4×2+φ=2, ∴π2+φ=π2+2k π(k ∈Z ),则φ=2k π(k ∈Z ), ∴f (x )=2sin π4x .∵f (1)+f (2)+f (3)+f (4)+f (5)+f (6)+f (7)+f (8)=0,∴f (1)+f (2)+f (3)+…+f (18)=2f (1)+2f (2)+…+2f (8)+f (1)+f (2)=f (1)+f (2)=2+2.12.将函数f (x )=a sin x +b cos x (a ,b ∈R 且a ≠0)的图象向左平移π6个单位长度后,得到一个偶函数图象,则ba= 3.解析:解法1:将f (x )=a sin x +b cos x (a ,b ∈R 且a ≠0)的图象向左平移π6个单位长度后,得到函数f ⎝⎛⎭⎫x +π6=a sin ⎝⎛⎭⎫x +π6+b cos ⎝⎛⎭⎫x +π6的图象.f ⎝⎛⎭⎫x +π6=a sin ⎝⎛⎭⎫x +π6+b cos ⎝⎛⎭⎫x +π6=a 2+b 2sin ⎝⎛⎭⎫x +π6+φ,其中tan φ=ba,因为y =a 2+b 2sin ⎝⎛⎭⎫x +π6+φ为偶函数,所以π6+φ=π2+k π(k ∈Z ),所以φ=π3+k π(k ∈Z ),所以ba=tan φ= 3. 解法2:因为将f (x )=a sin x +b cos x (a ,b ∈R 且a ≠0)的图象向左平移π6个单位长度后,得到一个偶函数图象,所以函数f (x )=a sin x +b cos x 图象的一条对称轴为直线x =π6,所以f ⎝⎛⎭⎫π3=f (0),所以a sin π3+b cos π3=b ,因为a ≠0,所以ba= 3.三、解答题13.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.解:(1)依题意得A =5,周期T =4⎝⎛⎭⎫π3-π12=π, ∴ω=2ππ=2.故f (x )=5sin(2x +φ),又图象过点P ⎝⎛⎭⎫π12,0,∴5sin ⎝⎛⎭⎫π6+φ=0, 由已知可得π6+φ=k π,k ∈Z ,∵|φ|<π2,∴φ=-π6,∴f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 14.设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3,且f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值. 解:(1)因为f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx =3sin ⎝⎛⎭⎫ωx -π3.因为f ⎝⎛⎭⎫π6=0,所以ωπ6-π3=k π,k ∈Z . 故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2. (2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3, 所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.15.将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移π4个单位长度,所得图象对应的函数在区间[-m ,m ]上单调递增,则m 的最大值为( A )A .π8B .π4C .3π8D .π2解析:函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移π4个单位长度后,所得图象对应的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4-π4=cos ⎝⎛⎭⎫2x -π4,由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),所以当k =0时函数的一个单调递增区间是⎣⎡⎦⎤-3π8,π8,所以m 的最大值为π8.故选A . 16.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,点⎝⎛⎭⎫0,-32,⎝⎛⎭⎫π3,0,⎝⎛⎭⎫7π3,0在图象上,若x 1,x 2∈⎝⎛⎭⎫π3,7π3,x 1≠x 2,且f (x 1)=f (x 2),则f (x 1+x 2)=-32.解析:由题图可知函数f (x )的最小正周期T =2×⎝⎛⎭⎫7π3-π3=4π,所以ω=12,又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数f (x )的图象上,所以⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,又A >0,|φ|<π2,所以φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6.由x 1,x 2∈⎝⎛⎭⎫π3,7π3,x 1≠x 2,f (x 1)=f (x 2),根据图象的对称性知x 1+x 2=π3+7π3=8π3,所以f (x 1+x 2)=f ⎝⎛⎭⎫8π3=3sin 7π6=-32.。
2021年高考数学:3三角函数、解三角形
三角函数、解三角形[学生用书P84] 年份卷别具体考查内容及命题位置2016
甲卷
已知三角函数图象求解析式·T3
利用诱导公式、二倍角公式求最值·T11
利用正弦定理解三角形·T15
乙卷
利用余弦定理解三角形·T4
三角函数的图象变换与性质·T6
同角三角函数的关系、诱导公式·T14
丙卷
三角恒等变换求值问题·T6
解三角形、三角形的面积公式·T9
三角函数的图象变换·T14
2015
Ⅰ卷
三角函数的图象与性质·T8
正、余弦定理及三角形的面积公式·T17
Ⅱ卷正弦定理及三角形的内角和定理·T17
2014
Ⅰ卷
三角函数的符号·T2
三角函数的周期·T7
三角形中的测量问题(解三角形)、正弦定理·T16
Ⅱ卷
两角和与差的正弦公式、正弦函数的最值·T14
余弦定理、三角形的面积公式·T17
,
,
,
[命题分析]
1.高考对此部分内容考查重点仍是三角函数的定义、图象与性质、求值与解三角形.三角函数的图象与性质的考查中,以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量或不等式内容交汇.
2.高考对此部分的考查一般以“二小”或“一大”的命题形式出现,小题一般出现在第4~11或14~16题位置上,而解答题一般出现在第17题位置上.
题示参数真题呈现考题溯源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=sin(是﹣1,所以a=0,
所以f(x)=sin(2x ).
令2x kπ,k∈Z,解得x ,k∈Z,
故f(x)的对称中心为( ,0),k∈Z,
(2)由题意可得g(x)=sin[4(x ) ]=sin4x,
若 ,即sin4x ,则2kπ 4x≤2kπ ,k∈Z,
所以sinC=2sinCcosA.(4分)
因为sinC≠0,所以 ,(5分)
因为0<A<π,所以 .(6分)
解法二:结合余弦定理 ,即b2+c2﹣a2=bc.(3分)
所以 .(5分)
因为0<A<π,所以 .(6分)
(2)解法一:由余弦定理a2=b2+c2﹣2bccosA,得bc+4=b2+c2(7分)
∴ ,
∴ .
(Ⅱ)∵ ,
∴ ,
∵a2+b2﹣3acosC=6,且 ,
∴ ,
∵sin2C+cos2C=1,
∴ ,
∴b=1或 ,
当b=1时, ,
∴ ,
当 时, ,
∴ .
6.在△ABC中, , .
(1)求tanB;
(2)若△ABC的面积 ,求△ABC的周长.
【解答】解:(1)∵0<A<π,
∴ , ,
∴ ,
解得 x ,k∈Z,
即x的取值范围为[ , ],k∈Z,
5.在△ABC中,设边a,b,c所对的角分别为A,B,C,且 .
(Ⅰ)若 ,求tanA的值.
(Ⅱ)若△ABC的面积为 ,求a+b的值.
【解答】解:(Ⅰ)∵ ,
∴ ,
∵ ,
∴a=2,
∵a2+b2﹣3acosC=6,
∴cosC=0,
∵C∈(0,π),
∴b+c=3.
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b=c,2sinB sinA,
(1)求sinB的值;
(2)求 的值.
【解答】解:(1)∵b=c,2sinB sinA,
∴2b a,
∴cosB ,
∵B∈(0,π),
∴sinB ;
(2)sin2B=2sinBcosB ,cos2B=2cos2B﹣1 ,
∴ ,
∴ ∴,
,
∴ ∴,
或 (舍),即
∴ (当a=c时等号成立)
综上,△ABC的面积的取值范围为 .
2.在△ABC中,内角A,B,C对应的边分别为a,b,c,且满足 .
(1)求sin2A;
(2)若a=1,△ABC的面积为 ,求b+c的值.
【解答】解:(1)∵ ,
∴由正弦定理可得:cosA(3sinB﹣sinC)=sinAcosC,
2021年山东省高考数学二轮解答题专项复习:三角函数及解三角形
1.△ABC的内角A,B,C的对边分别为a,b,c,设 .
(Ⅰ)求sinB;
(Ⅱ)若△ABC的周长为8,求△ABC的面积的取值范围.
【解答】解:(1)∵ 且sin(A+C)=sinB
∴ ,又∵ ∴ ,
∴ ,
∴ ,
∴ ,
∴ .
(2)由题意知:a+b+c=8,故b=8﹣(a+c)
∴sin(2B )=sin2Bcos cos2Bsin .
4.设函数f(x) a的最小值是﹣1.
(1)求a的值及f(x)的对称中心;
(2)将函数f(x)图象的横坐标压缩为原来的一半(纵坐标不变),再向右平移 个单位,得到g(x)的图象.若 ,求x的取值范围.
【解答】解(1)f(x) a
cos2x sin2x+sin2x+a
【解答】解:(1)∵bsinA=a(2 cosB),
∴由正弦定理可,得sinBsinA=sinA(2 cosB),
∴sin(B )=1,
∵B∈(0,π),B ∈( , ),
∴B .
(2)∵B ,a=2 ,b ,
∴( )2=(2 )2+c2﹣2 cos ,
可得c2﹣6c+5=0,解得c=1或5
当c=1时,S△ABC acsinB ;
则2sinAcosB=sinA,
在△ABC中,sinA≠0,
所以cosB ,………………………(4分)
则B .………………(6分)
(2)由余弦定理,得b2=a2+c2﹣2accosB,
从而得:9=a2+c2﹣ac=(a+c)2﹣3ac,……………………………………(9分)
又a+c=5,
所以ac ,
所以△ABC的面积为 .…………………………(12分)
9.△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,acosB=(2c﹣b)cosA.
(1)求角A的大小;
(2)求△ABC周长的范围.
【解答】解:(1)解法一:由已知,得acosB+bcosA=2ccosA.
由正弦定理,得sinAcosB+sinBcosA=2sinCcosA.(1分)
即sin(A+B)=2sinCcosA,因为sin(A+B)=sinC.(3分)
∴ .
(2)∵ ,0<B<π,
∴ , ,
∵ ,
∴ ,
∴ .
不妨设A.B.C所对的边分别为a、b、c,
则 .
令a=2x,则 ,
又∵ ,
∴x=1,
∴△ABC的周长为 .
7.在△ABC中,角A,B,C的对边分别为a,b,c.已知bsinA=a(2 cosB).
(1)求B;
(2)若a=2 ,b ,求△ABC的面积.
可得:3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB,
∵sinB≠0,
∴可得cosA ,
∵A∈(0,π),
∴sinA ,sin2A=2sinAcosA .
(2)∵S△ABC bcsinA ,
∴bc=3,
又∵cosA ,
∴b2+c2=(b+c)2﹣2bc=3,即(b+c)2=9,
当c=5时,S△ABC acsinB ;
8.已知△ABC的内角A,B,C的对边分别为a,b,c.满足2c=a+2bcosA.
(1)求B;
(2)若a+c=5,b=3,求△ABC的面积.
【解答】解:(1)由题知2sinC=sinA+2sinBcosA,……………………………………(2分)
则2sin(A+B)=sinA+2sinBcosA,
(1)求C;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
【解答】解:(1)由题意及正弦定理,得sinAcosB+sinBcosA=2sinCcosC,
即(b+c)2=3bc+4.(8分)
因为 (9分)
所以 .即b+c≤4(当且仅当b=c=2时等号成立).(11分)
又∵b+c>a,所以4<a+b+c≤6.(12分)
解法二: ,且a=2, ,
所以 , ,(8分)
所以 (9分)
因为 ,所以4<a+b+c≤6(12分)
10.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足acosB+bcosA=2ccosC.