2021八年级下册数学 公式法第2课时 完全平方公式 同步练习(含答案)

合集下载

北师大版数学八年级下册:4.3 公式法 同步练习(附答案)

北师大版数学八年级下册:4.3 公式法  同步练习(附答案)

3公式法第1课时运用平方差公式因式分解知识点1直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a-b2C.a2-b2D.-a2-b22.已知多项式x2+a能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于()A.9 B.4 C.-1 D.-23.把多项式(x-1)2-4因式分解的结果是()A.(x+3)(x+1)B.(x+1)(x-3)C.(x-1)(x+3)D.(x-5)(x+3)4.因式分解:(1)(2020·绍兴)1-x2=;(2)(2020·张家界)x2-9=;(3)(2019·黔东南)9x2-y2=.5.把下列各式因式分解:(1)9m2-4n2;(2)-16+a2b2;(3)964m2-n2;(4)(x-2y)2-4y2.知识点2先提公因式后运用平方差公式因式分解6.对a2b-b3因式分解,结果正确的是()A.b(a+b)(a-b)B.b(a-b)2C.b(a2-b2)D.b(a+b)27.因式分解:(1)(2020·济宁)a 3-4a = ;(2)(2019·黄冈)3x 2-27y 2= ;(3)(2020·黄石)m 3n -mn 3= .8.把下列各式因式分解:(1)16m 3-mn 2;(2)a 2(a -b )-4(a -b ).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为( )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n = .11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为 .易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16= .13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是( )A .(a -b )2=a 2-2ab +b 2B .a(a -b )=a 2-abC .(a -b )2=a 2-b 2D .a 2-b 2=(a +b )(a -b )14.对于任意整数n ,多项式(n +7)2-(n -3)2的值都能( )A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=;(2)-9x2+(x-y)2=;(3)m2(a-2)+(2-a)=.16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);(2)0.36x2-49y2;(3)a3b-16ab;(4)3m4-48;(5)x n-x n+2;(6)(y+2x)2-(x+2y)2;(7)a2(a-b)+b2(b-a).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是()A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=;(2)a2-2ab+b2=.6.把下列完全平方式因式分解:(1)y2+y+14;(2)4x2+y2-4xy;(3)(m-n)2+6( m-n)+9.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是()A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=;(2)(2019·绵阳)m2n+2mn2+n3=;(3)(2019·眉山)3a3-6a2+3a=.9.把下列各式因式分解:(1)-x2+6xy-9y2;(2)a3+9ab2-6a2b.易错点对完全平方式理解不透10.在多项式4x2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是.(写出一个即可)11.计算1252-50×125+252的结果为()A.100 B.150C.10 000 D.22 50012.下列多项式中,能运用公式法因式分解的有.①-a2+b2;②4x2+4x+1;③-x2-y2;④-x2+8x-16;⑤x4-1;⑥m2+4m-4.13.若m=2n+1,则m2-4mn+4n2的值是.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a,b的多项式的因式分解:.15.把下列各式因式分解:(1)(a-b)2+4ab;(2)-2a3b2+8a2b2-8ab2;(3)4x2-(x2+1)2;(4)25-30(x-y)+9(x-y)2;(5)(x2-2xy+y2)+(-2x+2y)+1.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y 用所设中的x 的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果 ;(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.18.上数学课时,王老师在讲完乘法公式(a±b )2=a 2±2ab +b 2的多种运用后,要求同学们运用所学知识解答:求代数式x 2+4x +5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x 2+4x +5=x 2+4x +4+1=(x +2)2+1.∵(x +2)2≥0,∴当x =-2时,(x +2)2的值最小,最小值是0.∴(x +2)2+1≥1.∴当x =-2时,x 2+4x +5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x = 时,代数式x 2-6x +12的最小值是 ;(2)知识运用:若y =-x 2+2x -3,当x =1时,y 有最大值(填“大”或“小”),这个值是 ;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-27=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.2.分解因式:(1)x2-2x-8=;(2)2x2-10x-12=.知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=( )(a+b)=.【我也可以】分解因式:(1)4x2-2x-y2-y;(2)a2+b2-9+2ab.4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有()A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);(3)(m2+2m)2-7(m2+2m)-8;(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是.参考答案:第1课时 运用平方差公式因式分解知识点1 直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是(C )A .a 2+b 2B .2a -b 2C .a 2-b 2D .-a 2-b 22.已知多项式x 2+a 能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于(C )A .9B .4C .-1D .-23.把多项式(x -1)2-4因式分解的结果是(B )A .(x +3)(x +1)B .(x +1)(x -3)C .(x -1)(x +3)D .(x -5)(x +3)4.因式分解:(1)(2020·绍兴)1-x 2=(1-x )(1+x );(2)(2020·张家界)x 2-9=(x +3)(x -3);(3)(2019·黔东南)9x 2-y 2=(3x +y )(3x -y ).5.把下列各式因式分解:(1)9m 2-4n 2;解:原式=(3m +2n )(3m -2n ).(2)-16+a 2b 2;解:原式=(ab +4)(ab -4).(3)964m 2-n 2; 解:原式=(38m +n )(38m -n ).(4)(x -2y )2-4y 2.解:原式=(x -2y +2y )(x -2y -2y )=x(x -4y ).知识点2 先提公因式后运用平方差公式因式分解6.对a 2b -b 3因式分解,结果正确的是(A )A .b(a +b )(a -b )B .b(a -b )2C .b(a 2-b 2)D .b(a +b )27.因式分解: (1)(2020·济宁)a 3-4a =a(a +2)(a -2);(2)(2019·黄冈)3x 2-27y 2=3(x +3y )(x -3y );(3)(2020·黄石)m 3n -mn 3=mn(m +n )(m -n ).8.把下列各式因式分解:(1)16m 3-mn 2;解:原式=m(4m +n )(4m -n ).(2)a 2(a -b )-4(a -b ).解:原式=(a -b )(a +2)(a -2).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为(D )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n =3.11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为3a -4.易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16=(x 2+4)(x +2)(x -2).13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是(D )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)14.对于任意整数n,多项式(n+7)2-(n-3)2的值都能(A)A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=(x+4)(x-4);(2)-9x2+(x-y)2=-(4x-y)(2x+y);(3)m2(a-2)+(2-a)=(a-2)(m+1)(m-1).16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为12.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).(2)0.36x2-49y2;解:原式=(0.6x)2-(7y)2=(0.6x+7y)(0.6x-7y).(3)a3b-16ab;解:原式=ab(a2-16)=ab(a+4)(a-4).(4)3m4-48;解:原式=3(m4-16)=3(m2+4)(m2-4)=3(m2+4)(m+2)(m-2).(5)x n-x n+2;解:原式=x n(1-x2)=x n(1+x)(1-x).(6)(y+2x)2-(x+2y)2;解:原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=(y+2x+x+2y)(y+2x-x-2y)=(3x+3y)(x-y)=3(x+y)(x-y).(7)a2(a-b)+b2(b-a).解:原式=a2(a-b)-b2(a-b)=(a2-b2)(a-b)=(a-b)2(a+b).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?解:36和2 020都是和谐数.理由如下:设a=(n+2)2-n2=(n+2-n)(n+2+n)=2(2n+2)=4(n+1),令36=4(n+1),解得n=8.∴36=102-82.同理:令2 020=4(n+1),解得n=504.∴2 020=5062-5042.第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是(D)A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是(D)A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是(A)A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=(m+2)2;(2)a2-2ab+b2=(a-b)2.6.把下列完全平方式因式分解:(1)y2+y+1 4;解:原式=(y+1 2)2.(2)4x2+y2-4xy;解:原式=(2x)2+y2-2·2x·y=(2x-y)2.(3)(m-n)2+6( m-n)+9.解:原式=(m-n-3)2.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是(D)A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=12(2x-1)2;(2)(2019·绵阳)m2n+2mn2+n3=n(m+n)2;(3)(2019·眉山)3a3-6a2+3a=3a(a-1)2.9.把下列各式因式分解:(1)-x 2+6xy -9y 2;解:原式=-(x 2-6xy +9y 2)=-(x -3y )2.(2)a 3+9ab 2-6a 2b.解:原式=a(a 2+9b 2-6ab )=a(a -3b )2.易错点 对完全平方式理解不透10.在多项式4x 2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是±4x 或4x 4.(写出一个即可)11.计算1252-50×125+252的结果为(C )A .100B .150C .10 000D .22 500 12.下列多项式中,能运用公式法因式分解的有①②④⑤.①-a 2+b 2;②4x 2+4x +1;③-x 2-y 2;④-x 2+8x -16;⑤x 4-1;⑥m 2+4m -4.13.若m =2n +1,则m 2-4mn +4n 2的值是1.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a ,b 的多项式的因式分解:ab +12(a 2+b 2)=12(a +b )2.15.把下列各式因式分解:(1)(a -b )2+4ab ;解:原式=a 2-2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2.(2)-2a 3b 2+8a 2b 2-8ab 2;解:原式=-2ab 2(a 2-4a +4)=-2ab 2(a -2)2.(3)4x 2-(x 2+1)2;解:原式=(2x +x 2+1)(2x -x 2-1)=-(x +1)2(x -1)2.(4)25-30(x -y )+9(x -y )2;解:原式=52-2×5×3(x -y )+[3(x -y )]2=[5-3(x -y )]2=(5-3x +3y )2.(5)(x 2-2xy +y 2)+(-2x +2y )+1.解:原式=(x -y )2-2(x -y )+1=(x -y -1)2.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值. 解:当a +b =-3,ab =1时,原式=12ab(a 2+2ab +b 2) =12ab(a +b )2 =12×1×(-3)2 =92.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的(C )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果(x-2)4;(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.解:原式=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)4.18.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴当x=-2时,(x+2)2的值最小,最小值是0.∴(x+2)2+1≥1.∴当x=-2时,x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=3时,代数式x2-6x+12的最小值是3;(2)知识运用:若y=-x2+2x-3,当x=1时,y有最大值(填“大”或“小”),这个值是-2;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6.∵(x-1)2≥0,∴(x-1)2-6≥-6.∴当x=1时,y+x的最小值为-6.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=(x+1)(x+4);(2)x2-6x+8=(x-2)(x-4);(3)x2+2x-3=(x+3)(x-1);(4)x2-6x-27=(x-9)(x+3).拓展训练:分解因式:(1)2x2+3x+1=(2x+1)(x+1);(2)3x2-5x+2=(x-1)(3x-2).2.分解因式:(1)x2-2x-8=(x+2)(x-4);(2)2x2-10x-12=2(x+1)(x-6).知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】分解因式:(1)4x2-2x-y2-y;解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).(2)a2+b2-9+2ab.解:原式=a2+2ab+b2-9=(a+b)2-32=(a+b+3)(a+b-3).4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有(D)A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;解:原式=x(x2-7x-30)=x(x+3)(x-10).(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);解:原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3).(3)(m2+2m)2-7(m2+2m)-8;解:原式=(m2+2m-8)(m2+2m+1)=(m+4)(m-2)(m+1)2.(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.解:原式=[(a-b)-2(a+b)][(a-b)+5(a+b)]=(-a-3b)(6a+4b)=-2(a+3b)(3a+2b).6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.解:△ABC是等边三角形.证明如下:∵a2+2b2+c2-2ab-2bc=0,∴a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0.∴(a-b)2=0,(b-c)2=0,得a=b且b=c,即a=b=c.∴△ABC是等边三角形.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是直角三角形.。

北师版数学八年级下册课时练 第四章 因式分解 第2课时 用完全平方公式因式分解

北师版数学八年级下册课时练  第四章  因式分解  第2课时 用完全平方公式因式分解

北师版数学八年级下册第四章因式分解3公式法第2课时用完全平方公式因式分解1.下列各式中不是完全平方式的是(C)A.m2-16m+64B.4m2+20mn+25n2C.m2n2-2mn+4D.112mn+49m2+64n22.如果整式x2+10x+m恰好是一个整式的平方,则m的值是__25__.3.下列多项式中,能用完全平方公式因式分解的是(C)A.x2-x+1B.a2+a+1 2C.1-2xy+x2y2D.a2-b2+2ab4.多项式1-4t+4t2可以分解为(C)A.(4t-1)2B.-(2t-1)2C.(2t-1)2D.(1-4t)25.计算:1002-2×100×99+992=(B)A.0 B.1C.-1 D.39 6016.若x2-6x+a=(bx-3)2,则a,b的值分别为(A)A.9,1B.-9,1C.-9,-1D.9,-17.(2019·浙江温州中考)因式分解:m2+4m+4=__(m+2)2__.8.(2019·江苏南京中考)因式分解(a-b)2+4ab的结果是__(a+b)2__.9.(2019·辽宁沈阳中考)因式分解:-x2-4y2+4xy=__-(x-2y)2__.10.把下列各式因式分解:(1)x2-8xy+16y2;(2)x3-6x2+9x;(3)-8ax2+16axy-8ay2;(4)(x+y)2-10(x+y)+25.解:(1)原式=(x-4y)2.(2)原式=x(x2-6x+9)=x(x-3)2.(3)原式=-8a(x2-2xy+y2)=-8a(x-y)2.(4)原式=(x+y-5)2.11.分解因式:x2-120x+3 456.分析:由于常数项数值较大,则采用x2-120x变差的完全平方形式进行分解:x2-120x+3 456=x2-2×60x+3 600-3 600+3 456=(x-60)2-144=(x-60+12)(x-60-12)=(x-48)(x-72).请按照上面的方法分解因式:x2+86x-651.解:x2+86x-651=(x+43)2-2 500=(x+43+50)(x+43-50)=(x+93)(x-7).12.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3+2a2b2的值为(C)A.70 B.140C.490 D.2 56013.(2018·河北唐山五十四中课时作业)如图,有三种卡片,其中边长为a的正方形卡片1张,长和宽分别为a,b的长方形卡片8张,边长为b的正方形卡片16张,用这25张卡片拼成一个无空隙的大正方形,则这个大正方形的边长是__a+4b__.14.a,b,c是△ABC的三边长,且满足a2-2ab+b2=0,(a+b)2=2ab+c2,则△ABC的形状为__等腰直角__三角形.15.用简便方法计算:(1)992+198+1;(2)2042+204×192+962.解:(1)992+198+1=992+2×99×1+12=(99+1)2=10 000.(2)2042+204×192+962=2042+2×204×96+962=(204+96)2=90 000.易错点对完全平方式的可能性考虑不全而出错16.已知x2+kx+16可以用完全平方公式进行因式分解,则k的值为(D)A.-8B.±4C.8D.±817.(2019·湖南株洲中考)下列各选项中因式分解正确的是(D)A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)218.若4x2+(k-1)x+9能用完全平方公式因式分解,则k的值为(C)A.±6 B.±12C.13或-11 D.-13或1119.把(a2+1)2-4a2因式分解得(B)A.(a2+1-4a)2B.(a+1)2(a-1)2C.(a2+1+2a)(a2+1-2a)D.(a2-1)220.(2019·黑龙江哈尔滨中考)把多项式a3-6a2b+9ab2因式分解的结果是__a(a-3b)2__.21.多项式x2+1加上一个单项式后,可以因式分解,那么加上的单项式可以是__±2x(答案不唯一)__.22.若y-x=-1,xy=2,则代数式-12x3y+x2y2-12xy3的值是__-1__.23.已知|xy-4|+(x-2y-2)2=0,求x2+4xy+4y2的值.解:∵|xy-4|+(x-2y-2)2=0,∴xy=4,x-2y=2,∴x2+4xy+4y2=x2-4xy+4y2+8xy=(x-2y)2+8xy=4+4×8=36.24.已知:△ABC的三边长分别为a,b,c,且满足a2+2b2+c2=2b(a+c).求证:(1)(a-b)2+(b-c)2=0;(2)△ABC为等边三角形.证明:(1)∵a2+2b2+c2=2b(a+c),∴a2+2b2+c2-2ba-2bc=0,∴(a-b)2+(b-c)2=0.(2)由(1)知,(a-b)2+(b-c)2=0,则a-b=0且b-c=0,解得a=b且b=c,∴a=b=c,∴△ABC为等边三角形.25.(2018·浙江衢州中考)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2.请你根据方案二、方案三,写出公式的验证过程.方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2.方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.26.阅读下面文字内容:对于形如x2+2ax+a2的二次三项式,可以直接用完全平方公式把它分解成(x+a)2的形式.但对于二次三项式x2+4x-5,就不能直接用完全平方公式分解了.对此,我们可以添上一项4,使它与x2+4x构成个完全平方式,然后再减去4,这样整个多项式的值不变,即x2+4x-5=(x2+4x+4)-4-5=(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1).像这样,把一个二次三项式变成含有完全平方式的方法,叫做配方法.请用配方法解下列问题:(1)请用上述方法把x2-6x-7因式分解;(2)已知x2+y2+4x-6y+13=0,求y的值.解:(1)x2-6x-7=x2-6x+9-9-7=(x-3)2-16=(x-3-4)(x-3+4)=(x-7)(x+1).(2)∵x2+y2+4x-6y+13=0,∴x2+4x+4+y2-6y+9=0,即(x+2)2+(y-3)2=0,∴x+2=0,y-3=0,解得x=-2,y=3,即y的值为3.。

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.

第2课时 用完全平方公式因式分解练习题

第2课时  用完全平方公式因式分解练习题

第2课时用完全平方公式因式分解要点感知1完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn.1-2(2013·三明)因式分解:x2+6x+9=__________.要点感知2因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1(2014·泸州)因式分解:3a2+6a+3=__________.2-2因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.(2013·张家界)下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.(2012·无锡)因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1)(2013·长沙)x2+2x+1=__________;(2)(2013·南充)x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.(2013·恩施)把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.(2013·贺州)把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.(2014·邵阳)将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.(2012·凉山)下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2x y-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.(2014·聊城)因式分解:4a3-12a2+9a=__________.14.(2013·自贡)多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.(2013·泰州)若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.挑战自我21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案课前预习要点感知1三项式相同底数的积的2倍预习练习1-1①⑤1-2(x+3)2要点感知2 提取公因式公式法预习练习2-13(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.当堂训练1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.课后作业10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.1 17.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.。

册亨县四中八年级数学下册第四章因式分解3公式法第2课时用完全平方公式进行因式分解教案新版北师大版

册亨县四中八年级数学下册第四章因式分解3公式法第2课时用完全平方公式进行因式分解教案新版北师大版
14.2 乘法公式
教学目标
1.知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算.
2.过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.
3.情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.
学生通过讨论、交流可以得出,等腰三角形底边上的中线的左右两部分经翻折可以重合,等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.
最后教师拓展补充等腰三角形还有以下性质:(1)等腰三角形两腰上的中线、高线相等.(2)等腰三角形两个底角的平分线相等.(3)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.
等腰三角形的性质的证明.
多媒体课件、剪刀、尺子
教师出示一些几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.
让学生抢答哪些是轴对称图形,并且提问什么是轴对称图形,什么样的三角形才是轴对称图形.
教师引入:我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.(板书课题)
解 : 4x2+8x+11=〔2x+2〕2+7
∵〔2x+2〕2+7≥0∴无论x取何值,这个代数式的值都是正值
[教学说明]
在综合应用提公因式法和公式法分解因式时,一般按以下两步完成 :
〔1〕有公因式 , 先提公因式 ;
〔2〕再用公式法进行因式分解.
四.师生互动,课堂小结
从今天的课程中 , 你学到了哪些知识 ? 掌握了哪些方式 ?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系 ?

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

北师版八年级数学下册作业课件(BS) 第四章 因式分解 第2课时 运用完全平方公式因式分解

北师版八年级数学下册作业课件(BS) 第四章 因式分解 第2课时 运用完全平方公式因式分解

5.因式分解:x2-8x+16=_(_x_-__4_)_2__.
6.(宜宾中考)把代数式3x3-12x2+12x因式分解,结果正确的是( D ) A.3x(x2-4x+4) B.3x(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2
7.(临沂中考)多项式mx2-m和多项式x2-2x+1的公因式是( A ) A.x-1 B.x+1 C.x2-1 D.(x-1)2 8.下列因式分解正确的是( D ) A.a3-2a2-a=a(a2-2a) B.4a2-8ab+4b2=(2a-2b)2 C.9-12a+4a2=-(3-2a)2 D.5x3-10x2+5x=5x(x-1)2
9.分解因式: (1) (攀枝花中考)x3y-2x2y+xy=__x_y_(_x_-__1_)2___; (2) (东营中考)-2x2y+16xy-32y=__-__2_y_(x_-__4_)_2___.
10.分解因式(x-1)2-2(x-1)+1的结果是( D) A.(x-1)(x-2) B.x2 C.(x+1)2 D.(x-2)2 11.加上下列单项式后, 仍不能使4x2+1成为一个整式的完全平方式的是( )D A.4x4 B.4x C.-4x D.2x
20.因式分解:x2+4xy-5y2. 解:x2+4xy-5y2 =x2+4xy+4y2-4y2-5y2 =(x+2y)2-9y2 =(x+2y+3y)(x+2y-3y) =(x+5y)(x-y) 我们把上述因式分解的方法称为“配方法”.
(1)请用“配方法”分解因式2 的值; (3)在实数范围内,请比较多项式 2x2+2x-3 与 x2+3x-4 的大小, 并说明理由. 解:(1)x2-5xy+6y2=x2-5xy+(52y)2-(52y)2+6y2=(x-52y)2-14y2= (x-52y+12y)(x-52y-12y)=(x-2y)(x-3y)

北师版初中八下数学第四章 因式分解 公式法 第2课时 运用完全平方公式因式分解

北师版初中八下数学第四章 因式分解 公式法 第2课时 运用完全平方公式因式分解

(2)该同学因式分解的结果是否彻底?若不彻底,请直接写出因式分解的最后结 果. 解:(2)该同学因式分解的结果不彻底,因式分解的最后结果为(x-2)4.
(3)请你模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解. 解:(3)设x2-2x=y. 原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2-2x+1)2=(x-1)4.
=(x2-4)2 =(x+2)2(x-2)2.
(4)16x2-(x2+4)2; 解:原式=(4x+x2+4)(4x-x2-4)
=-(x+2)2(x-2)2. (5)(x2-2xy+y2)+(-2x+2y)+1. 解:原式=(x-y)2-2(x-y)+1
=(x-y-1)2.
14.已知x2+y2-4x+6y+13=0,求多项式x2-6xy+9y2的值. 解:∵x2+y2-4x+6y+13=0, ∴x2-4x+4+y2+6y+9=0, ∴(x-2)2+(y+3)2=0, ∴x-2=0,y+3=0, 解得x=2,y=-3. 当x=2,y=-3时, x2-6xy+9y2=(x-3y)2=[2-3×(-3)]2=112=121.
=(2x-y)2. (2)9-12a+4a2; 解:原式=32-2×3×2a+(2a)2
=(3-2a)2. (3)(m+n)2-6(m+n)+9. 解:原式=(m+n)2-2×3×(m+n)+32
=(m+n-3)2.
知识点三 先提公因式后运用完全平方公式因式分解
6.把多项式4a2b+4ab2+b3因式分解,正确的是( B )
=-y(y-2x)2. (3)-2a3b2+8a2b2-8ab2. 解:原式=-2ab2(a2-4a+4)
=-2ab2(a-2)2.
易错点 运用公式法因式分解时不彻底 9.把(a2+1)2-4a2进行因式分解,得到的结果为( C )

人教版八年级下册数学专题复习及练习(含解析):因式分解

人教版八年级下册数学专题复习及练习(含解析):因式分解

专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。

八年级数学下册4.3 第2课时 完全平方公式测试题(附答案)

八年级数学下册4.3 第2课时 完全平方公式测试题(附答案)

4.3 公式法第2课时完全平方公式一. 精心选一选1、下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+1 4 c²2、把多项式3x3-6x²y+3xy²分解因式结果正确的是()A. x(3x+y)(x-3y)B. 3x(x²-2xy+y²)C. x(3x-y)²D. 3x(x-y)²3、下列因式分解正确的是()A. 4-x²+3x=(2-x)(2+x)+3xB. -x²-3x+4=(x+4)(x-1)C. 1-4x+4x²=(1-2x) ²D. x²y-xy+x3y=x(xy-y+x²y)4、下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+x24其中能用完全平方公式分解因式的是()A.①②B.①③C.①④D.②④5、a4b-6a3b+9a2b分解因式的正确结果是()A. a²b(a²-6a+9)B. a²b(a+3)(a-3)C. b(a²-3)D. a²b(a-3) ²6、下列多项式中,不能用公式法分解因式是()A. -a²+b²B. m²+2mn+2n²C. x²+4xy+4y²D. x²--12xy+116y²7. 若x2-px+4是完全平方式,则p的值为()A. 4B. 2C.±4D. ±28. 不论x,y取何实数,代数式x2-4x+y2-6y+13总是()A. 非实数B. 正数C. 负数D. 非正数二.细心填一填9. 填空 4x2-6x+ =()29x2- +4y2=( ) 210.分解因式 ab2-4ab+4a=11. 如图,有三种卡片,其中边长为a的正方形卡片1张,边长为a,b的长方形卡片6张,边长为b的正方形卡片9张,用这16张卡片拼成一个无空隙的正方形,则这个正方形的边长是。

2021-2022学年度初中数学北师大版八年级下册第四章第三节 公式法 同步练习

2021-2022学年度初中数学北师大版八年级下册第四章第三节 公式法 同步练习

初中数学北师大版八年级下册第四章第三节公式法同步练习一、单选题1.下列多项式能用平方差公式分解因式的是()A.4x2+y2B.-4x2-y2C.-4x2+y2D.-4x+y22.因式分解:x3−4x=()A.x(x2−4x)B.x(x+4)(x−4)C.x(x+2)(x−2)D.x(x2−4)3.下列式子直接能用完全平方公式进行因式分解的是()A.16a2+8a+1B.a2−3a+9C.4a2+4a−1D.a2−8a−164.若a,b,c分别是△ABC的三边长,且满足a2﹣2ab+b2=0,b2﹣c2=0,则△ABC的形状是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形5.a4b-6a3b+9a2b分解因式的正确结果是()A.a²b(a²-6a+9)B.a²b(a+3)(a-3)C.b(a²-3)D.a²b(a-3)²6.若一个三角形的三边长为a,b,c,且满足a2-2ab+b2+ac-bc =0,则这个三角形是() A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形7.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.498.如图,在长方形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG,边EF 交CD 于点H,在边BE 上取点M 使BM=BC,作MN∥BG 交CD 于点L,交FG 于点N.欧几里得在《几何原本》中利用该图解释了(a+b)(a−b)=a2−b2,连结AC,记△ABC的面积为S1,图中阴影部分的面积为S2.若a=3b,则S1S2的值为()A.32B.718C.34D.54二、填空题9.分解因式:7a2﹣63=10.4x2-(k-1)x+1能用完全平方公式因式分解,则k的值为11.已知x+y=2,则12(x2+2xy+y2)的值为.12.下列因式分解正确的是(填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+ 1=(2x+1)213.由多项式与多项式相乘的法则可知:即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.请利用公式分解因式:﹣64x3+y3=.14.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为.15.在实数范围内因式分解:x2﹣3=,3x2﹣5x+2=.16.观察下列各式:(x−1)(x+1)=x²−1(x−1)(x²+x+1)=x³−1(x−1)(x³+x²+x+1)=x 4−1…根据以上规律,求1+2+2²+…+ 22016+22017=.三、计算题17.因式分解(1)a3b−ab(2)(x2+4)2−16x218.计算题:(1)因式分解:(x2+y2)2-4x2y2;(2)计算:8(1+72)(1+74)(1+78)(1+716). 19.利用因式分解进行计算(1)(1−122)×(1−132)×⋯×(1−1102)(2)(22+42+62+82+102)−(12+32+52+72+92)四、解答题20.分解因式(1)9(m+n)2−(m−n)2(2)(x2−6x)2+18(x2−6x)+81(3)−4m3+16m2−26m(4)(a2+4)2﹣16a221.第一环节:自主阅读材料:常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2-4y2+2x-4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:x2-4y2+2x-4y=(x2-4y2)+(2x-4y) ……分组=(x-2y)(x+2y)+2(x-2y) ……组内分解因式=(x-2y)(x+2y+2) ……整体思想提公因式这种分解因式的方法叫分组分解法。

北师大版八年级数学下册4.3 第2课时 完全平方公式

北师大版八年级数学下册4.3 第2课时 完全平方公式
• 2:利用完全平方公式分解因式的公式形式是:
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
课外作业
1.练闯考P57(预习导学、课内精 炼1-10题)
2.课本P102-103(随堂练习第1、2 题,习题 4.5第1、2题,做到作业 本上)
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
典例精析
例3 如果x2-6x+N是一个完全平方式,那么N是( B )
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
练习
把下列各式分解因式
① ax4 ax2
解:原式=ax2(x2-1) =ax2(x+1)(x-1)
② x4-16
解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式) (因式分解要彻底。)
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
课堂小结
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2

《公式法》第2课时示范公开课教案【八年级数学下册北师大版】

《公式法》第2课时示范公开课教案【八年级数学下册北师大版】

《公式法》教学设计第2课时一、教学目标1.能够理解并熟练运用完全平方公式分解因式,体会转化思想.2.能够综合运用提公因式法、完全平方公式法分解因式.3.经历通过整式乘法公式(a±b)2=a2±2ab+b2的逆向变形得出公式法因式分解的方法的过程,发展逆向思维和推理能力.4.通过对平方差公式特点的辨析过程,培养观察、理解、概括和应用能力、语言表达能力.二、教学重难点重点:理解并熟练运用平方差公式分解因式.难点:能够综合运用提公因式法、平方差公式法分解因式.三、教学用具多媒体等.四、教学过程设计【探究】教师活动:通过观察具体的式子,体验这些多项式所具有的完全平方式的特征,再对比乘法公式,得到因式分解的完全平方式公式.计算下列各式:(1)(x+2)2= ________ ,(2)(2x+1)2= ________,(3)(x-3)2= ________ ,(4)(3x-1)2= ________,预设:(1)x2+4x+4;(2)4x2+4x+1(3)x2-6x+9;(4)9x2-6x+1根据上面算式填空:(1) x2+4x+4=_____________,(2)4x2+4x+1=_____________,(3)x2-6x+9=_______________,(4)9x2-6x+1=_____________.预设:(1)(x+2)2;(2)(2x+1)2;(3)(x-3)2;(4)(3x-1)2.提问:你有什么发现呢?预设:前四个形如(a±b)2=a2±2ab+b2,是整式的乘法,后两个形如a2±2ab+b2=(a±b)2,是因式分解,而且它们是左右调换的.【归纳】完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.通常我们把运用乘法公式进行因式分解的方法叫做公式法.【想一想】能用完全平方公式分解因式的多项式的特点?预设:(1)是三项式(或可以看成三项);(2)有两个同号的数或式的平方;(3)中间是这两个数的积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式.【做一做】观察下面的拼图过程,验证完全平方和公式是否正确?预设:a2+2ab+b2=(a+b)2),是正确的.提问:你能验证完全平方差公式吗?以思维导图的形式呈现本节课所讲解的内容: 教科书第103页习题4.5 第2、3、4题.。

人教版八年级数学上册《14-3-2 第2课时 运用完全平方公式因式分解》导学案设计优秀公开课

人教版八年级数学上册《14-3-2 第2课时 运用完全平方公式因式分解》导学案设计优秀公开课

第十四章整式的乘法与因式分解教学备注学生在课前完成自主学习部分14.3 因式分解14.3.2 公式法第 2 课时运用完全平方公式因式分解学习目标:1.理解并掌握用完全平方公式分解因式.2.灵活应用各种方法分解因式,并能利用因式分解进行计算.重点:掌握用完全平方公式分解因式.难点:灵活应用各种方法分解因式.一、知识链接1.前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?2.(1) 填一填:在括号内填上适当的式子,使等式成立:①(a+b)2=;②(a-b)2=.③a2++1=(a+1)2;④a2-+1=(a-1)2.(2)想一想:①你解答上述问题时的根据是什么?②第(1)①②两式从左到右是什么变形?第(1)③④两式从左到右是什么变形?二、新知预习1.观察完全平方公式:=(a+b)2;=(a-b)2完全平方公式的特点:左边:①项数必须是;②其中有两项是;③另一项是.右边:.自主学习典例精析要点归纳:把 a²+ +b²和 a²- +b²这样的式子叫作完全平方式.2. 乘法公式完全平方公式与因式分解完全平方公式的联系是. 把乘法公式逆向变形为:a 2+2ab +b 2= ; a 2-2ab +b 2= . 要点归纳:用完全平方公式因式分解,即两个数的平方和加上(或减去)这两个数的积的 2 倍,等于这两个数的和(或差)的平方.三、自学自测1.下列式子为完全平方式的是()A .a 2+ab +b 2B .a 2+2a +2C .a 2-2b +b 2D .a 2+2a +12.若 x 2+6x +k 是完全平方式,则 k =.3.填空:(1)x²+4x+4= ()² +2·( )·( )+( )² =( )²(2)m² -6m+9=()² - 2· ( )·()+( )² =( )²(3)a²+4ab+4b²=( )²+2· () ·()+()²=()²4.分解因式:a 2-4a +4= .四、我的疑惑教学备注 配套 PPT 讲授1. 复习引入(见幻灯片 3)2. 探究点 1 新知讲授( 见 幻 灯 片4-12)3. 探究点 2 新知讲授( 见 幻 灯 片13-21)课堂探究一、要点探究探究点 1:完全平方式例 1:如果 x 2-6x+N 是一个完全平方式,那么 N 是( )A . 11 B. 9 C. -11 D. -9变式训练如果 x 2-mx+16 是一个完全平方式,那么 m 的值为 .教学备注配套 PPT 讲授3.探究点 2 新知讲授(见幻灯片13-21)4.课堂小结方法总结:本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2 倍的符号,避免漏解.探究点2:用完全平方公式进行因式分解议一议:(1)将一个多项式因式分解的一般步骤是什么?(2)应注意的事项有哪些?(3)分解因式的方法有哪些?要点归纳:(1)利用公式把某些具有特殊形式(如,等)的多项式分解因式,这种分解因式的方法叫做公式法.(2)分解因式应根据多项式的特征,有公因式的一般先提,再套用公式,没有公因式的,则直接套用公式.分解因式应注意最后的结果中,多项式的每一个因式均不能再继续分解.例2:因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.例3:简便计算.(1)1002-2×100×99+99²;(2)342+34×32+162.方法总结:在较为复杂的有理数运算中,通常要先观察式子的特征,利用因式分解将其变形,转化为较为简单的运算.例4:已知x2-4x+y2-10y+29=0,求x2y2+2xy+1 的值..典例精析方法总结:此类问题一般情况是将原式进行变形,将其转化为非负数的和的形式,然后利用非负数性质求出未知数的值,然后代入,即可得到所求代数式的值.例5:已知a,b,c分别是△AB C三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.针对训练1.下列式子中为完全平方式的是( )A.a2+b2 B.a2+2a C.a2-2ab-b2 D.a2+4a+42.若x2+mx+4 是完全平方式,则m 的值是.3.分解因式:(1)y2+2y+1;(2)16m2-72m+81.4.分解因式:(1)(x+y)2+6(x+y)+9;(2)4xy2-4x2y-y3.5.已知|xy-4|+(x-2y-2)2=0,求x2+4xy+4y2 的值.二、课堂小结因式分解公式法方法提公因式法平方差公式完全平方公式当堂检测公式 pa+pb+pc= a 2-b 2=a2±2ab+b2=步骤1.提:提 ;2.套:套; 3.检查:检查.易错题型 1.提公因式时易出现漏项、丢系数或符号错误;2.因式分解不彻底.1.下列四个多项式中,能因式分解的是()A .a 2+1B .a 2-6a +9C .x 2+5yD .x 2-5y2.把多项式 4x 2y -4xy 2-x 3 分解因式的结果是( )A .4xy(x -y)-x 3B .-x(x -2y)2C .x(4xy -4y 2-x 2)D .-x(-4xy +4y 2+x 2)3.若 m =2n +1,则 m 2-4mn +4n 2 的值是.4. 若关于 x 的多项式 x 2-8x +m 2 是完全平方式,则 m 的值为 .5. 把下列多项式因式分解.(1)x 2-12x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y 2+2y+1-x 2.6.计算:(1)38.92-2×38.9×48.9+48.92.(2)20142-2014×4026+20132.1x 2 - 2x + 37.分解因式:(1)4x 2+4x +1;(2) 3.小聪和小明的解答过程如下:教学备注 配套 PPT 讲授5.当堂检测 ( 见 幻 灯 片22-26)他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a-b=3,求a(a-2b)+b2 的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3 的值.。

3 公式法(第2课时)一等奖创新教案

3 公式法(第2课时)一等奖创新教案

3 公式法(第2课时)一等奖创新教案4.3公式法(第2课时运用完全平方公式因式分解)教学目标1.理解完全平方公式,弄清平方差公式的形式和特点;2.掌握运用完全平方公式分解因式的方法;3.能综合运用提公因式法和完全平方公式对多项式进行因式分解.教学重点难点重点:理解并掌握用完全平方公式分解因式;难点:灵活应用各种方法分解因式.教学过程复习巩固1.完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.2.我们已经学过哪些因式分解的方法?(1)提公因式法(2)平方差公式a2-b2=(a+b)(a-b)导入新课活动1(学生交流,教师点评)【思考】根据学方差公式分解因式的经验和方法,你能将形如“a2+2ab+b2、a2-2ab+b2”的式子分解因式吗?【问题1】填空:(1)(a+2b)2=;(2)(3a-b)2=.它们的结果有什么共同特征?答案:(1)a2+4ab+4b2;(2)9a2-6ab+b2.学生:以上都是用完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2计算得出来的.【问题2】根据问题1中等式填空:(1)a2+4ab+4b2=;(2)9a2-6ab+b2=.答案:(1)(a+2b)2(2)(3a-b)2.教师总结:公共特点:即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方,这就是我们今天学习的内容,引出课题.探究新知探究点一用完全平方公式因式分解(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.反过来a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2..【总结】1.完全平方公式:a2±2ab+b2=(a±b)2.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.2.根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法.完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.【注意】公式中的既可以是单项式,也可以是多项式.活动2(学生交流,教师点评)【问题3】(师生互动)下列多项式能用完全平方公式分解因式的有( )(1)a2+ab+b2;(2)a2-a+;(3)9a2-24ab+4b2;(4)-a2+8a-16.A.1个B.2个C.3个D.4个解析:(1)a2+ab+b2,乘积项不是两数的2倍,不能运用完全平方公式;(2)a2-a+=(a-)2;(3)9a2-24ab+4b2,乘积项是这两数的4倍,不能用完全平方公式;(4)-a2+8a-16=-(a2-8a+16)=-(a-4)2.所以(2)(4)能用完全平方公式分解.答案:B【方法总结】能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【即学即练】(小组交流)下列各式中,能用完全平方公式进行因式分解的是.(填序号)①x2-2x-2;②x2+1;③x2-4x+4;④x2+4x+1.答案:③活动3 小组讨论(师生互学)【例1】因式分解:(1)9x2+6x+1;(2)3m2n-12mn+12n;(3)(a+b)2-12(a+b)+36.【探索思路】(引发学生思考)观察各式的特点,运用平方差公式进行因式分解.解:(1) 9x2+6x+1=(3x+1)2.(2) 3m2n-12mn+12n=3n(m2-4m+4)=3n(m-2)2.(3) (a+b)2-12(a+b)+36=(a+b-6)2.【总结】(学生总结,老师点评)因式分解前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.活动4(合作探究,解决问题)【例2】把下列各式分解因式:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.【探索思路】(引发学生思考)观察式子中的各项,提取公因式,用公式进行因式分解.解:(1)-3a2x2+24a2x-48a2=-3a2(x2-8x+16)=-3a2(x-4)2.(2) (a2+4)2-16a2=(a2+4)2-(4a)2=(a2+4+4a)·(a2+4-4a)=(a+2)2(a-2)2.【题后总结】(学生总结,老师点评)因式分解的基本步骤可概括为一提、二用、三查,即有公因式的先提公因式,没有公因式的用公式法,最后检查每一个多项式的因式.【注意】多项式的因式分解有没有分解到不能再分解为止【即学即练】(学生独学)因式分解:(1)(a+b)2-4a2;(2) x4-y4.解:(1) (a+b)2-4a2=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)x4-y4=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).活动5探究点二用因式分解进行简便计算或化简(师生互动)【例3】计算或化简下列各式:(1)2022+202×196+982;(2)(a2-2)2-2a2(a2-2)+a4.【探索思路】(引发学生思考)利用完全平方公式转化为(a±b)2的形式后计算即可.解:(1) 2022+202×196+982=2022+2×202×98+982=(202+98)2=3002=90 000.(2) (a2-2)2-2a2(a2-2)+a4=(a2-2)2-2a2(a2-2)+(a2)2=(a2-2-a2)2=(-2)2=4.【即学即练】(学生独学)利用因式分解计算:(1)342+34×32+162;(2)38.92-2×38.9×48.9+48.92.解:(1)342+34×32+162=(34+16)2=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=100.活动6 拓展延伸(学生对学)【例4】已知a+b=5,ab=10,求a3b+a2b2+ab3的值.【探索思路】(引发学生思考)将a3b+a2b2+ab3分解为ab与(a+b)2的乘积,由运用整体代入的数学思想来解答.解:a3b+a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.当a+b=5,ab=10时,原式=×10×52=125.【题后总结】(学生总结,老师点评)解答此类问题的关键是对原式进行变形,将原式转化为含已知代数式的形式,然后整体代入求值.【即学即练】(学生独学)课堂练习1.下列多项式中不能用公式法因式分解的是()A. _B.2abC. _D.2.计算:()A.100_____B.150C.10 000 _D.22 5003.下列因式分解正确的是()A.1(a)aB.(x1y)(x1y)C.(xy)(xy)D.4.分解因式:4y()A. _B.C. _D.y(y2)(y2)5.把下列多项式因式分解:(1)x212x+36; (2)4(2a+b)24(2a+b)+1;(3)y2+2y+1x2.6.已知,求的值.7.已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.参考答案:1.B 解析:A.,符合用完全平方公式因式分解的式子特点,故此选项正确;B.不符合用完全平方公式因式分解的式子特点,故此选项错误;C.(5ba)(5ba),符合用平方差公式因式分解的式子特点,故此选项正确;D.4(b2)(b2),符合用平方差公式因式分解的式子特点,故此选项正确.故选B.2.C 解析:10 000.故选C.3.A 解析:A. 1a1,故A项正确;B .(x1y)(x1y),故B项错误;C.(yx)(yx),故C项错误;D.,故D项错误.故选A.4.B 解析:原式,故选B.5.解:(1)x212x+36=x22·x·6+62=(x6)2.(2) 4(2a+b)24(2a+b)+1=[2(2a+b)] 2·2(2a+b)·1+1=(4a+2b- 1)2.(3)y2+2y+1x2=(y+1) x=(y+1+x)(y+1-x).6.解:由得∴.∴.7.解:由a2+2b2+c2-2b(a+c)=0,得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC 是等边三角形.课堂小结(学生总结,老师点评)一、运用完全平方公式因式分解:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.二、完全平方公式的特点:(1)必须是三项式(或可以看成三项的);(2)有两个同号的平方项;(3)有一个乘积项(等于平方项底数的±2倍).两项都能写成平方的形式,且符号相反.布置作业教材第103页习题4.5板书设计运用完全平方公式因式分解运用完全平方公式因式分解:a2+2ab+b2=(a+b)2,_____ a2-2ab+b2=(a-b)2. 例1因式分解:(1)9x2+6x+1;(2)3m2n-12mn+12n;(3)(a+b)2-12(a+b)+36.例2把下列各式分解因式:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.例3计算或化简下列各式:(1)2022+202×196+982;(2)(a2-2)2-2a2(a2-2)+a4.。

北师版初中数学八年级下册精品教案 第4章 因式分解 3 公式法 第2课时 运用完全平方公式因式分解

北师版初中数学八年级下册精品教案 第4章 因式分解 3 公式法 第2课时 运用完全平方公式因式分解

第2课时运用完全平方公式因式分解教师备课素材示例●情景导入由前面的学习,我们知道了因式分解与整式乘法是互逆的恒等变形.因式分解除了提取公因式法和运用平方差公式法,还有其他的方法吗?本节课就让我们一起来研究因式分解的另一种方法.例在我们中学教学区有一块边长为am的正方形草坪,现在校长想把这块草坪改种花卉,要求边长增加bm,形成四块区域,以种植不同的花卉,如图.为了估算所需购买花卉的总量,你能帮校长计算一下这块种植区的总面积吗?(多媒体出示)【教学与建议】教学:通过让学生帮校长解决自己学校的一个问题的设计,培养学生自主探究的意识.建议:由图①②可得到a2+2ab+b2=(a+b)2,从而导入课题,利用完全平方公式因式分解.●类比导入我们知道,因式分解是整式乘法的逆过程.1.把下列各式分解因式:(1)25a2-16a2=__(5a+4a)(5a-4a)__;(2)ax4-ax2=__ax2(x+1)(x-1)__.2.填空:(1)用整式乘法的完全平方公式填空:①(a+1)2=(__a__)2+2·__a__·__1__+(__1__)2=__a2+2a+1__;②(a-b)2=(__a__)2-2·__a__·__b__+(__b__)2=__a2-2ab+b2__.(2)观察第(1)题你会有什么发现?用你的发现尝试把下列多项式分解因式:①a2-2a+1=(__a__)2-2·__a__·__1__+(__1__)2=__(a-1)2__;②a2-2ab+b2=(__a__)2-2·__a__·__b__+(__b__)2=__(a-b)2__.以上运算,哪些是整式乘法,哪些是因式分解?你能说明整式乘法与分解因式的关系吗?3.完全平方公式错误!现在我们把完全平方公式反过来,可得到错误!【教学与建议】教学:让学生在复习旧知识的基础上,识别完全平方式,从而理解整式乘法与因式分解的关系.建议:让学生自己完成以上练习题,教师及时补充.因式分解要先提取公因式后,再看能否利用公式法进行二次分解,注意分解要彻底.【例1】因式分解3a2b-6ab+3b的结果是(D)A.3b(a2-2a) B.b(3a2-6a+1)C.3(a2b-2ab) D.3b(a-1)2【例2】分解因式:3x3y-6x2y2+3xy3=__3xy(x-y)2__.利用公式法因式分解,既要注意两个公式的特征,又要注意整体思想的应用.【例3】分解因式:(1)9-6(x-y)+(x-y)2=__(x-y-3)2__;(2)(x2+y2)2-4x2y2=__(x+y)2(x-y)2__.正确掌握完全平方公式,转化成(a±b)2的形式计算.【例4】计算:(1)342+34×32+162=__(34+16)2__=__2_500__;(2)38.92-77.8×48.9+48.92=__(38.9-48.9)2__=__100__.根据已知代数式的值计算另一代数式的值时,要先观察要求代数式的特征,把原式进行变形,转化成含已知代数式的形式,最后整体代入计算.【例5】已知a+b=5,ab=10,则代数式12a3b+a2b2+12ab3的值为__125__.【例6】已知a=7-3b,则式子a2+6ab+9b2=__49__.高效课堂教学设计1.会正确识别符合用完全平方公式因式分解的式子,会运用完全平方式因式分解.2.综合运用提公因式法、完全平方公式法因式分解.▲重点用完全平方公式法进行因式分解.▲难点灵活地选用不同的方法进行因式分解.◆活动1 创设情境导入新课(课件)1.把下列各式因式分解:(1)4a2-9b2;(2)ax4-ax2.解:(1)原式=(2a+3b)(2a-3b);(2)原式=ax2(x+1)(x-1).2.你能用前面学过的方法把多项式x2+8x+16因式分解吗?3.填空:(1)(x+2)2=__x2+4x+4__;(2)(2x-y)2=__4x2-4xy+y2__;反过来:(1)__x2+4x+4__=(x+2)2;(2)__4x2-4xy+y2__=(2x-y)2.以上运算,哪些是整式乘法,哪些是因式分解?你能说明整式乘法与因式分解的关系吗?◆活动2 实践探究交流新知【探究】在下面的等式中,我们用到了整式乘法中的哪个公式?(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.在a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2中,形如a2±2ab+b2的式子称为完全平方式.由因式分解与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以把某些多项式因式分解,这种因式分解的方法叫做公式法.议一议:下列各式能用完全平方公式分解因式吗?如果能,把它分解出来;如果不能,请说明理由.(1)a2-4a+4;(2)x2+4xy+4y2+16;(3)4a2+2ab+b2;(4)a2-ab +b2;(5)x2+6x+9.解:(1)(5)能用完全平方公式分解因式;(2)(3)(4)不能用完全平方公式分解因式.通过议一议让学生归纳完全平方式的特征:1.必须是三项式(或可以看成三项的);2.有两个同号的平方项;3.有一个乘积项(等于平方项底数积的±2倍).简记口诀:头平方,尾平方,乘积2倍在中央.练一练(体验用完全平方公式因式分解的过程):a2+6a+9=a2+2×__a__×__3__+(__3__)2=(__a+3__)2;a2-12a+36=a2-2×__a__×__6__+(__6__)2=(__a-6__)2;m2+8m+16=m2+2×__m__×__4__+(__4__)2=(__m+4__)2;x2-4xy+4y2=x2-2×__x__×__2y__+(__2y__)2=(__x-2y__)2.【归纳】用完全平方公式法因式分解的关键是:判断一个多项式是不是一个完全平方式.左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方,从而达到因式分解的目的.◆活动3 开放训练应用举例【例1】把下列完全平方式因式分解:(1)+n)+9.【方法指导】在(1)中49=72,14x=2·x·7,所以x2+14x+49是一个完全平方式,即:x2+14x+49=x2+2×x×7+72=(x+7)2头2+2·头·尾+尾2=(头+尾)2在(2)中多项式中的两个平方项分别是(m+n)2和32,另一项6(m+n)=2·(m+n)·3,符合完全平方式的形式,这里“m+n”相当于完全平方式中的a,“3”相当于完全平方式中的b,如果将(m+n)看作一个整体,即:(m+n)2-6(m+n)+9=(m+n)2-2×(m+n)×3+32=[(m+n)-3]2头2-2·头·尾+尾2= (头-尾)2从以上两题可以发现先把多项式化成符合完全平方式a2±2ab+b2的形式,然后再根据公式因式分解,并且公式中的a,b可以是单项式,也可以是多项式.解:(1)原式=(+n)-3]2=(m+n-3)2.【例2】将下列各式因式分解:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.【方法指导】在(1)中有公因式3a,应先提出公因式,再进一步分解;(2)中如果把多项式的各项均提出一个负号,那么括号内的多项式就符合完全平方式的结构特点,从而可以运用完全平方公式法因式分解.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2;(2)-x2-4y2+4xy=-(x2-4xy+4y2)=-(x-2y)2.◆活动4 随堂练习1.若a+b=2,则a2+2ab+b2的值是(D)A.8B.16C.2D.42.如果x2+6x+k是一个完全平方式,那么k的值是__9__.3.课本P102随堂练习T14.课本P102随堂练习T2◆活动5 课堂小结与作业【学生活动】这节课你的收获是什么?还有哪些困惑?【教学说明】通过学生的回顾与反思,强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,加深对类比思想的理解.【作业】课本P103习题4.5中的T1、T2、T3、T4.逆用完全平方公式进行因式分解的关键是搞清完全平方公式的结构特点,等号左边是一个二项式的平方,等号右边是二次三项式.本节课引导学生从多项式的项数、每项的特点、整个多项式的特点等几个方面进行研究.善于观察出代数式的特点、相似点,能恰当运用换元法,是思维能力进一步提高的体现,对数学学习很重要.。

北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第2课时 利用完全平方公式因式分解

北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第2课时 利用完全平方公式因式分解
数学 八年级下册 北师版
第四章 因式分解
4.3 公式法
第2课时 利用完全平方公式因式分解
1.(3分)下列各式中能用完全平方公式进行因式分解的是( D )
A.x2+x+1 B.x2+2x-1
C.x2-1
D.x2-6x+9
2.(4分)将x2-2xy+y2分解因式,结果正确的是( D )
A.(x+y)(x-y) B.x(x-2y)+y2
5.(4分)把代数式3x3-12x2+12x因式分解结果正确的是( D ) A.3x(x2-4x+4) B.3x-(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2
6.(4分)(攀枝花中考)因式分解:x3y-2x2y+xy=___x_y_(x_-__1_)_2____.
7.(12分)把下列各式因式分解: (1)x3-2x2y+xy2; 解:原式=x(x-y)2
【素养提升】 14.(14分)(平顶山郏县期末)阅读材料:常用的分解因式方法有提公因式、公式 法等,但有的多项式只有上述方法就无法分解,如x2-4y2+2x-4y,细心观察这 个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别 分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过 程为:x2-4y2+2x-4y=(x2-4y2)+(2x-4y)=(x+2y)(x-2y)+2(x-2y)=(x- 2y)(x+2y+2). 这种分解因式的方法叫分组分解法,利用这种方法解决下列问题: (1)分解因式:x2-6xy+9y2-3x+9y; (2)若△ABC的三边a,b,c满足a2-b2-ac+bc=0,判断△ABC的形状,并说 明理由.
二、解答题(共36分) 12.(12分)将下列各式因式分解: (1)x2(y2-1)+2x(y2-1)+(y2-1); 解:原式=(y2-1)(x2+2x+1)=(y+1)(y-1)(x+1)2 (2)a2-2ab+b2-9; 解:原式=(a-b)2-32=(a-b+3)(a-b-3) (3)(x2y2+1)2-4x2y2. 解:原式=(xy+1)2(xy-1)2

人教版八年级数学上册14.3.2公式法第2课时运用完全平方公式因式分解同步练习.docx

人教版八年级数学上册14.3.2公式法第2课时运用完全平方公式因式分解同步练习.docx

初中数学试卷桑水出品第2课时运用完全平方公式因式分解要点感知1 我们把a2±____+b2这样的式子叫做完全平方式.预习练习1-1 下列式子中为完全平方式的是( )A.a2+b2B.a2+2aC.a2-2ab-b2D.a2+4a+4要点感知2 a2+2ab+b2=____;a2-2ab+b2=____.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的____.4=____.预习练习2-1 分解因式:a2-4a+1.下列式子为完全平方式的是( )A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(曲靖模拟)若x2+6x+k是完全平方式,则k=___.3.若x2+(m-3)x+4是完全平方式,则m的值是____.知识点2 直接运用完全平方公式因式分解4.因式分解:(1)4x2+y2-4xy;(2)9-12a+4a2;(3)(m+n)2-6(m+n)+9.5.(安徽中考)下列四个多项式中,能因式分解的是( )A.a2+1B.a2-6a+9C.x2+5yD.x2-5y6.(西双版纳中考)因式分解x3-2x2+x正确的是( )A.(x-1)2 B.x(x-1)2 C.x(x2-2x+1) D.x(x+1)27.(泰州中考)若m=2n+1,则m2-4mn+4n2的值是____.8.(1)已知a-b=3,求a(a-2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.9.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)法运算,使所得整式可以因式分解,并进行因式分解.挑战自我10.已知a,b,c是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0.你能判断△ABC的形状吗?请说明理由.参考答案课前预习要点感知1 2ab预习练习1-1 D要点感知2 (a+b)2 (a-b)2 和(或差)的平方预习练习2-1 (a-2)2当堂训练1.D2.93.7或-14.(1)原式=(2x-y)2. (2)原式=(3-2a)2. (3)原式=(m+n-3)2.课后作业5.B6.B7.18.(1)9. (2)50. 9.(x2+2xy)+x2=2x2+2xy=2x(x+y);10.由已知得a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0,∴a-b=0,b-c=0.∴a=b=c,即△ABC为等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式法
第2课时 完全平方公式
一. 精心选一选
1、下列各式是完全平方公式的是( )
A. 16x ²-4xy+y ²
B. m ²+mn+n ²
C. 9a ²-24ab+16b ²
D. c ²+2cd+14
c ² 2、把多项式3x3-6x ²y+3xy ²分解因式结果正确的是( )
A. x(3x+y)(x-3y)
B. 3x(x ²-2xy+y ²)
C. x(3x-y)²
D. 3x(x-y )²
3、下列因式分解正确的是( )
A. 4-x ²+3x=(2-x)(2+x)+3x
B. -x ²-3x+4=(x+4)(x-1)
C. 1-4x+4x ²=(1-2x) ²
D. x ²y-xy+x3y=x(xy-y+x ²y)
4、下列多项式① x ²+xy-y ²② -x ²+2xy-y ²③ xy+x ²+y ²④1-x+x24
其中能用完全平方公式分解因式的是( )
A.①②
B.①③
C.①④
D.②④
5、a4b-6a3b+9a2b 分解因式的正确结果是( )
A. a ²b(a ²-6a+9)
B. a ²b(a+3)(a-3)
C. b(a ²-3)
D. a ²b(a-3) ²
6、下列多项式中,不能用公式法分解因式是( )
A. -a ²+b ²
B. m ²+2mn+2n ²
C. x ²+4xy+4y ²
D. x ²--12xy+116
y ²
7. 若x2-px+4是完全平方式,则p 的值为( )
A. 4
B. 2
C.±4
D. ±2
8. 不论x,y 取何实数,代数式x2-4x+y2-6y+13总是( )
A. 非实数
B. 正数
C. 负数
D. 非正数
二.细心填一填
9. 填空 4x2-6x+=( )2
9x2-+4y2=( ) 2 10.分解因式 ab2-4ab+4a=
11. 如图,有三种卡片,其中边长为a 的正方形卡片1张,边长为a ,b 的长方形卡片6张,边长为b 的正方形卡片9张,用这16张卡片拼成一个无空隙的正方形,则这个正方形的边长是。

12. 若a+b=3,则2a2+4ab+2b2-6的值为。

13. 已知a(a-2)-(a2-2b)=-4,则(a2+b2)/2-ab的值为。

14. 若9x2+mxy+25y2是完全平方式,则m=.
15. 若(M+2ab)2=N+12ab(a+b)+4a2b2,则M=, N=.
16. 因式分解:(2a-b)2+8ab=。

17. 若正方形的面积为a2+18ab+81b2(a,b均大于0),则这个正方形的边长为。

18. 计算29982+2998×4+4=。

三.解答题:
19. 用简便方法计算:
8502-1700×848+8482
20. 分解因式:
a4-2a2b2+b4
21. 分解因式:
(x2y2+1)2-4x2y2
22.试证明,不论x,y取何值,x2-4x+y2-6y+13的值不小于0.
23. 利用合适的计算(例如分解因式),求代数式的值:
(2x+3y) 2-2(2x+3y)(2x-3y)+(2x-3y) 2,其中x=-1
-2,y=
1
3
答案
一.1.B 2.D 3.C 4.D 5.C 6.D 7.C 8.A 二.9. (3x+12y)(3x-12y) 10. n2-(n-1) 2=2n-1
11. 1/2(mn+4)(mn-4) 12. (x+y)(x-y-3)
13. 1/2 14. 8 15. (3m+2n)(3m-2n)
16. 2 17. 11/20 18. B
三.19.原式=〔13(a-b)〕2-〔14(a+b)〕2
=〔13(a-b)+14(a+b)〕〔13(a-b)-14(a+b)〕
=-(27a+b)(a+27b)
20.原式=a2 (a-b)-b2 (a-b)=(a-b)(a2-b2)
=(a-b)(a-b)(a+b)=(a-b) 2 (a+b)
21. 解:已知:a+b=8, a2-b2=48
则(a+b)(a-b)=48 ∴a-b=6
得:a=7,b=1
22. 解:(a2-b2) 2-(a2+b2) 2=(a2-b2+a2+b2)(a2-b2-a2-b2)
=2a2 (-2b2)=-4a2b2
当a=3/4,b=4/3时,
原式=-4×(3/4)2×(4/3) 2=-4
23. 解:⑴a2-4b2
⑵a2-4b2=(a+2b)(a-2b)
当a=15.4,b=3.7时,
原式=(15.4+3.7×2)×(15.4-3.7×2)
=182.4。

相关文档
最新文档