哈尔滨市中考数学试题及答案(解析版)
2024年黑龙江省哈尔滨市中考数学试卷正式版含答案解析
![2024年黑龙江省哈尔滨市中考数学试卷正式版含答案解析](https://img.taocdn.com/s3/m/ec546f6d591b6bd97f192279168884868662b872.png)
绝密★启用前2024年黑龙江省哈尔滨市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−38的相反数为( )A. −38B. 38C. −83D. 832.剪纸是我国最古老的民间艺术之一.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.2020年11月10日,中国万米载人潜水器“奋斗者号”在马里亚纳海沟成功坐底,下潜深度达10909m.将10909用科学记数法表示为( )A. 1.0909×104B. 10.909×103C. 109.09×102D. 0.10909×1054.三个大小相同的正方体搭成的几何体如图所示,其左视图是( )A.B.C.D.5.方程1x−4=3x+2的解是( )A. x=0B. x=−5C. x=7D. x=16.二次函数y=2(x+1)2+3的最小值是( )A. −1B. 1C. 2D. 37.如图,用棋子摆出一组形如正方形的图形,按照这种方法摆下去,摆第5个图形需要棋子( )A. 16枚B. 20枚C. 24枚D. 25枚8.如图,在四边形ABCD中,AD//BC,点E在AB上,EF//AD交CD于点F,若AE:BE=1:2,DF=3,则FC的长为( )A. 6B. 3C. 5D. 99.如图,在△ABC中,AB=AC,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M,N两点,作直线MN交BC于点D连接AD,若∠B=50°,则∠DAC=( )A. 20°B. 50°C. 30°D. 80°10.一个有进水管与出水管的容器,从某时刻开始5min内只进水不出水,在随后的10min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,当x=9min时,y=( )A. 36LB. 38LC. 40LD. 42L第II 卷(非选择题)二、填空题:本题共10小题,每小题3分,共30分。
黑龙江省哈尔滨市中考数学真题试题(含解析)
![黑龙江省哈尔滨市中考数学真题试题(含解析)](https://img.taocdn.com/s3/m/41b73e90e009581b6ad9eb6e.png)
黑龙江省哈尔滨市2020年中考试卷试卷第I 卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1、-9的相反数是( )。
A 、-9; B 、-91; C 、9; D 、91【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣9的相反数是9, 故选:C .【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2、下列运算一定正确的是( )。
A 、2222a a a =+;B 、632a a a =∙; C 、6326)2(a a =; D 、22))((b a b a b a -=-+【分析】利用同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式解题即可; 【解答】解:2a +2a =4a ,A 错误;a 2•a 3=a 5,B 错误;(2a 2)3=8a 6,C 错误; 故选:D .【点评】本题考查整式的运算;熟练掌握同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式是解题的关键.3、下列图形中既是轴对称图形又是中心对称图形的是( )。
【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可. 【解答】解:A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、是中心对称图形,也是轴对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误.故选:B .【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解答此题的关键.4、七个大小相同的正方体搭成的几何体如图所示,其左视图是()。
【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.5、如图,PA、PB分别与⊙0相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()。
2020年黑龙江省哈尔滨市中考数学试卷-解析版
![2020年黑龙江省哈尔滨市中考数学试卷-解析版](https://img.taocdn.com/s3/m/af6398bde009581b6bd9eb79.png)
2020年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−8的倒数是()A. −18B. −8 C. 18D. 82.下列运算一定正确的是()A. a2+a2=a4B. a2⋅a4=a8C. (a2)4=a8D. (a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A. 扇形B. 正方形C. 等腰直角三角形D. 正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A. 25°B. 20°C. 30°D. 35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A. y=(x+3)2+5B. y=(x−3)2+5C. y=(x+5)2+3D. y=(x−5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数为()A. 10°B. 20°C. 30°D. 40°8. 方程2x+5=1x−2的解为( )A. x =−1B. x =5C. x =7D. x =99. 一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )A. 23B. 12C. 13D. 1910. 如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF//BC ,交AD 于点F ,过点E 作EG//AB ,交BC 于点G ,则下列式子一定正确的是( )A. AE EC =EFCDB. EF CD =EGABC. AF FD =BGGCD. CG BC =AFAD二、填空题(本大题共10小题,共30.0分) 11. 将数4790000用科学记数法表示为______. 12. 在函数y =xx−7中,自变量x 的取值范围是______.13. 已知反比例函数y =kx 的图象经过点(−3,4),则k 的值为______.14. 计算√24+6√16的结果是______.15. 把多项式m 2n +6mn +9n 分解因式的结果是______. 16. 抛物线y =3(x −1)2+8的顶点坐标为______.17. 不等式组{x3≤−1,3x +5<2的解集是______.18. 一个扇形的面积是13πcm 2,半径是6cm ,则此扇形的圆心角是______度.19. 在△ABC 中,∠ABC =60°,AD 为BC 边上的高,AD =6√3,CD =1,则BC 的长为______.20. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段BO 上,连接AE ,若CD =2BE ,∠DAE =∠DEA ,EO =1,则线段AE 的长为______.三、解答题(本大题共7小题,共60.0分) 21. 先化简,再求代数式(1−2x+1)÷x 2−12x+2的值,其中x =4cos30°−1.22.如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+√10.连接EG,请直接写出线段EG的长.23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF//AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG//BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为9√2,求线段5 CG的长.27.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于x,过点C作CM⊥y轴,垂足为M,OM=9.点C,直线OC的解析式为y=34(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求PE的值;OD(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ−FG=√2AF,求点P的坐标.答案和解析1.【答案】A,【解析】解:−8的倒数是−18故选:A.根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】C【解析】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2⋅a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.【答案】B【解析】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°−70°=20°.故选:B.根据切线的性质和圆周角定理即可得到结论.此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.【答案】D【解析】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x−5)2+3;故选:D.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.【答案】A【解析】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,∴∠AB′B=∠B=50°,∴∠CAB′=∠AB′B−∠C=10°,故选:A.由余角的性质可求∠C=40°,由轴对称的性质可得∠AB′B=∠B=50°,由外角性质可求解.本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.【答案】D【解析】解:方程的两边同乘(x+5)(x−2)得:2(x−2)=x−5,解得x=9,经检验,x=9是原方程的解.故选:D.根据解分式方程的步骤解答即可.本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.【答案】A【解析】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,故选:A.用红球的个数除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.【答案】C【解析】解:∵EF//BC,∴AFFD =AEEC,∵EG//AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.根据平行线分线段成比例性质进行解答便可.本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.11.【答案】4.79×106【解析】解:4790000=4.79×106,故答案为:4.79×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠7【解析】解:由题意得x−7≠0,解得x≠7.故答案为:x≠7.根据分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.【答案】−12的图象经过点(−3,4),【解析】解:∵反比例函数y=kx∴k=−3×4=−12,故答案为:−12.即可求k的值.把(−3,4)代入函数解析式y=kx本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.【答案】3√6【解析】解:原式=2√6+√6=3√6.故答案为:3√6.根据二次根式的性质化简二次根式后,再合并同类二次根式即可.本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.【答案】n(m+3)2【解析】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.直接提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.【答案】(1,8)【解析】解:∵抛物线y=3(x−1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).已知抛物线顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k).本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.【答案】x≤−3【解析】解:{x3≤−1 ①3x+5<2 ②,由①得,x≤−3;由②得,x<−1,故此不等式组的解集为:x≤−3.故答案为:x≤−3.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】130【解析】解:设这个扇形的圆心角为n°,nπ×62360=13π,解得,n=130,故答案为:130.根据扇形面积公式S=nπr2360,即可求得这个扇形的圆心角的度数.本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=nπr2360.19.【答案】5或7【解析】解:在Rt△ABD中,∠ABC=60°,AD=6√3,∴BD=ADtanB =√3√3=6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD−CD=6−1=5,故答案为:7或5.在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.【答案】2√2【解析】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32x,∵OE+BE=BO,∴1+x=32x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA=√42−32=√7,在Rt△AOE中,AE=√12+(√7)2=2√2.故答案为2√2.设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.21.【答案】解:原式=x−1x+1⋅2(x+1) (x−1)(x+1)=2x+1,∵x=4cos30°−1=4×√32−1=2√3−1,∴原式=22√3−1+1=√33.【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.【答案】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【解析】(1)画出边长为√10的正方形即可.(2)画出两腰为10,底为√10的等腰三角形即可.本题考查作图−应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.【答案】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:(3)800×2050=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【解析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数; (2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的2050,因此估计总体800名的2050是最喜欢“舞蹈”的人数.本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.【答案】(1)证明:∵AB =AC , ∵∠B =∠C ,在△ABD 和△ACE 中, {AB =AC ∠B =∠C BD =CE, ∴△ABD≌△ACE(SAS), ∴AD =AE ; (2)∵AD =AE , ∴∠ADE =∠AED , ∵BF//AC ,∴∠FDB =∠C =45°,∵∠ABC =∠C =∠DAE =45°,∠BDF =∠ADE , ∴∠F =∠BDF ,∠BEA =∠BAE ,∠CDA =∠CAD ,∴满足条件的等腰三角形有:△ABE ,△ACD ,△DAE ,△DBF .【解析】(1)根据SAS 可证△ABD≌△ACE ,根据全等三角形的性质即可求解; (2)根据等腰三角形的判定即可求解.考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.【答案】解:(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意可得: {x +3y =1362x +y =132, 解得:{x =52y =28,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据题意可得: 52a +28(30−a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【解析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则每个小地球仪为(30−a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.【答案】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH//AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG//BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE=√OB2−OE2=√9x2−x2=2√2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=BEAE =NFAN,∴2√2x4x =NFAN,∴AN=√2NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=BEOE =NFON,∴2√2xx =NFON,∴ON=√24NF,∴AO=AN+ON=5√24NF,∵△AOF的面积为9√25,∴12×AO×NF=12×5√24NF2=9√25,∴NF=6√25,∴AO=5√24NF=3=3x,∴x=1,∴BE=2√2=OH,AE=4,DG=DE=2,∴AC=√AE2+CE2=√16+8=2√6,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4√2,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴ADAC =AGAM=DGCM,∴26=4√2AM =2CM ,∴CM =2√63,AM =8√33, ∴GM =√AG 2−AM 2=√32−643=4√63, ∴CG =GM −CM =2√63.【解析】(1)由垂径定理可得BE =EC ,由线段垂直平分线的性质可得AB =AC ,由等腰三角形的性质可得∠BAD =∠ABO =∠CAD ,由外角的性质可得结论;(2)由“AAS ”可证△BOE≌△ODH ,可得BE =OH ;(3)过点F 作FN ⊥AD ,交AD 于N ,设DG =DE =2x ,由全等三角形的性质可得OE =DH =x ,OD =3x =OA =OB ,勾股定理可求BE =2√2x ,由锐角三角函数可求AN =√2NF ,ON =√24NF ,可得AO =AN +ON =5√24NF ,由三角形面积公式可求NF 的长,可求x =1,可得BE =2√2=OH ,AE =4,DG =DE =2,勾股定理可求AC =2√6,连接AG ,过点A 作AM ⊥CG ,交GC 的延长线于M ,通过证明△ACM∽△ADG ,由相似三角形的性质可求AM ,CM 的长,由勾股定理可求GM 的长,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF 的长是本题的关键.27.【答案】解:(1)∵CM ⊥y 轴,OM =9,∴y =9时,9=34x ,解得x =12,∴C(12,9),∵AC ⊥x 轴,∴A(12,0),∵OA =OB ,∴B(0,−12),设直线AB 的解析式为y =kx +b ,则有{b =−1212k +b =0, 解得{k =1b =−12, ∴直线AB 的解析式为y =x −12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM−NC=12−9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=34x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD−DE=12a−3a=9a,∴PEOD =94.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°−45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=√2m,QR=SF=12−m,∵GQ−FG=√2AF,∴GQ=√2×√2m+6−m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12−m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴DEDH =DHPD,由(2)可知DE=3a,PD=12a,∴3aDH =DH12a,∴DH=6a,∴tan∠PHD=PDDH =12a6a=2,∵∠PHD=∠FHT,∴tan∠FHT=TFHT=2,∵OT =OD +DH +HT ,∴4a +6a +2=8,∴a =35,∴OD =125,PD =12×35=365,∴P(125,365). 【解析】(1)求出A ,B 两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON 的解析式为y =3x ,设点E 的横坐标为4a ,则D(4a,0),求出PE ,OD(用a 表示)即可解决问题.(3)如图3中,设直线FG 交CA 的延长线于R ,交y 轴于S ,过点F 作FT ⊥OA 于T.证明△OFS≌△FQR(AAS),推出SF =QR ,再证明△BSG≌△QRG(AAS),推出SG =GR =6,设FR =m ,则AR =m ,AF =√2m ,QR =SF =12−m ,GQ −FG =√2AF ,根据GQ 2=GR 2+QR 2,可得(m +6)2=62+(12−m)2,解得m =4,由题意tan∠DHE =tan∠DPH ,可得DE DH =DH PD ,由(2)可知DE =3a ,PD =12a ,推出3a DH =DH 12a ,可得DH =6a ,推出tan∠PHD =PD DH =12a 6a =2,由∠PHD =∠FHT ,可得tan∠FHT =TF HT =2,推出HT =2,再根据OT =OD +DH +HT ,构建方程求出a 即可解决问题.本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
精品解析:2022年黑龙江省哈尔滨市中考数学真题(解析版)
![精品解析:2022年黑龙江省哈尔滨市中考数学真题(解析版)](https://img.taocdn.com/s3/m/e3f5a1a18662caaedd3383c4bb4cf7ec4afeb6f4.png)
【答案】A
【解析】
【分析】由切线性质得出 ,根据三角形的内角和是 、对顶角相等求出 ,即可得出答案;
【详解】解: PA与⊙O相切于点A,AD是⊙O的直径,
,
,
,
,
,
,
,
,
故选:A.
【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是 ,解题关键根据切线性质推出 .
【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为 的形式,其中 , 为整数,确定 和 的值是解题的关键.
12.在函数 中,自变量x的取值范围是___________.
【答案】
【解析】
【分析】根据分式中分母不能等于零,列出不等式 ,计算出自变量x的范围即可.
【详解】根据题意得:
∴
∴
故答案为:
19.一个扇形的面积为 ,半径为 ,则此扇形的圆心角是___________度.
【答案】70
【解析】
【分析】设扇形的圆心角是 ,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.
【详解】解:设扇形的圆心角是 ,根据扇形的面积公式得:
解得n=70.
故答案 : .
【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.
20.如图,菱形 的对角线 相交于点O,点E在 上,连接 ,点F为 的中点,连接 ,若 , , ,则线段 的长为___________.
【答案】
【解析】
【分析】先根据菱形的性质找到Rt△AOE和Rt△AOB,然后利用勾股定理计算出菱形的边长BC的长,再根据中位线性质,求出OF的长.
【详解】已知菱形ABCD,对角线互相垂直平分,
2024年哈尔滨中考数学题
![2024年哈尔滨中考数学题](https://img.taocdn.com/s3/m/84d606df970590c69ec3d5bbfd0a79563d1ed40f.png)
2024年哈尔滨中考数学题一、小明在操场上跑步,他第一圈用了2分钟,第二圈用了2分10秒,那么小明跑第二圈时比第一圈:A. 快了B. 慢了C. 一样快D. 无法比较(答案:B)二、哈尔滨的冬季气温常常低于零度,某天早晨的气温是-12℃,中午气温上升了5℃,那么中午的气温是:A. -17℃B. -7℃C. 7℃D. 17℃(答案:B)三、已知哈尔滨到北京的距离约为1200公里,如果一辆汽车以每小时80公里的速度匀速行驶,不考虑休息和其他因素,那么它大约需要多少小时才能到达北京?A. 10小时B. 15小时C. 20小时D. 25小时(答案:B,但实际应考虑休息等因素)四、小红在超市买了一瓶饮料和一包零食,饮料的价格是5元,零食的价格是饮料的两倍加1元,那么零食的价格是:A. 6元B. 7元C. 10元D. 11元(答案:D)五、哈尔滨的某座桥长1000米,如果小明以每分钟100米的速度从桥的一端走到另一端,他需要:A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、已知一个直角三角形的两条直角边长度分别为3和4,那么它的斜边长度最接近:A. 5B. 6C. 7D. 8(答案:C,根据勾股定理,实际值为5但选项中最接近7)七、哈尔滨的冬季常常下雪,如果一场雪后,地面的积雪厚度达到了10厘米,并且每小时融化2厘米,那么多少小时后积雪会完全融化?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C,但实际可能因温度等因素有所变化)八、小明家距离学校3公里,他通常骑自行车上学,如果他的骑车速度是每小时15公里,那么他需要多少分钟才能到学校?A. 5分钟B. 10分钟C. 12分钟D. 15分钟(答案:C,3公里/15公里/小时 = 0.2小时 = 12分钟)九、哈尔滨的某座塔高100米,如果小华从塔顶以每秒2米的速度下降,那么他需要多少秒才能到达地面?A. 20秒B. 30秒C. 40秒D. 50秒(答案:D,100米/2米/秒 = 50秒)十、已知一个圆的半径为r,如果它的半径增加了一倍,那么它的面积会增加多少倍?A. 1倍B. 2倍C. 3倍D. 4倍(答案:C,面积从πr²增加到4πr²,增加了3倍)。
2022年中考必做真题:黑龙江哈尔滨中考数学试卷含解析
![2022年中考必做真题:黑龙江哈尔滨中考数学试卷含解析](https://img.taocdn.com/s3/m/5ae01acd4b35eefdc9d3331c.png)
2022年中考必做真题:哈 尔 滨 市 初 中 升 学 考 试数 学 试 卷(含答案)考生须知:1. 本试卷满分为120分, 考试时间为120分钟。
2. 答题前, 考生先将自己的 ”姓名”、 “考号”、 “考场"、 ”座位号”在答题卡上填写清楚, 将“条形码”准确粘贴在条形码区域内。
3. 请按照题号顺序在答题卡各题目的 答题区域内作答, 超出答题区域书写的 答案无效;在草稿纸、 试题纸上答题无效。
4. 挑选题必须使用2B 铅笔填涂;非挑选题必须使用0. 5毫米黑色字迹的 签字笔书写, 字体工整、 笔迹清楚。
5. 保持卡面整洁, 不要折叠、 不要弄脏、 不要弄皱, 不准使用涂改液、 修正带、 刮纸刀。
第Ⅰ卷挑选题(共30分) (涂卡)一、 挑选题(每小题3分, 共计30分) 1. 75-的 绝对值是 ( ) . (A)75 (B) 57 (C) 75- (D) 57- 2.下列运算一定正确的 是 ( ) .(A) ()222n m n m +=+ (B) ()333n m mn = (C) ()523m m = (D) 22m m m =⋅3. 下列图形中既是 轴对称图形又是 中心对称图形的 是 ( ) .4. 六个大小相同的 正力体搭成的 几何体如图所示, 其俯视图是 ( ) .5. 如图, 点P 为⊙O 外一点, PA 为⊙0的 切线, A 为切点, PO 交⊙0于点B ,∠P=30°, OB=3, 则线段BP 的 长为( ) . (A) 3 (B) 33 (C) 6 (D) 96. 将抛物线y=-5x 2+l 向左平移1个单位长度, 再向下平移2个单位长度, 所得到的 抛物线为( ) . (A)y=-5(x+1) 2-1 (B) y=-5(x-1) 2-1 (C) y=-5(x+1) 2+3 (D) y=-5(x-1) 2+37. 方程3221+=x x 的 解为( ) . (A) x=-1 (B) x=0 (C) x=53(D) x=1 8. 如图, 在菱形ABCD 中, 对角线AC 、 BD 相交于点0, BD=8, tan ∠ABD=43, 则线段AB 的 长为( ) .(A) 7 (B) 27 (C) 5 (D) 109. 已知反比例函数xk y 32-=的 图象经过点(1, 1) , 则k 的 值为( ) .(A) -1 (B) 0 (C) 1 (D) 210. 如图, 在△ABC 中, 点D 在BC 边上, 连接AD, 点G 在线段AD 上, GE ∥BD,且交AB 于点E, GF ∥AC, 且交CD 于点F, 则下列结论一定正确的 是 ( ) .(A) ADAG AEAB =(B) AD DGCFDF =(C) BDEG ACFG = (D) DFCF BEAE =第Ⅱ卷非挑选题(共90分)二、 填空题(每小3分, 共计30分) 11. 将数920 000 000用科学记数法表示为. 12. 函数45y -=x x中, 自变量x 的 取值范围是 . 13. 把多项式x 3-25x 分解因式的 结果是 .14. 不等式组{1215325≥---x x x >的 解集为.15. 计算5110-56的 结果是 . 16. 抛物线y=2(x+2) 2+4的 顶点坐标为.17. 一枚质地均匀的 正方体骰子, 骰子的 六个面上分別刻有1到6的 点数, 张兵同学掷一次骰子, 骰子向上的 一面出现的 点数是 3的 倍数的 概率是 .18. 一个扇形的 圆心角为135°, 弧长为3πcm, 则此扇形的 面积是 .19. 在△ABC 中, AB=AC, ∠BAC=100°, 点D 在BC 边上, 连接AD, 若△ABD 为直角三角形, 则∠ADC 的度数为.20. 如图, 在平行四边形ABCD 中, 对角线AC 、 BD 相交于点0, AB=OB , 点E 、 点F 分别是 OA 、 OD 的 中点, 连接EF, ∠CEF=45°EM ⊥BC 于点M, EM 交BD 于点N, FN=10, 则线段BC 的 长为.三、 解答题(其中21~22题各7分, 23~24题备8分, 25-27题各10分, 共计60分 21(本题7分)先化简, 再求代数式429621-12-+-÷⎪⎭⎫ ⎝⎛-a a a a 的 值, 其中a=4cos30°+3tan45°. 22. (本题7分)如图, 方格纸中每个小正方形的 边长均为1, 线段AB 的 两个端点均在小正方形的 顶点上.(1) 在图中画出以线段AB 为一边的 矩形ABCD(不是 正方形) , 且点C 和点D 均在小正方形的 顶点上;(2) 在图中画出以线段AB 为一腰, 底边长为22的 等腰 三角形ABE, 点E 在小正方形的 顶点上. 连接CE, 请直接写出线段 CE 的 长. 23. (本题8分)为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜欢的 传统文化种类”为主题的 调查活动, 围绕“在诗词、 国画、 对联、 书法、 戏曲五种传统文化中, 你最喜欢哪一种?(必选且只选一种) ”的 问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的 不完整的 统计图. 请你根据图中提供的 信息回答下列问题:(1) 本次调查共抽取了几 名学生? (2) 通过计算补全条形统计图;(3) 若军宁中学共有960名学生, 请你估计该中学最喜欢国画的学生有几名?24. (本题8分)已知:在四边形ABCD中, 对角线AC、 BD相交于点E,且AC⊥BD, 作BF⊥CD垂足为点F, BF 与AC交于点G. ∠BGE=∠ADE.(1) 如图1, 求证:AD=CD;(2) 如图2, BH是△ABE的中线, 若AE=2DE, DE=EG, 在不添加任何辅助线的情况下, 请直接写出图2中四个三角形, 使写出的每个三角形的面积都等于△ADE面积的 2倍.25. (本题10分)春平中学要为学校科技活动小组提供实验器材, 计划购买A型, B型两种型号的放大镜, 若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1) 求每个A型放大镜和每个B型放大镜各几元?(2) 春平中学决定购买A型放大镜和B型放大镜共75个, 总费用不超过1180元, 那么最多可以购买几个A型放大镜?26. (本题10分)已知:⊙O 是 正方形ABCD 的 外接圆, 点E 在弧AB 上, 连接BE 、 DE, 点F 在弧AD 上, 连接BF, DF, BF 与DE 、 DA 分别交于点G 、 点H, 且DA 平分∠EDF.(1) 如图1, 求证:∠CBE=∠DHG;(2) 如图2, 在线段AH 上取一点N (点N 不与点A 、 点H 重合) , 连接BN 交DE 于点L, 过点H 作HK ∥BN 交DE 于点K, 过点E 作EP ⊥BN 垂足为点P , 当BP=HF 时, 求证:BE=HK;(3) 如图3, 在(2) 的 条件下, 当3HF=2DF 时, 延长EP 交⊙0于点R, 连接BR, 若△BER 的 面积与△DHK 的 面积的 差为47, 求线段BR 的 长.27. (本题10分)已知:在平面直角坐标系中, 点0为坐标原点, 点A 在x 轴的 负半轴上, 直线3273+-=x y 与x 轴、 y 轴分别交于B 、 C 两点, 四边形ABCD 为菱形. (1) 如图1, 求点A 的 坐标;(2) 如图2, 连接AC, 点P 为△ACD 内一点, 连接AP 、 BP, BP 与AC 交于点G, 且∠APB=60°, 点E 在线段AP 上, 点F 在线投BP 上, 且BF=AE. 连接AF 、 EF, 若∠AFE=30°, 求AF 2+EF 2的 值;(3) 如图3在(2) 的 条件下, 当PE=AE 时, 求点P 的 坐标.。
2020年黑龙江哈尔滨中考数学试卷及答案(word解析版)
![2020年黑龙江哈尔滨中考数学试卷及答案(word解析版)](https://img.taocdn.com/s3/m/31bc0300fd0a79563d1e723e.png)
哈尔滨市2020年初中升学考试数学试卷题序一二三四五六七八总分得分一、选择题(每小题3分,共计30分)1.(2020哈尔滨,1,3分)-13的倒数是( ).A.3B.-3C.-13D.13【答案】B.2.(2020哈尔滨,2,3分)下列计算正确的是( ).A.a3+a2=a3B.a3·a2=a6C.(a2)3=a6D.(a2)2=a22【答案】C.3.(2020哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A.B.C.D.【答案】D.4.(2020哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这( ).【答案】A.5.(2020哈尔滨,5,3分)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=x2+2 D.y=x2-2【答案】D.6.(2020哈尔滨,6,3分)反比例函数y=1-2kx的图象经过点(-2,3),则k的值为( ).A.6B.-6C.72D.-72正面第4题A.【答案】 C . 7.(2020哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ). A .4 B .3 C .52D .2(第7题图) 【答案】 B . 8.(2020哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2020哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2020哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2020哈尔滨,11,3分)把98000用科学记数法表示为_______________. 【答案】9.8×104.12.(2020哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________.【答案】x ≠3.13.(2020哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2020哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1. 15.(2020哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y ); 16.(2020哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2020哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2020哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%.19.(2020哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13.20.(2020哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为________.EODC B A(第20题图) 【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(2020哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2. 【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2,∴原式=1a +2=1 23-2+2=1 23=36.22.(2020哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 223.(2020哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2020哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2020哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE . (1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BOAB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt△BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2020哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天. (2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天.27.(2020哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60º,∵BC⊥AB,∴∠ABC=90º,∴∠ACB=30º,∠OBC=30º,∴∠ACB=∠OBC,∴OC=OB=AB=OA=3,∴AC=6,∴BC=32AC=33.(2)解:如图1,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=60º=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3-t,∴ON=3-(3-t)=t,∴PN=t+t=2t,∵OE∥QN,∴△POE∽△PNQ,∴OEQN=OPPN,∴OE3-t=12,OE=32-12t,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30º,∴EF=BE,∴m=BE=OB-OE=12t+32(0<t<3).(3)如图2,∵∠BE′F′=∠BEF=180º-∠EBF-∠EFB=120º,∴∠AE′G=60º=∠E′AG,∴GE′=GA,∴△AE′G为等边三角形.∵QE′=BE′-BQ=m-t=12t+32-t=32-12t,∴GE′=GA=AE′=AB-BE′=32-12 t=QE′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA=90º,∴QG=3AG=323-123t,∵EF∥OC,∴BFBC=BEOB,∴BF33=m3,∴BF=3m=323+123t,∵CF=BC-BF=323-123t,CP=CO-OP=3-t,∴CFCB=323-123t33=3-t6=CPAC.∵∠FCP=∠BCA,∴△FCP∽△BCA,∴PFAB=CPAC,∴PF=3-t2,∵2BQ-BF=33QG,∴2t-3-t2=33×(323-123t),∴t=1.∴当t=1时,2BQ-PF=33QG.28.(2020哈尔滨,28,10分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD点点G.(1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,F A =FC ,∴FE =F A ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GF A ,∴△AFG ∽△BF A ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .友情提示:一、认真对待每一次考试。
2020年黑龙江省哈尔滨市中考数学试卷(含解析)
![2020年黑龙江省哈尔滨市中考数学试卷(含解析)](https://img.taocdn.com/s3/m/14dab148b7360b4c2e3f6483.png)
2020年黑龙江省哈尔滨市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE =∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC 于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.参考答案与试题解析一、选择1.【解答】解:﹣8的倒数是﹣,故选:A.2.【解答】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.4.【解答】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.5.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.6.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y =x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.7.【解答】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.8.【解答】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x﹣5,解得x=9,经检验,x=9是原方程的解.故选:D.9.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是=,故选:A.10.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.二、填空题11.【解答】解:4790000=4.79×106,故答案为:4.79×106.12.【解答】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.13.【解答】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.14.【解答】解:原式=.故答案为:.15.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.【解答】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).17.【解答】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.18.【解答】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.19.【解答】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.【解答】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA==,在Rt△AOE中,AE==2.故答案为2.三、解答题21.【解答】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.22.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.23.【解答】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.24.【解答】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.25.【解答】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.26.【解答】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.27.【解答】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,)。
2020年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)
![2020年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)](https://img.taocdn.com/s3/m/8936cfd75acfa1c7ab00cc24.png)
哈尔滨市2020年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.【知识考点】倒数.【思路分析】根据乘积为1的两个数互为倒数,可求一个数的倒数.【解题过程】解:﹣8的倒数是﹣,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.【解题过程】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.【总结归纳】本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【知识考点】圆周角定理;切线的性质.【思路分析】根据切线的性质和圆周角定理即可得到结论.【解题过程】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【总结归纳】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 【知识考点】二次函数图象与几何变换.【思路分析】根据“上加下减,左加右减”的原则进行解答即可.【解题过程】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【总结归纳】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【知识考点】轴对称的性质.【思路分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解题过程】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.【总结归纳】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=9【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.【总结归纳】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】利用概率公式可求解.【解题过程】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=【知识考点】相似三角形的判定与性质.【思路分析】根据平行线分线段成比例性质进行解答便可.【解题过程】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.【总结归纳】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:4790000=4.79×106,故答案为:4.79×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解题过程】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解题过程】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【总结归纳】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算+6的结果是.【知识考点】二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解题过程】解:原式=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】直接提取公因式n,再利用完全平方公式分解因式得出答案.【解题过程】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.抛物线y=3(x﹣1)2+8的顶点坐标为.【知识考点】二次函数的性质.【思路分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解题过程】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).【总结归纳】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.【知识考点】扇形面积的计算.【思路分析】根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.【解题过程】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.【总结归纳】本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.【知识考点】含30度角的直角三角形.【思路分析】在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.【解题过程】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【知识考点】菱形的性质.【思路分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE 的长.【解题过程】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA===,在Rt△AOE中,AE===2.故答案为2.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解题过程】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.【知识考点】等腰三角形的判定;勾股定理;作图—应用与设计作图.【思路分析】(1)画出边长为的正方形即可.(2)画出两腰为5,底为的等腰三角形即可.【解题过程】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.【总结归纳】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【知识考点】用样本估计总体;条形统计图.【思路分析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.【解题过程】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【总结归纳】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【知识考点】全等三角形的判定与性质;等腰三角形的判定与性质.【思路分析】(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.【解题过程】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【总结归纳】考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.【解题过程】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【总结归纳】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.【知识考点】圆的综合题.【思路分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.【解题过程】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.【总结归纳】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【知识考点】一次函数综合题.【思路分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD (用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR =m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解题过程】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).【总结归纳】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21。
2023年黑龙江省哈尔滨市中考数学真题试卷(解析版)
![2023年黑龙江省哈尔滨市中考数学真题试卷(解析版)](https://img.taocdn.com/s3/m/2a32db647275a417866fb84ae45c3b3567ecdd1f.png)
2023年黑龙江省哈尔滨市中考数学真题试卷及答案一、选择题(每小题3分,共计30分)1. 的绝对值是( )A. B. 10 C. D.【答案】A【解析】根据“正数的绝对值是它本身,0的绝对值为0,负数的绝对值是它的相反数”求解即可.解:因为为负数,所以的绝对值为,故选A.【点拨】本题主要考查求绝对值,掌握“正数的绝对值是它本身,0的绝对值为0,负数的绝对值是它的相反数”是解题的关键.2. 下列运算一定正确的是()A. B. C. D.【答案】D【解析】根据积的乘方、同类项的定义、幂的乘方和平方差公式逐一判断即可.A.,故本选项原说法错误;B.,故本选项原说法错误;C.,故本选项原说法错误;D.,故本选项正确.故选D.【点拨】此题考查的是幂的运算性质和整式的运算,掌握积的乘方、合并同类项和幂的乘方是解决此题的关键.3. 下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】A【解析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;中心对称是旋转后与原图重合的图形,根据轴对称图形和中心对称图形的定义进行判断.解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.【点拨】本题考查了判断轴对称图形和中心对称图形,熟记定义是解题的关键.4. 七个大小相同的正方体搭成的几间体如图所示,其俯视图是()A. B. C. D.【答案】C【解析】根据从上边看得到的图形是俯视图,可得答案.解:这个组合体的俯视图如下:故选:C.【点拨】本题考查了画小立方块堆砌图形的三视图,掌握从上边看得到的图形是俯视图是解题的关键.5. 如图,是的切线,A为切点,连接﹐点C在上,,连接并延长,交于点D,连接.若,则的度数为()A. B. C. D.【答案】B【解析】利用垂线的性质及切线的性质得到和,再利用四边形的内角和为进而可求得,再利用等边对等角及三角形的内角和即可求解.解:,,又是的切线,,,又,,,又,,,故选B.【点拨】本题考查了圆的切线的性质,四边形内角和是,等腰三角形的性质及三角形的内角和,熟练掌握其基本知识是解题的关键.6. 方程的解为()A. B. C. D.【答案】C【解析】方程两边同时乘以,化为整式方程即可求解.解:程两边同时乘以得,解得:经检验,是原方程的解,故选:C.【点拨】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.7. 为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x米,根据题意,所列方程正确的是()A. B. C. D.【答案】A【解析】根据矩形面积公式,可得,即可解答.解:根据题意可得矩形空地的宽为米,可列方程,故选:A.【点拨】本题考查了一元二次方程的应用,根据题意得到等量关系,列出方程是解题的关键.8. 将枚黑棋子5枚白棋子装入一个不透明的空盒子里,这些棋子除颜色外无其他差别,从盒子中随机取出一枚棋子,则取出的棋子是黑棋子的概率是()A. B. C. D.【答案】D【解析】取出的棋子是黑棋子的概率:,据此即可求解.解:由题意得:取出的棋子是黑棋子的概率为:故选:D【点拨】本题考查概率的计算.熟记概率公式是解题关键.9. 如图,,相交于点,,是的中点,,交于点.若,则的长为()A. 2B. 4C. 6D. 8【答案】B【解析】根据可得,从而得到,再根据得到,从而得到,最后得到即可求解.解:,,,,,,,,是的中点,,,,,故选:B.【点拨】本题考查相似三角形的性质及判定,掌握相似三角形的性质及判定方法是解决本题的关键.10. 一条小船沿直线从A码头向B码头匀速前进,到达B码头后,停留一段时间,然后原路匀速返回A码头.在整个过程中,这条小船与B码头的距离(单位:)与所用时间(单位:)之间的关系如图所示,则这条小船从A码头到B码头的速度和从B码头返回A码头的速度分别为()A. B. C. D.【答案】D【解析】根据路程除以时间结合函数图象即可求解.解:依题意,小船从A码头到B码头的速度为,从B码头返回A码头的速度为,故选:D.【点拨】本题考查了函数图象,从函数图象获取信息是解题的关键.二、填空题(每小题3分,共计30分)11. 船闸是我国劳动人民智慧的结晶,三峡船闸的“人”字闸门是目前世界上最大的巨型闸门,重867000千克,用科学记数法表示为_______千克.【答案】【解析】把一个数写成的形式,是正整数,这种形式的记数方法叫做科学记数法.根据科学记数法的定义写出答案.科学记数法就是把一个数写成的形式,是整数,,故答案为:.【点拨】本题考查科学记数法,掌握科学记数法的记数方法是解题的关键.12. 在函数中,自变量x的取值范围是_________.【答案】【解析】根据分母不能为求出自变量x的取值范围.分式中分母不能为,,,故答案为:.【点拨】本题考查求函数自变量的取值范围,熟练掌握分式有意义的条件是解题的关键.13. 已知反比例函数的图像经过点,则a的值为_________.【答案】2【解析】将点的坐标代入函数解析式即可.解:将代入得:,解得:,故答案为:2.【点拨】本题考查了反比例函数的定义,根据反比例函数值求自变量是解题的关键.14. 计算的结果是___________.【答案】【解析】利用二次根式的混合运算法则及分母有理数的方法即可求解.解:,故答案:.【点拨】本题考查了二次根式的混合运算及分母有理数,熟练掌握其运算法则是解题的关键.15. 把多项式分解因式的结果是_____.【答案】【解析】先提取公因式m,然后发现还能利用平方差公式继续分解,即可得到结果.解:故答案为:.【点拨】本题考查因式分解,熟练掌握提公因式法及公式法是解题的关键,注意要分解彻底.16. 抛物线与y轴交点坐标是_________.【答案】【解析】与轴的交点的特点为,令,求出的值,即可求出抛物线与轴的交点坐标.令抛物线中,即,解得,故与轴的交点坐标为,故答案为:.【点拨】本题主要考查了抛物线与y轴的交点坐标,解题的关键是令,求出的值.17. 不等式组的解集是_________________.【答案】【解析】根据解一元一次不等式组的步骤即可求解.解:解①得:解②得:故该不等式组的解集为:故答案为:【点拨】本题考查求解一元一次不等式组,掌握求解一元一次不等式组一般步骤是解题的关键.注意计算的准确性.18. 一个扇形的圆心角是,弧长是,则扇形的半径是_________cm.【答案】3【解析】根据弧长公式即可得到关于扇形半径的方程即可求解.解:设扇形的半径是,则解得:.故答案为3.【点拨】题主要考查了扇形的弧长,正确理解公式是解题的关键.19. 矩形的对角线,相交于点,点在矩形边上,连接.若,,则_________.【答案】或【解析】根据题意画出图形,分点在上和上两种情况讨论即可求解.解:∵四边形是矩形,∴,∴,∵,∴∴,如图所示,当点在上时,∵,∴如图所示,当点在上时,∵,∴,故答案为:或.【点拨】本题考查了矩形的性质,等边对等角,三角形的外角的性质,分类讨论是解题的关键.20. 如图在正方形中,点E在上,连接,,F为的中点连接.若,则的长为_________.【答案】【解析】根据正方形的性质得到,,设,根据勾股定理求出的值,再根据勾股定理即可求出的长.解:正方形,F为的中点,设,在中,即解得故,在中解得(负值舍去)故答案为:.【点拨】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,熟练掌握勾股定理是解题的关键.三、解答题(共60分)21. 先化简,再求代数式的值,其中.【答案】,【解析】先根据分式混合运算法则代简,再将代入代简式计算即可.解:,当时,原式.【点拨】本题考查分式化简求值,特殊角的三角函数值,分母有理化,熟练掌握分式混合运算法则是解题的关键.22. 如图,方格纸中每个小正方形的边长均为1个单位长度,线段和线段的端点均在小正方形的顶点上.(1)在方格纸中画出,且为钝角(点在小正方形的顶点上);(2)在方格纸中将线段向下平移2个单位长度,再向右平移1个单位长度后得到线段(点的对应点是点,点的对应点是点),连接,请直接写出线段的长.【答案】(1)画图见解析(2)画图见解析,【解析】(1)找到的格点的,使得,且,连接,则即为所求;(2)根据平移画出,连接,勾股定理即可求解.(1)解:如图所示,即为所求;(2)解:如图所示,,即为所求;.【点拨】本题考查了平移作图,勾股定理与网格,熟练掌握勾股定理是解题的关键.23. 军乐中学开展以“我最喜欢的劳动实践课”为主题的调查活动,围绕“在园艺课,泥塑课,编织课、烹饪课四门劳动实践课中,你最喜欢哪一门课?(必选且只选一门)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢泥塑课的学生人数占所调查人数的.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若军乐中学共有1200名学生,请你估计该中学最喜欢烹饪课的学生共有多少名.【答案】(1)(2)见解析(3)【解析】根据最喜欢泥塑课的学生人数为人,占所调查人数的,用即可求解;(2)根据总人数减去其他类型的人数,即可得出最喜欢编织课的学生人数进而补全统计图;(3)根据最喜欢烹饪课的学生的占比乘以,即可求解.(1)解:最喜欢泥塑课的学生人数为人,占所调查人数的,∴这次调查中,一共抽取了名学生(2)解:最喜欢编织课的学生人数为人,补全统计图如图所示,(3)解:估计该中学最喜欢烹饪课的学生共有名【点拨】本题考查了条形统计图,样本估计总体,从统计图中获取信息是解题的关键.24. 已知四边形是平行四边形,点在对角线上,点在边上,连接,,.(1)如图①,求证;(2)如图②,若,过点作交于点,在不添加任何轴助线的情况下,请直接写出图②中四个角(除外),使写出的每个角都与相等.【答案】(1)见解析;(2),理由见解析.【解析】(1)由平行四边形的性质得,,进而有,从而利用即可证明结论成立;(2)先证四边形是菱形,得,又证,得,由()得得,根据等角的补角相等即可证明.(1)证明:∵四边形是平行四边形,∴,,∴,∵,∴;(2)解:,理由如下:∵四边形是平行四边形,∴四边形是菱形,,∴,,,∴,∵,∴,∴,∴,由()得,∴,∵,∴.【点拨】本题考查了平行四边形的性质、菱形的判定及性质、等边对等角、全等三角形的判定及性质以及等角的补角相等.熟练掌握全等三角形的判定及性质是解题的关键.25. 佳衣服装厂给某中学用同样的布料生产,两种不同款式的服装,每套款服装所用布料的米数相同,每套款服装所用布料的米数相同,若套款服装和套款服装需用布料米,套款服装和套款服装需用布料米.(1)求每套款服装和每套款服装需用布料各多少米;(2)该中学需要,两款服装共套,所用布料不超过米,那么该服装厂最少需要生产多少套款服装?【答案】(1)每套款服装用布料米,每套款服装需用布料米(2)服装厂需要生产套款服装【解析】(1)每套款服装用布料米,每套款服装需用布料米,根据题意列出二元一次方程组,解方程组即可求解;(2)设服装厂需要生产套款服装,则生产套款服装,根据题意列出一元一次不等式,解不等式即可求解.(1)解:每套款服装用布料米,每套款服装需用布料米,根据题意得,,解得:,答:每套款服装用布料米,每套款服装需用布料米;(2)设服装厂需要生产套款服装,则生产套款服装,根据题意得,,解得:,∵为正整数,∴的最小值为,答:服装厂需要生产套款服装.【点拨】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出不等式以及方程组是解题的关键.26. 已知内接于,为的直径,N为的中点,连接交于点H.(1)如图①,求证;(2)如图②,点D在上,连接,,,交于点E,若,求证;(3)如图③,在(2)的条件下,点F在上,过点F作,交于点G.,过点F作,垂足为R,连接,,,点T在的延长线上,连接,过点T作,交的延长线于点M,若,求的长.【答案】(1)见解析(2)见解析(3)【解析】(1)连接,根据N为的中点,易证,再根据中位线定理得出结论;(2)连接,先证得,再根据得,根据即可得出结论;(3)连接,先证,再证四边形是矩形,过A作垂足为S,先证出,再能够证出从而,得到等腰直角,利用三角函数求出,再根据求出,最后用勾股定理求出答案即可.(1)证明:如图,连接,为的中点,,,,,,是中位线,;(2)证明:如图,连接,设,,,,,,,,,,;(3)解:连接,,,,,,,,,,,,,,,,四边形是平行四边形,是的直径,,四边形矩形,,,过点A作垂足为S,,,,,,,,是的直径,,,,,,,,,,,,,,,,,,,,,,.【点拨】本题是圆的综合题,考查圆的有关知识、全等三角形的判定与性质、垂径定理、三角函数、勾股定理、圆周角定理等知识,构造辅助线解决问题是解题关键.27. 在平面直角坐标系中,为坐标原点,抛物线与轴交于点,,与轴交于点.(1)求,的值;(2)如图①,是第二象限抛物线上的一个动点,连接,,设点的横坐标为,的面积为,求关于的函数解析式(不要求写出自变量的取值范围);(3)如图②,在(2)的条件下,当时,连接交轴于点,点在轴负半轴上,连接,点在上,连接,点在线段上(点不与点重合),过点作的垂线与过点且平行于的直线交于点,为的延长线上一点,连接,,使,是轴上一点,且在点的右侧,,过点作,交的延长线于点,点在上,连接,使,若,求直线的解析式.【答案】(1),(2)(3)【解析】(1)把点,代入抛物线解析式,得方程组,求出,的值即可;(2)过点作轴,垂足为,由(1)知,抛物线的解析式是,得,根据“是第二象限抛物线上的一个动点,点的横坐标为”,得,根据,代入整理即可得到关于的函数解析式;(3)以为一边作,的另一边交的延长线于点;作,垂足为;作,垂足为;作轴,垂足为;根据和,求出,根据“,,,”推理出,,得到,结合,推理出,用证,用证,推理出,根据“,”,得出,,,代入,求出,勾股定理算出,根据“,”,设,则,,代入,算出,运用勾股定理计算,计算,结合点在轴负半轴上,得,设直线的解析式为,把,代入求出完整解析式即可.(1)点,在抛物线上,,解得:,,(2)由(1)知,抛物线的解析式是,是抛物线与轴的交点,时,,,,如下图,过点作轴,垂足为,是第二象限抛物线上一点,点的横坐标为,,(3)如下图,以为一边作,的另一边交的延长线于点;作,垂足为;作,垂足为;作轴,垂足为,,由(2)知,,,,,,,,即,,,,,,,,,又,,,,,,,,,在和中,,,,,,,,,,,,,,,轴,,,,,,,,,,,,,设,则,,,,,,,又点在轴负半轴上,,设直线的解析式为,把,代入,得:,解得:,直线的解析式为【点拨】本题是二次函数综合题,难度大,结合全等三角形、勾股定理、三角函数解直角三角形知识点,综合运用知识、画出辅助线、数形结合、分析与计算是解题的关键.。
哈尔滨市中考数学试题及答案
![哈尔滨市中考数学试题及答案](https://img.taocdn.com/s3/m/e2fe0561f6ec4afe04a1b0717fd5360cba1a8d39.png)
哈尔滨市2012年初中升学考试数学试卷一、选择题(每小题3分.共计30分) 1.一2的绝对值是( ).5.如图,在 Rt^ABC 中,NC=90。
,AC=4, AB=5,则 sinB 的值是( ).(A)2(B)3(C)3(D)435456 .在1。
个外观相同的产品中,有2个不合格产品。
现从中任意抽取l 个进行检测,抽 到不合格产品的概率是( ). (A) ((B) 5(C) 2(D) 4k -17 .如果反比例函数y=--的图象经过点(-1, -2),则k 的值是().(A)2 (B)-2 (C)-3 (D)38 .将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为().(A)y=3(x+2) 2—1 (B)y=3(x-2) 2+1 (C)y=3(x-r 2) 2—1 (D)y=3(x+2) 2+I 9 .如图,。
是4ABC 的外接圆,ZB=6Q o , 0PLAC 于点P, OP=2 <3 ,则。
的半径为( ). (A)4%:3 (B)6%:3 (C)8 (D)12 1 。
.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总 长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC 边的长为x 米,AB 边的长 为y 米,则y 与x 之间的函数关系式是().1 (A) 一 22.下列运算中(A)a 3 ・⑻ 1(C)2 正确的是().(B)(a 3)4=a i2(D)-2(C)a+a 4=a 5).(D)(a+b)(a —b)=a 2+b 23.下列图形是中心对称图形的是).4.如图所示的几何体是由六个小正方体组合而成它的左视图是,(A) y 2x+24(0<x<12) (c)y=2x 24(0<x 市12)1 ⑻ y 二一2 1 (D)y=5x 十12(0<x<24)12(0<x<24)、填空题(每小题3分.共计30分) 11. 把16 000 000用科学记数法表示为 在函数y= 工 中,自变量x 的取值范围是 x 一 5(第9国图)12.13.化简:<9 = 14.15.把多项式a 3—2a 2+a 分解因式的结果是 不等式组 的解集是 2x-1>0 x-1<116.17.一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是 一个圆锥的母线长为4,侧面积为8兀,则这个圆锥的底面圆的半径是一 18. 19.方程-7 二-一-的解是 ____________x - 1 2 x + 3如图,平行四边形ABCD 绕点A 逆时针旋转30。
哈尔滨市中考数学试题(含答案)
![哈尔滨市中考数学试题(含答案)](https://img.taocdn.com/s3/m/6f2db86af8c75fbfc77db2b3.png)
哈尔滨市20XX 年初中升学考试数 学 试 题一、选择题(每小题3分,共30分)1.(11·哈尔滨)-6的相反数是( )A.16B .-6C .6D .-16【答案】C 2.(11·哈尔滨)下列运算中,正确的是( )A .4a -3a =1B .a ·a 2=a 3C .3a 6÷a 3=3a 2D .(ab 2)2=a 2b 2【答案】B3.(11·哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C4.(11·哈尔滨)在抛物线y =-x 2+1 上的一个点是( ).A .(1,0)B .(0,0)C .(0,-1)D .(1,I)【答案】A5.(11·哈尔滨)若x =2是关于x 的一元二次方程x 2-mx +8=0的一个解.则m 的值是( ).A .6B .5C .2D .-6【答案】A6,(11·哈尔滨)如图所示的几何体是由五个小正方体搭建而成的。
它的主视图是【答案】C7,(11·哈尔滨)小刚掷一枚质地匀的正方体体骰子,骰子的六个面上分别刻有l 到6的点数,则这个骰子向上一面点数大于3的概率为( ).A .12B .13C .23D .14【答案】A8.(11·哈尔滨)如图,在Rt △ABC 中,∠BAC =90°,∠B =60°,△AB’C ’可以由△ABC 绕点 A 顺时针旋转90°得到(点B’与点B 是对应点,点C’与点C 是对应点),连接CC’,则∠CC’B’的度数是( )。
B . A .C .D . (第6题图)A .45°B .30°C .25°D .15°【答案】D9.(11·哈尔滨)如图,矩形ABCD 申,对角线AC 、BD 相交于点O ,∠AOB =60°,AB =5,则AD 的长是 A .5 3B .5 2C .5D .10【答案】B10.(11·哈尔滨)一辆汽车的油箱中现有汽油60升,如累不再加油,那么油箱中的油量y (单位:升)随行驶 里程x (单位:千米)的增加而减少,若这辆汽车平均耗油0.2升/千米,则y 与x 函数关系用图象表示大致是【答案】D二、填空题(每小题3分,共30分)11.(11·哈尔滨)把170 000用科学记数法表示为【答案】1.7×10512.(11·哈尔滨)在函数y =x x -6中,自变量x 的取值范围是 【答案】x ≠613.(11·哈尔滨)把多顼式2a 2-4a +2 分解因式的结果【答案】2(a -1)214.(11·哈尔滨)若圆锥的侧面展开时一个弧长为l6π的扇形,则这个圆锥的底面半经是【答案】815.(11·哈尔滨)方程2x -3= 3 x的解是 【答案】x =916.(11·哈尔滨)在反比例函数y =1-m x的图象的每一条曲线上,y 都随x 的增犬而减小,则m 的取值范围【答案】m <117. (11·哈尔滨)如图,BC 是⊙O 的弦,圆周角∠BAC =50°,则∠OCB 的度数是 度【答案】4018.(11·哈尔滨)观察下列图形:AB C DO它们是按一定规律排列的,依照此规律,第9个图形中共有 ★ 个 【答案】20 19.(11·哈尔滨)已知:正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠ BPC 的值是【答案】2或2320.(11·哈尔滨)如图,在Rt △ABC 中,∠ACB =90°,点D 是斜边AB 的中点,DE ⊥AC , 垂足为E ,若DE =2,CD =25,则BE 的长为【答案】4 2三、解答题(其中第21~24题各6分,25~26题各8分,27~28题各10分,共60分)21.(11·哈尔滨)(本题6分)先化简,再求代数式2x 2-9÷1x -3的值,其中x =2cos45°-3 【答案】原式=2(x +3)(x -3)×(x -3)=2x +3………………2分 ∵x =2cos45°-3=2×22-3=2-3………………4分 ∴原式==22-3+3=2………………5分 22.(11·哈尔滨)(本题6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上.(1)在图1中画出△ABC (点C 在小正方形的顶点上),使△ABC 的面积为5.且△ABC 中有一个角为45°(画一个即可) ;(2)在图2中画出△ABD (点D 在小正方形的顶点上),使△ABD 的面积为5,且∠ ADB =90°(画一个即可).【答案】(1)正确殛图………………3分(2)正确画图………………3分23.(11·哈尔滨)(本题6分)如图,四边形ABCD 是平行四边形,AC 是对角线,BE ⊥A C ,垂足为E ,DF ⊥AC ,垂足为F .求证:BE =DF .【答案】证明:∵四边形ABCD 是平行四边形.∴BC =AD BC ∥AD .………………2分∴∠ ACB =∠DAC ………………3分∵BE ⊥AC DE ⊥AC .∴∠CEB =∠AFD =900.………………4分∴△CEB ≌△AFD ………………5分∴BE =DF . ………………6分24 (11·哈尔滨)(本题6分)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:c m)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少?【参考公式:当x =-b 2a 时,二次函数y =ax 2+bx +c (a ≠0)的有最小(大)值4ac -b 24a】 【答案】解(1)S =-12x 2+30x ………………2分 (2)S =-12x 2+30x a =-12<0 ∴S 有最大值 ∴x =-b 2a =-302×(-12)=30 ………………4分 S 的最大值为4ac -b 24a =-3024×(-12)=450………………6分 ∴当x 为30cm 时,菱形风筝面积最大,最大面积是450cm 2.25.(11·哈尔滨)(本题8分)哈市某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查。
2021年黑龙江省哈尔滨市中考数学(word版有解析)
![2021年黑龙江省哈尔滨市中考数学(word版有解析)](https://img.taocdn.com/s3/m/0441421a551810a6f424863a.png)
黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣【解析】乘积是1的两个数互为倒数,﹣7的倒数是﹣,故选:D.2.下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【解析】A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【解析】y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【解析】去分母,2(x﹣1)=x+3,去括号,2x﹣2=x+3,移项,合并同类项,x=5,令x=5代入(x+3)(x﹣1)≠0,故选C.7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【解析】∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【解析】(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选C.10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【解析】A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为 5.67×107.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.57600000=5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值范围是x≠2.【解析】由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【解析】原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【解析】原式=33﹣6×33=33﹣23=3故答案为:315.已知反比例函数y=的图象经过点(1,2),则k的值为1.【解析】∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3.【解析】,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【解析】∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【解析】设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC 上,若OE=3,则CE的长为43或23.【解析】∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==33,∴AC=2OA=63,∵点E在AC上,OE=3,∴CE=OC+3或CE=OC﹣3,∴CE=43或CE=23;故答案为:43或23.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【解析】∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解】÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解】(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==26.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解】(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;2-1-c-n-j-y(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t 之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC =S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I 交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan ∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解】(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,=S△AMC+S△AMB,∵S△ABC∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨市20XX年初中升学考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2013·哈尔滨)13-的倒数是( ).(A)3 (B)一3 (C)13-(D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013·哈尔滨)下列计算正确的是( )..(A)a3+a2=a5(B)a3·a2=a6(C)(a2)3=a6(D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。
分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(2013·哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(2013·哈尔滨)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(2013·哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:二次函数图象与几何变换.分析:先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.解答:解:抛物线y=(x+1)2的顶点坐标为(-1,0),∵向下平移2个单位,∴纵坐标变为-2,∵向右平移1个单位,∴横坐标变为-1+1=0,∴平移后的抛物线顶点坐标为(0,-2),∴所得到的抛物线是y=x2-2.故选D.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.6.(2013·哈尔滨)反比例函数12kyx-=的图象经过点(-2,3),则k的值为( ).(A)6 (B)-6 (C) 72(D)72-考点:反比例函数的图象上的点的坐标特征.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12kyx-=的图象经过点(-2,3),表明在解析式12kyx-=,当x=-2时,y=3,所以1-2k=xy=3×(-2)=-6.,解得k=7 2故选C点评:本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.7.(2013·哈尔滨)如图,在Y ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定与性质.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.点评:本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.(2013·哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).(A)116(B)18(C)14(D)12考点:求概率,列表法与树状图法。
分析:概率的计算一般是利用树状图或列表把所有等可能性的情况列出,然后再计算某一事件的概率.其关键是找出所有的等可能性的结果解答:解:画树状图得:4个球,白球记为1、2黑球记为3、4∵共有16种等可能的结果,两次都摸到白球的只有4种情况,∴两次都摸到黑球的概率是.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.(2013·哈尔滨)如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( ).(A) 12(B)13(C)14(D)23考点:相似三角形的判定与性质;三角形中位线定理.分析:利用相似三角形的判定和性质是解题的关键解答:由MN是三角形的中位线,2MN=BC, MN∥BC∴△ABC∽△AMN∴三角形的相似比是2:1,∴△ABC与△AMN的面积之比为4:1.,则△AMN的面积与四边形MBCN的面积比为13,故选B点评:本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN∽△ABC,要求同学们掌握相似三角形的面积比等于相似比平方.10.(2013·哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个(B)2个(C)3个(D) 4个考点:一次函数的应用。
分析:考查一次函数的应用;得到超过10千克的费用的计算方式是解决本题的关键点.(1)0≤x≤10时,付款y=5×相应千克数;数量不超过l0千克时,销售价格为5元/千克;(2)x>10时,付款y=2.5x+25相应千克数,超过l0千克的那部分种子的价格解答:由0≤x≤10时,付款y=5×相应千克数,得数量不超过l0千克时,销售价格为5元/千克①是正确;当x=30代入y=2.5x+25y=100,故②是正确;由(2)x>10时,付款y=2.5x+25相应千克数,得每千克2.5元,故③是正确;当x=40代入y=2.5x+25.y=125,当x=20代入y=2.5x+25=75,两次共150元,两种相差25元,故④是正确;四个选项都正确,故选D点评:本题主要考查了一次函数的应用,难度适中,解决本题的关键是认真观察图象,求出一次购买种子数量不超过10千克时的销售单价及超过10千克以后,超过的那部分种子的单价.二、填空题(共10小题,每小题3分,满分30分)1 1.(2013·哈尔滨)把98 000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将98000用科学记数法表示为9.8×104.故答案为:9.8×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2013·哈尔滨)在函数3x y x =+中,自变量x 的取值范围是 . 考点:分式意义的条件. 分析:根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.解答:∵ 式子3x y x =+在实数范围内有意义,∴ x +3≠≥0,解得x ≠-3. 点评:本题考查了函数自变量取值范围的求法.函数是分式,要使得函数式子有意义,必须满足分母不等于0.13.(2013·2= . 考点:二次根式的运算分析:此题主要考查了二次根式的运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.解答:原式=. 点评:本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.14.(2013·哈尔滨)不等式组3x-1<2,x +3≥1的解集是 .考点: 解一元一次不等式组。
分析: 本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键. 分别求出各不等式的解集,再求出 其公共解集即可.解答:解:3x-1<2①由①得,x <1, x +3≥1②得x ≥-2故此不等式组的解集为:-2≤x <1.故答案为:-2≤x <1.点评:本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.15.(2013·哈尔滨)把多项式224ax ay -分解因式的结果是 .考点:提取公因式法和应用公式法因式分解。
分析:先提取公因式法然后考虑应用公式法来因式分解。
解答:22224(4)(2)(2)ax ay a x y a x y x y -=-=+-点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.(2013·哈尔滨)一个圆锥的侧面积是36π cm 2,母线长是12cm ,则这个圆锥的底面直径是 cm .考点:弧长和扇形面积分析:本题考查圆锥形侧面积公式,直接代入公式即可.掌握圆锥形侧面积公式是解题关键 解答:解:设底面半径为rcm ,36π=πr×12,解得r=3cm.底面圆的直径为2r=2×3=6cm , 故答案为:6.点评:本题考查圆锥的计算,解题的关键熟练掌握是圆锥侧面积的计算公式.径是617.(2013·哈尔滨)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 考点:垂径定理;勾股定理。