整式的乘法重难点知识树
人教版八年级上册《整式的乘法》教学重难点
3.在教学多项式除以单项式时,提醒学生注意多项式各项要包括它前面的符号,商的各项的符号由各项系数的符号与单项式系数的符号决定。
人教版八年级上册《整式的乘法》教学重难点这篇文章共1150字。
人教版八年级上册《整式的乘法》教学重难点
《人教版八年级上册《整式的乘法》教学重难点》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
教学重难点解决妙招设计方案表单
拟提交的妙招名称
整式的乘法
该妙招拟解决的问题
1逆用同底数幂的乘法法则;
1.同底数幂的乘法、幂的乘方、积的乘方法则的区别;
2.利用单项式乘法解决实际问题;
3.多问题。
设计初步设想
1.本节主要包括同底数幂的乘法、幂的乘方、积的乘方、单项式与单项式的乘法、单项式与多项式的乘法、多项式与多项式的乘法及应用。掌握本节知识的关键是对运算律的掌握,熟练掌握相关运算还需要大量练习。教师在教学中可以类比数的相关运算,同时提供足够的练习,让学生在练习中发现问题,解决问题,纠正错误。
整式的乘法和因式分解知识点汇总
整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. 例: (-a 5)53.()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例:(-a 2b )3 练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
【人教版】初中数学知识点总结整式的乘除
整式的乘法目标认知学习目标:1.掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
2.掌握单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,并能运用它们进行运算。
重点:整式乘法性质的准确掌握和熟练运用。
难点:字母的广泛含义的理解。
二、知识要点梳理知识点一:同底数幂的乘法要点诠释:同底数幂相乘,.底数不变,指数相加用字母表示为:a m×a n=a m+n(m、n都是正整数).三个或三个以上同底数幂相乘时,也具有这一性质,即a m·a n·a p=a m+n+p(m、n、p都是正整数).此性质可以逆用,即a m+n=a m×a n(m、n都是正整数).知识点二:幂的乘方要点诠释:幂的乘方,底数不变,指数相乘。
用字母表示为:(a m)n=a mn. (m、n都是正整数)知识点三:积的乘方要点诠释:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
用字母表示为:(ab)n=a n b n(n是正整数).知识点四:单项式乘以单项式要点诠释:单项式与单项式相乘,把它们的系数、相同字母分别相乘.对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点五:单项式乘以多项式要点诠释:单项式与多项式相乘,就是用单项式乘以多项式的每一项,再把所得的积相加,用字母表示为m(a+b+c)=ma+mb+mc.知识点六:多项式乘以多项式要点诠释:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用字母表示为(a+b)(m+n)=ma+na+mb+nb.三、规律方法指导1.在学习本节内容时,应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义.2.幂的三个运算性质是学习整式乘法的前提条件,单项式乘法是幂的运算性质的一个直接应用,单项式与多项式乘法及多项式与多项式乘法是在单项式乘法的基础上,利用分配律的更复杂的运算.3.在单项式的乘法法则中:①系数相乘,是有理数的乘法运算;相同字母相乘,是同底数幂的乘法运算;②单项式与单项式相乘的结果是单项式,一般确定结果的系数,往往先确定绝对值,再确定符号.4.在单项式与多项式相乘时:①单项式乘以多项式的依据是乘法对加法的分配律.②单项式与多项式相乘,结果是一个多项式,其项数和因式中多项式的项数相同,计算时要注意各项的符号.5.在多项式与多项式相乘时:①多项式乘以多项式可以化为单项式乘以多项式或单项式乘以单项式.②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应该等于两个多项式的项数的积.整式的乘法经典例题透析类型一:同底数幂的运算1、计算:(1)(-)(-)2(-)3 (2) -a4·(-a)3·(-a)5思路点拨:(1)分析:①(-)就是(-)1,指数为1;②底数为-,不变;③指数相加1+2+3=6;④乘方时先定符号“+”,再计算的6次幂(2)分析:①-a4与(-a)3不是同底数幂;②可利用-(-a)4=-a4③变为同底数幂总结升华:同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。
七年级数学下册《整式的乘除》复习知识点北师大版
七年级数学下册《整式的乘除》复习知识点北师大版一、同底数幂的乘法是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法运用法则的前提是底数相同,只有底数相同,才能用此法则底数可以是具体的数,也可以是单项式或多项式指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:ba22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
五、平方差公式表达式:=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/化简:六、完全平方公式完全平方公式中常见错误有:①漏下了一次项②混淆公式③运算结果中符号错误④变式应用难于掌握。
七、整式的除法1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
【中小学资料】七年级数学下册 2.1 整式的乘法教材重难点研习素材 (新版)湘教版
整式的乘法教材重难点研习研习点1:单项式与单项式相乘1、单项式与单项式相乘的法则:单项式与单项式相乘,只要把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
2、理解单项式与单项式相乘的法则时应注意:(1)法则的推导是运用了同底数幂的乘法性质和乘法的交换律和结合律,是根据已有的知识进行计算后再进行概括得到的,所以,没有必要对法则进行死记硬背;(2)法则包括乘式里的系数、相同字母和不同字母三个部分;(3)单项式的乘法在整式乘法中占有重要的地位,熟练地进行单项式的乘法运算是学好多项式乘法和多项式的混合运算的关键。
典例1 填空:(1))3(32n m b a b a -⋅-=__________. (2))102()107(62⨯⋅⨯=____________. 【研析】(1)综合运用有理数的乘法、幂的运算性质、单项式与单项式相乘的法则求解;(2)利用单项式与单项式相乘的法则计算,结果要用科学记数法来表示。
解:(1)233++n m b a ; (2)1.4×109.研习点2:单项式与多项式相乘1、单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.2、理解单项式与多项式相乘的法则时应注意:(1)根据分配律将单项式分别乘以多项式的各项,可归结为单项式的乘法;(2)积的符号问题是易错点,要认真观察;(3)单项式与多项式相乘的结果是一个多项式,其项数与因式中的项数相同.【探究·思考】你能用不同的方法计算如图的所示的长方形面积吗?让我们一起开始探究:给出探究的过程、结果,并总结出乘法公式的几何解释。
典例2 计算)123()(2--⋅-ab bc b a 【研析】直接根据单项式与多项式相乘的法则计算.解:)123()(2--⋅-ab bc b a =b a b a c b a 2232223++-; 研习点3:多项式与多项式相乘1、多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2、理解和运用多项式与多项式相乘的法则时应注意如下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应该是这两个多项式项数的积.如:))((n m b a ++,积的项数应是2×2=4,即有4项 bn bm an am +++.当然,若有同类项,则应合并同类项,得出最简结果.(2)多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.【探索·发现】计算 (1) (x+3)(x+4) (2) (x-1)(x+3)由以上计算的结果找出规律,观察下图,填空:(x+p)(x+q)=( )2+( )x+( )典例3 计算(1))1)(13(-+x x ;(2))1)((2--+xy x y x . 【研析】多项式乘以多项式,按照多项式乘以多项式的法则计算,注意不要漏项、丢符号.解:(1)123133)1)(13(22--=-+-=-+x x x x x x x (2))1)((2--+xy x y x =232223xy y x x y xy y x x y x x ---=--+--练一练1:若x=123456789×123456786,y=123456788×123456787,x与y的大小关系是()A.x=y B.x>y C.x<y D.不能确定2:试用a、b、c、d表示如图所示的阴影部分的面积.3:若2,41==ba时,用简便方法求abbabababa++-+-+3322))((的值4:填空:不等式组⎪⎩⎪⎨⎧-<---<--)32(21412)2()52(12)1(2xxxxxxxx的解集是_______________.参考答案1.C.提示:提示:123456789=123456786+3,123456788=123456787=12.解答:acbccabcbaccab21212121))((2122+--=-+--或))((21)(21cdabcdbc--+++=acbccab212121212+--.3.解答:abbabababa++-+-+3322))((=abb+32当2,21==ba时,原式=abb+32=21722123=⨯+⨯4.x>9;提示:分别解出每一个不等式,再求出它们的公共部分。
初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版
可编辑修改精选全文完整版七下第一章《整式的乘除》复习教学设计教学目标:1、掌握同底数幂的乘法、幂的乘方和积的乘方。
2、能灵活运用单项式和多项式的乘法。
3、熟练平方差公式和完全平方公式4、通过练习,梳理知识建立系统的知识体系。
教学重点:重点:掌握同底数幂的乘法、幂的乘方和积的乘方。
能灵活运用单项式和多项式的乘法。
难点:熟练和灵活运用平方差公式和完全平方公式教学思路:先复习整式乘除一系列的知识,通过学生自己对自我知识的掌握情况有针对性的找出重点题、易错题、难题,小组对题目分析和理解,然后全班交流,以学生为主体、教师主导,共同分享解决问题,最后归纳方法、思路,明确知识。
教学方法:小组分组学习为主教学过程:教学过程预设环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、梳理知识①请一位学生将梳理的整式的乘除这部分的知识进行板书。
学生板书②其余学生小组交流,互相检查,看看是否同学是否写对了,有遗漏之处,互相补充。
小组学员互助二、学生自主出题把学生分成6个大组,每个大组再分成两个小组,小组之间互相共享、推荐、解决学生自己找出的重点题、易错题、难题,然后每组派一个代表上黑板给全班同学推荐好题,并由学生充当小老师讲解,然后不当之处教师点播。
提起学生的兴趣提高学生的辨析题目的能力提高学生的语言表达能力提高学生的逻辑思维能力七下第一章《整式的乘除》学情分析及教学方法和学法从年龄特点来看,初一学生好动,好奇,好表现,爱发表见解,希望得到老师的表扬,所以在教学中要抓住这一生理特点,充分调动学生的的兴趣、创造性,另一方面要创造条件和机会,让其发表见解,发挥学习的主动性。
从知识掌握层次来看,学生已经学会了整式运算的相关知识,具备了一定解题技巧和能力,只是缺少对零散知识点进行组串,使之条理化、系统化,形成新的认知结构。
此时让学生让学生根据以往的作业、试卷、课外题等手头的资料,根据自己平时的易错题、重点题目,进行反思总结,集大家的智慧与一体,教师和学生们进行甄选。
整式的乘除(重点、难点、考点复习总结)精选全文
可编辑修改精选全文完整版整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
《整式的乘法》整式的运算
反映了数学中对于形式运算的规律。
整式乘法的基本规则
01
02
03
单项式乘单项式
系数乘系数,同底数幂相 乘。
单项式乘多项式
单项式乘多项式的每一项 。
多项式乘多项式
多项式乘多项式转化为单 项式相乘。
02
整式乘法的运算技巧
单项式与单项式相乘
总结词
系数相乘,相同字母相加,不同字母不变
详细描述
将两个单项式的系数相乘,相同的字母相加,不同的字母保持不变。例如,$2a^2b \times 3ab = 6a^3b^2$。
流的基本规律。
经济学中的整式乘法
在经济学中,整式的乘法可以用来计算生产 成本、市场需求等经济指标。例如,计算生 产成本时,需要将原材料、劳动力等成本因 素相乘得到总成本。
在金融学中,整式的乘法可以用来计算投资 回报率、风险评估等指标。例如,在计算投 资回报率时,需要将投资收益与投资本金相
乘并减去投资风险溢价。
04
整式乘法的练习与巩固
整式乘法的例题解析
总结词
理解与掌握
详细描述
通过解析整式乘法的典型例题,帮助学生们 深入理解整式乘法的运算规则和技巧,从而 加深对整式乘法的理解和掌握。
整式乘法的练习题
要点一
总结词
实践与熟练
要点二
详细描述
通过大量的整式乘法练习题,让学生们反复练习,熟 练掌握整式乘法的运算规则和技巧,提高解题速度和 准确度。
《整式的乘法》整式的运算
2023-11-10
目 录
• 整式乘法的基本概念 • 整式乘法的运算技巧 • 整式乘法的实际应用 • 整式乘法的练习与巩固 • 总结与反思
01
整式乘法的基本概念
初中数学_整式的乘法教学设计学情分析教材分析课后反思
课题:《§1.4整式的乘法》【学习目标】1.经历探索单项式乘以单项式的过程,明确算理;能熟练运用单项式乘以单项式的法则进行计算。
2.理解单项式乘以多项式的依据是乘法分配律,体会转化的数学思想;能熟练运用单项式乘以多项式的法则进行计算。
【课前检测】(1)21()ny y--=_____;(2)23()a b-⋅=_____;(3)单项式24x y-的系数是_____;(4)______和______统称为整式.【展示知识树】【问题导学】问题探究一: 单项式×单项式尝试计算:(1)222yx y z⋅;(2)23(4)ab b-⋅-;(3)2327(2)xy z xy-⋅思考:(1)你是怎样计算的?(2)在计算的过程中,运用了哪些运算律和运算法则?反馈练习一计算:(1)212()3xy xy⋅;(2)232(3)a b a-⋅-;(3)22(5)(2)a b a-⋅-;(4)32(2)(2)x x y⋅-点拨提升(1)先算乘方,然后再利用单项式乘以单项式法则进行运算;(2)单项式乘以单项式系数相乘注意符号;(3)相同字母的幂相乘;(4)只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式;(5)单项式乘法法则对于三个以上的单项式相乘同样适用;(6)单项式乘以单项式的结果仍是单项式.思考:下列两图中大长方形的面积是多少呢?a a a问题探究二:单项式乘以多项式计算:(1)2(53)ab b a +;(2)22(5)(23)m m n m n -⋅+-.思考:(1)如何进行单项式乘多项式的运算?(2)进行单项式乘多项式的运算,依据是什么?反馈练习二计算:(1)2(3)b b a a +-;(2)31()(874)2x x x --+.问题探究三:通过本节课的学习你还有那些未解决的问题?你有什么收获?【当堂达标】必做题1.下列计算正确的有( )①55534a a a +=; ②24822m m m ⋅=;③34225822()2a b ab c a b c -=-④23(7)7x x y x y -⋅=-中,A .1个B .2个C .3个D .4个2. 1(5)(2)n ab a +-⋅- 3. 331(1)2x y xy ⋅-4. 227(2)xy z xyz ⋅5. 224(41)(3)9x x x -+- 选做题若122153()()m n n a b a b a b ++-⋅=,求m+n 的值.学情分析在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂的乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础.对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识.学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力.但是学生在进行计算时往往仅关注对于法则的掌握及应用,对于算理认识不足,所以教学中要通过设计问题,让学生经历获得法则的过程,真正理解算理。
整式的乘法教学重点与难点分析
整式的乘法教学重点与难点分析
本节课的重点和难点是整式乘法运算法则的推导与应用.其中包括单项式与单项式相乘、单项式与多项式相乘,多项式与多项式相乘的运算法则的推导与应用.为了使学生掌握整式的乘法,最重要的是单项式与单项式相乘,可以运用乘法的交换律、同底数幂的运算性质来推导,探索.单项式与多项式相乘、多项式与多项式相乘是在单项式与单项式相乘的基础上,利用乘法的交换律和结合律推导出来的.因此,单项式与单项式相乘的推导是关键.。
人教版初二上册数学复习要点:整式的乘法
人教版初二上册数学复习重点:整式的乘法知识点对朋友们的学习特别重要,大家必定要仔细掌握,查词典数学网为大家整理了人教版初二上册数学复习要点:整式的乘法,让我们一同学习,一同进步吧!1.单项式乘法法例:单项式相乘,把它们的系数、相同字母分别相乘,关于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法例在运用时要注意以下几点:①积的系数等于各因式系数积,先确立符号,再计算绝对值。
这时简单出现的错误的选项是,将系数相乘与指数相加混杂;②相同字母相乘,运用同底数的乘法法例;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式 ;④单项式乘法法例关于三个以上的单项式相乘相同合用;⑤单项式乘以单项式,结果还是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是经过乘法对加法的分派律,把它转变为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同 ;②运算时要注意积的符号,多项式的每一项都包含它前方的符号 ;③在混杂运算时,要注意运算次序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防备漏项,检查的方法是:在没有归并同类项以前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意归并同类项;语文课本中的文章都是优选的比较优异的文章 ,还有许多名家名篇。
假如有选择顺序渐进地让学生背诵一些优异篇目、出色段落 ,对提升学生的水平会大有裨益。
此刻 ,许多语文教师在剖析课文时 ,把文章解体的支离破裂 ,总在文章的技巧方面下功夫。
结果教师费力 ,学生头疼。
剖析完以后 ,学生见效甚微 ,没过几日便忘的干干净净。
造成这类事半功倍的难堪局面的重点就是对文章读的不熟。
七级数学下册 1.4 整式的乘法教材重难点研习素材 (新版)北师大版
整式的乘法教材重难点研习研习点1:单项式与单项式相乘1、单项式与单项式相乘的法则:单项式与单项式相乘,只要把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.2、理解单项式与单项式相乘的法则时应注意:(1)法则的推导是运用了同底数幂的乘法性质和乘法的交换律和结合律,是根据已有 的知识进行计算后再进行概括得到的,所以,没有必要对法则进行死记硬背.(2)法则包括乘式里的系数、相同字母和不同字母三个部分.(3)单项式的乘法在整式乘法中占有重要的地位,熟练地进行单项式的乘法运算是学 好多项式乘法和多项式的混合运算的关键.典例1 填空:(1))3(32n m b a b a -⋅-=__________.(2))102()107(62⨯⋅⨯=____________.【研析】(1)综合运用有理数的乘法、幂的运算性质、单项式与单项式相乘的法则求解.(2)利用单项式与单项式相乘的法则计算,结果要用科学记数法来表示. 解:(1)233++n m b a ;(2)1.4×109.研习点2:单项式与多项式相乘1、单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.2、理解单项式与多项式相乘的法则时应注意:(1)根据分配律将单项式分别乘以多项式的各项,可归结为单项式的乘法;(2)积的符号问题是易错点,要认真观察;(3)单项式与多项式相乘的结果是一个多项式,其项数与因式中的项数相同.【探究·思考】你能用不同的方法计算如图的所示的长方形面积吗?让我们一起开始探究:给出探究的过程、结果,并总结出乘法公式的几何解释。
典例2 计算)123()(2--⋅-ab bc b a【研析】直接根据单项式与多项式相乘的法则计算.解:)123()(2--⋅-ab bc b a =b a b a c b a 2232223++-; 研习点3:多项式与多项式相乘1、多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2、理解和运用多项式与多项式相乘的法则时应注意如下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应该是这两个多项式项数的积.如:))((n m b a ++,积的项数应是2×2=4,即有4项 bn bm an am +++.当然,若有同类项,则应合并同类项,得出最简结果.(2)多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.【探索·发现】计算 (1) (x+3)(x+4) (2) (x-1)(x+3)由以上计算的结果找出规律,观察右图,填空:(x+p)(x+q)=( )2+( )x+( )典例3 计算(1))1)(13(-+x x ;(2))1)((2--+xy x y x . 【研析】多项式乘以多项式,按照多项式乘以多项式的法则计算,注意不要漏项、丢符号.解:(1)123133)1)(13(22--=-+-=-+x x x x x x x(2))1)((2--+xy x y x =232223xy y x x y xy y x x y x x ---=--+-- 练一练1:若x=123456789×123456786,y=123456788×123456787,x 与y 的大小关系是( )A.x=y B.x>y C.x<y D.不能确定2:试用a、b、c、d表示如图所示的阴影部分的面积.3:若2,41==ba时,用简便方法求abbabababa++-+-+3322))((的值4:填空:不等式组⎪⎩⎪⎨⎧-<---<--)32(21412)2()52(12)1(2xxxxxxxx的解集是_______________. 参考答案1.C.提示:提示:123456789=123456786+3,123456788=123456787=12.解答:acbccabcbaccab21212121))((2122+--=-+--或))((21)(21cdabcdbc--+++=acbccab212121212+--.3.解答:abbabababa++-+-+3322))((=abb+32当2,21==ba时,原式=abb+32=21722123=⨯+⨯4.x>9;提示:分别解出每一个不等式,再求出它们的公共部分。
初二上册数学期中考试知识点:整式的乘法
2019初二上册数学期中考试知识点:整式的乘法期中马上就要到来了,为了让各位初中生们做到更好的复习工作,小编为大家整理了2019初二上册数学期中考试知识点:整式的乘法,欢迎大家参考阅读!1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; 要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。