高中数学“数列的综合问题”.doc

合集下载

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析

高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]预计2025年高考会从以下两个角度对数列的综合问题进行考查:(1)考查等差、等比数列的基本运算和数列求和的问题,可能与函数、方程、不等式等知识综合起来进行考查;(2)以新定义为载体,考查对新数列性质的理解及应用,以创新型题目的形式出现.考点一等差、等比数列的综合问题例1(2024·山东滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解(1)设等差数列{a n }的公差为d ,因为b 2=4,所以a 2=2log 2b 2=4,所以d =a 2-a 1=2,所以a n =2+(n -1)×2=2n .又a n =2log 2b n ,即2n =2log 2b n ,所以n =log 2b n ,所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1,即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n ,因为b 7=a 26=a 64,b 8=a 27=a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的,所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11302.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.利用方程思想和通项公式、前n 项和公式求解,求解时注意对性质的灵活运用.1.(2022·浙江高考)已知等差数列{a n }的首项a 1=-1,公差d >1.记{a n }的前n项和为S n (n ∈N *).(1)若S 4-2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N *,存在实数c n ,使a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,求d 的取值范围.解(1)因为S 4-2a 2a 3+6=0,a 1=-1,所以-4+6d -2(-1+d )(-1+2d )+6=0,所以d 2-3d =0,又d >1,所以d =3,所以a n =3n -4,所以S n =n (a 1+a n )2=3n 2-5n2.(2)因为a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,所以(a n +1+4c n )2=(a n +c n )(a n +2+15c n ),(nd -1+4c n )2=(-1+nd -d +c n )(-1+nd +d +15c n ),c 2n +(14d -8nd +8)c n +d 2=0,由已知可得方程c 2n +(14d -8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d -8nd +8)2-4d 2≥0,所以(16d -8nd +8)(12d -8nd +8)≥0对于任意的n ∈N *恒成立,所以[(n -2)d -1][(2n -3)d -2]≥0对于任意的n ∈N *恒成立,当n =1时,[(n -2)d -1][(2n -3)d -2]=(d +1)(d +2)≥0,当n =2时,由(2d -2d -1)(4d -3d -2)≥0,可得d ≤2,当n ≥3时,[(n -2)d -1][(2n -3)d -2]>(n -3)(2n -5)≥0,又d >1,所以1<d ≤2,即d 的取值范围为(1,2].考点二通项与求和问题例2(2023·黑龙江哈九中模拟)在①S 3=2a 3-15;②a 2+6是a 1,a 3的等差中项;③2S n =t n +1-3(t ≠0)这三个条件中任选一个作为已知条件,补充在下面的问题中,并解答.已知正项等比数列{a n }的前n 项和为S n ,a 1=3,且满足________.(1)求数列{a n }的通项公式;(2)设a n =b n -1b n ,求数列2n n 项和T n .注:若选择多个条件分别解答,按第一个解答计分.解(1)设正项等比数列{a n }的公比为q (q >0),若选①:由S 3=2a 3-15,得a 1+a 2+a 3=2a 3-15,所以a 3-a 2-a 1=15,又由a 1=3,可得3q 2-3q -18=0,解得q =3或q =-2(舍去),所以a n =3×3n -1=3n (n ∈N *).若选②:由a 2+6是a 1,a 3的等差中项,可得a 1+a 3=2(a 2+6),又因为a 1=3,可得3+3q 2=2(3q +6),即q 2-2q -3=0,解得q =3或q =-1(舍去),所以a n =3×3n -1=3n (n ∈N *).若选③:由2S n =t n +1-3(t ≠0),当n =1时,2a 1=6=2S 1=t 2-3,解得t =3或t =-3(舍去),所以2S n =3n +1-3,当n ≥2时,2a n =2S n -2S n -1=3n +1-3-(3n -3)=2·3n ,所以a n =3n (n ≥2).经验证当n =1时,满足a n =3n ,所以a n =3n (n ∈N *).(2)由(1)知a n =3n ,所以b n -1b n =3n ,n =9n ,所以b 2n +1b 2n=9n+2,所以T n 2122 (2)n (91+2)+(92+2)+…+(9n +2)=91+92+…+9n+2n =9(1-9n )1-9+2n =9n +1+16n -98.解决非等差、等比数列求和问题的两种思路思路一转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成思路二不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2.(2024·广东深圳中学月考)若一个数列的奇数项为公差为正的等差数列,偶数项为公比为正的等比数列,且公差、公比相同,则称数列为“摇摆数列”,其表达式为a n =1+n -12d ,n =2k +1,k ∈N ,2qn -22,n =2k ,k ∈N *,若数列{a n }(n ∈N *)为“摇摆数列”且a 1=1,a 1+a 2=a 3,a 2a 3=20.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前2n 项和T 2n ∑ni =1i 2解(1)+a 2=a 3,2a 3=202=4,3=52=-5,3=-4(舍去),∴d =q =4,∴a n n -1,n =2k +1,k ∈N ,n ,n =2k ,k ∈N *.(2)b n =na n n 2-n ,n =2k +1,k ∈N ,·2n ,n =2k ,k ∈N *.先求奇数项的和:b n =2n 2-n ,n =2k +1,k ∈N ,S n =2×[12+32+…+(2n -1)2]-n 2,引入W n =22+42+…+(2n )2=4(12+22+…+n 2),12(S n +n 2)+W n =∑2ni =1i 2=n (2n +1)(4n +1)3⇒S n=2(∑2ni =1i 2-W n )-n 2=2n (2n +1)(4n +1)3-4×n (n +1)(2n +1)6-n 2=8n 3-3n 2-2n 3,再求偶数项的和:b n =n ·2n ,n =2k ,k ∈N *,S n ′=2×22+4×24+…+2n ×22n ,4S n ′=2×24+4×26+…+2(n -1)×22n +2n ×22n +2,两式相减,得-3S n ′=2×22+2×24+2×26+…+2×22n -2n ×22n+2=8×(1-4n )1-4-2n ×22n +2=(1-3n )×22n +3-83,∴S n ′=(3n -1)22n +3+89,∴T 2n =S n +S n ′=8n 3-3n 2-2n3+(3n -1)22n +3+89.考点三数列与不等式的综合问题例3(2023·安徽十校联考)已知数列{a n }满足a 1+a 2+…+a n -1-a n =-2(n ≥2且n ∈N *),a 2=4.(1)求数列{a n }的通项公式;(2)n 项和为T n ,求证:23≤T n <1.解(1)因为a 1+a 2+…+a n -1-a n =-2,所以a 1+a 2+…+a n -a n +1=-2,两式相减得a n +1=2a n (n ≥2),当n =2时,a 1-a 2=-2,又a 2=4,所以a 1=2,a 2=2a 1,所以a n +1=2a n (n ∈N *),所以{a n }是首项为2,公比为2的等比数列,所以a n =2n (n ∈N *).(2)证明:因为2n(a n -1)(a n +1-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1<1,由n ≥1,得2n +1≥4,所以1-12n +1-1≥23,综上,2≤T n <1.1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.2.放缩法常见的放缩技巧(1)1k 2<1k 2-1=121k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k.(3)2(n +1-n )<1n<2(n -n -1).(4)12n +1<12n +1<12n ,13n <13n -1≤12·3n -1.3.(2023·河南五市高三二模)已知数列{a n }满足a 1=23,且2a n +1-a n +1a n =1,n∈N *.(1){a n }的通项公式;(2)记T n =a 1a 2a 3…a n ,n ∈N *,S n =T 21+T 22+…+T 2n .证明:S n 解(1)由2a n +1-a n +1a n =1,得a n +1=12-a n ,则11-a n +1-11-a n=1,是首项为11-a 1=3,公差d =1的等差数列,所以11-a n =3+(n -1)=n +2,整理得a n =n +1n +2(n ∈N *),经检验,符合要求.(2)证明:由(1)得a n =n +1n +2(n ∈N *),T n =a 1a 2…a n =2n +2,∴T 2n =4(n +2)2>4(n +2)(n +3)=∴S n =T 21+T 22+…+T 2n -14+…+1n +2-即S n 考点四数列与函数的综合问题例4(2024·江苏辅仁中学阶段考试)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列前n 项和T n .解(1)由已知,得b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 的图象在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.则a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以T n =2n +1-n -22n.数列与函数综合问题的常见类型及注意事项常见类型类型一已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题类型二已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形注意事项注意点一数列是一类特殊的函数,其定义域是正整数集(或有限子集),它的图象是一群孤立的点注意点二转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题注意点三利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化4.(2024·湖南湘潭一中阶段考试)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .解(1)令f ′(x )=12+cos x =0,所以cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-2n π3=n (n +1)π-2n π3,所以sin S n =sinn (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,所以n (n +1)一定为偶数,所以sin S n =-sin2n π3.当n =3m -2(m ∈N *)时,sinS n =-m π=-32;当n =3m -1(m ∈N *)时,sin S n =-m π=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S nn =3m -2(m ∈N *),=3m -1(m ∈N *),3m (m∈N *).课时作业1.(2023·新课标Ⅱ卷){a n }为等差数列,b n n -6,n 为奇数,a n ,n 为偶数,记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .2.(2023·江苏徐州第七中学校考一模)已知等比数列{a n }的前n 项和为S n =12·3n +b (b 为常数).(1)求b 的值和数列{a n }的通项公式;(2)记c m 为{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数,求数列{a m c m }的前n 项和T n .解(1)由题设S n =12·3n +b ,显然等比数列{a n }的公比不为1,设{a n }的公比为q ,则S n =a 1(1-q n )1-q=a 11-q -a 1q n1-q ,∴b =a 11-q =-12且q =3,∴a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)令-3m ≤3n -1≤3m ,n ∈N *,解得0≤n -1≤m ,∴1≤n ≤m +1,数列{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数为m +1,则c m =m +1,∴a m c m =(m +1)×3m -1,∵T n =2×30+3×31+…+(n +1)×3n -1,①3T n =2×31+3×32+…+(n +1)×3n ,②两式相减,得-2T n =2×30+31+…+3n-1-(n +1)×3n=1+1-3n1-3-(n +1)·3n =(-1-2n )·3n +12,∴T n n -14.3.(2024·河南郑州外国语学校阶段考试)已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式;(2)数列{b n }的前n 项和为T n ,且满足T n +1a 2n =T na 2n +1+16n 2-8n -3,确定b 1的值使得数列{b n }是等差数列.解(1)因为f (x )=-4+1x2,且点P n ,n ∈N *)在曲线y =f (x )上,所以1a n +1=4+1a 2n ,即1a 2n +1-1a 2n=4,1为首项,4为公差的等差数列,所以1a 2n=1+4(n -1)=4n -3,即a n =14n -3(n ∈N *).(2)由(1)知T n +1a 2n =T n a 2n +1+16n 2-8n -3,即为(4n -3)T n +1=(4n +1)T n +(4n -3)(4n +1),整理得T n +14n +1-T n 4n -3=1,T 1为首项,1为公差的等差数列,则T n 4n -3=T 1+n -1,即T n =(4n -3)(T 1+n -1),当n ≥2时,b n =T n -T n -1=4b 1+8n -11,若{b n }是等差数列,则b 1适合上式,令n =1,得b 1=4b 1-3,解得b 1=1.4.(2023·黑龙江齐齐哈尔模拟)在①S n =32a n -3,其中S n 为数列{a n }的前n 项和;②a 1=1,a n -a n +1=a n a n +1这两个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }满足________.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得a m +a m +1为数列{a n }中的项?若存在,求出m ;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解若选择条件①:(1)令n =1,则a 1=321-3,所以a 1=6,由于S n =32a n -3,则当n ≥2时,S n -1=32a n -1-3,两式相减,得a n =32a n -32a n -1,则a n a n -1=3,所以{a n }是首项为6,公比为3的等比数列,则数列{a n }的通项公式为a n =6×3n -1=2×3n .(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则2×3m +2×3m +1=2×3k ,所以4×3m =3k ,此等式左边为偶数,右边为奇数,所以不存在正整数m 满足题意.若选择条件②:(1)因为a 1=1,a n -a n +1=a n a n +1,所以a n ≠0,1a n +1-1a n=1,是首项为1a 1=1,公差为1的等差数列,所以1a n =1+(n -1)×1=n ,所以a n =1n.(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则1m +1m +1=1k,化简得m 2+(1-2k )m -k =0,解得m =2k -1+1+4k 22,因为2k <1+4k 2<2k +1,所以2k -12<m <2k ,m 无正整数解,故不存在正整数m 满足题意.5.已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ成立,求实数λ的取值范围.解(1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4,∴a n =5-n ,S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m 1-1281m ,的值随m 增加而减小,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ,则10<8+λ,解得λ>2.故实数λ的取值范围为(2,+∞).6.(2024·河北衡水调研)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.(1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:1271S n <7528.解(1)由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3an +1-3,即1a n +1-1又因为1a 1-1=73-1=43,是首项为43,公比为43的等比数列,所以1a n -1,所以a n =11.(2)证明:由(1)可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-<7528.综上所述,1271S n <7528成立.。

高中数学总复习:重难专攻 数列中的综合问题

高中数学总复习:重难专攻 数列中的综合问题
2 + −2 , ≥ 3,为奇数,
不难发现,奇数项是等差数列,公差

2−2 , ≥ 3,为偶数,
为2,偶数项是Leabharlann 比数列,公比为2,所以数列{ an }的前10项和为
解题技法
两个等差数列的公共项构成的数列是等差数列,且公差是两等差
数列公差的最小公倍数,两个等比数列的公共项构成的数列是等比数
列,公比是两个等比数列公比的最小公倍数.
高中总复习·数学(提升版)
已知{ an }是公差不为零的等差数列, a 5=17, a 1, a 2, a 7成等比
数列.
(1)求数列{ an }的通项公式;
+1


1
1




(+1)

1

+1
3
所以 n ≥2时,
3




2
1

2
2


2

+…+
2


−1
1
1
1
1
= − +…+
− ,
−1
2
3
−1

1
,又 a 2=3,则 an =2 n -1,当 n =1时, a 1=

1成立,
所以 an =2 n -1.
高中总复习·数学(提升版)
列记为{ bn },求数列{ bn }的前 n 项和 Sn .
解:数列{ an }和{ bn }的公共项依次为32,34,36,…,即9,
92,93,…,构成首项为9,公比为9的等比数列,
9(1−9 )
9
所以 Sn =

数列的综合应用

数列的综合应用

高三数学(人教版)
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,

1 n(n+1) n(n+1)
1
11

则Tn=3×
2

6

∴பைடு நூலகம்n=
6(n-n+
). 1

111
1
1111 1
11
训 练

T1+T2+
T3+…
+Tn

6(1-
2+2-
3+3

4+…
+n-n+
) 1

1 a=2,f(x)=
(12)x.
高三数学(人教版)
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解

而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,


111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以


1
1
f(1)=3为首项,3为公比的等比数列,
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
=6(1- 1 ). n+ 1

n∈

2025年新人教版高考数学一轮复习讲义 第六章 必刷大题12 数列的综合问题

2025年新人教版高考数学一轮复习讲义  第六章 必刷大题12 数列的综合问题
123456
3.已知数列{an}的前n项和为Sn,且Sn+2=2an. (1)求a2及数列{an}的通项公式;
123456
由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2, 当n=2时,S2+2=2a2, 即a1+a2+2=2a2,解得a2=4, 当n≥2时,由Sn+2=2an,可得Sn-1+2=2an-1, 两式相减,可得an=2an-2an-1, 整理,得an=2an-1, ∴数列{an}是以2为首项,2为公比的等比数列, ∴an=2·2n-1=2n,n∈N*.
123456
12Tn=222+233+244+…+2nn+n2+n+11, 两式相减, 可得12Tn=221+212+213+…+21n-n2+n+11 =1+2121--221n1+1-n2+n+11 =32-n2+n+31 ,∴Tn=3-n+2n 3.
123456
4.已知等差数列{an}的前n项和为Sn,a3=7,S3=5a1. (1)求{an}的通项公式;
123456
由题意知,在数列{an}中,an+1=3Sn+1, an=3Sn-1+1,n≥2, 两式相减可得an+1-an=3an,an+1=4an,n≥2, 由条件知,a2=3a1+1=4a1, 故an+1=4an(n∈N*). ∴{an}是以1为首项,4为公比的等比数列. ∴an=4n-1(n∈N*).
123456
(2)设 cn=bn-1bbnn+1-1,数列{cn}的前 n 项和 Tn,求证:23≤Tn<1.
123456
cn=bn-1bbnn+1-1=2n-122nn+1-1=2n-1 1-2n+11-1, 故数列{cn}的前 n 项和 Tn=1-22-1 1+22-1 1-23-1 1+…+2n-1 1-2n+11-1 =1-2n+11-1, 因为n∈N*, 所以 0<2n+11-1≤13,所以23≤Tn<1.

高考数学一轮复习《数列的综合运用》练习题(含答案)

高考数学一轮复习《数列的综合运用》练习题(含答案)

高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。

高二数学数列综合测试题(解析版)

高二数学数列综合测试题(解析版)
所以 或 或 ,所以 或 或 ,所以 的最小值为 .故选:A.
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有

第六章 数列6-4数列的综合问题与数列的应用

第六章  数列6-4数列的综合问题与数列的应用
1 1 k m +(k-1)× m= m, ∴amk= 2 2 2
Am=am1+am2+am3+…+amn 1 2 3 n nn+1 =2m+2m+2m+…+2m= m+1 , 2 nn+1 ∴数列{Ak}的通项公式 Ak= k+1 (1≤k≤n). 2

已知等差数列{an}中,a3=7,a6=16,将此 等差数列的各项排成如图所示的三角形数阵: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 … … … … … 则此数阵中第20行从左到右的第10个数是 ________.
B.2000 D.1998
分析:公差确定后,首项和末项之差越大,等差数列的 项数就越多(即 n 越大),故 P1 与 Pn 取长轴两端点时 n 取最 1 大值,可依据公差大于1000列不等式解.
解析:∵|PnF|max=a+c=3,|PnF|min=a-c=1, an-a1 3-1 1 d= = >1000,n∈N,∴nmax=2000,故选 B. n-1 n-1
(2)由已知得 bn=2n,anbn=(-2n+5)2n, ∴Tn=3×21+1×22+(-1)×23+…+(-2n+5)2n① 2Tn=3×22+1×23+(-1)×24+…+(-2n+5)2n 1② ②-①可得 Tn=-6+(23+24+…+2n+1)+(-2n+5)2n+1 231-2n-1 = +(-2n+5)2n+1-6 1-2 =(-2n+7)2n+1-14.
1 am1=2m,
第4项
1 - 1 - m 1 am4=2×2 =2m 2,
11m-2 1m 公差 d=32 -2 1 1m 1m 1m =342 -2 =2 ,
1 - 1 1 2 =1+2+2 +…+2n 1 1 - m-8 =2-2n 1> 4 对于任意的

数列综合题

数列综合题

数列1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n n n S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .1 2.设n S 为等差数列{}n a 的前n 项和,()()11n n n S nS n N*++<∈.若871a a <-,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7S D .n S 的最小值是7S3.已知数列{}n a 的前n 项和为n S ,若1226a a =-=,21,,n n n a a a ++为等差数列,则2020S =( ) A .2020142+ B .2018142+C .2020142-D .2018142-4.已知数列{}n a 满足22131nn n a a --=-,()21235n n n a a n +++=+∈N ,则数列{}n a 的前40项和40S =( )A .2131972+B .2031972+C .10998+D .20998+5.在等差数列{}n a 中,1411,5a a =-=-.记12(1,2,)n n T a a a n ==,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项二、多选题6.等比数列{}n a 的公比为q ,前n 项积12n n a a a T =,若 11a >,202020211a a ⋅>,()()20202021110a a --<,则( )A .01q <<B .202020221a a ⋅>C .2021T 是n T 的最大值D .使1n T >的n的最大值是40407.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论中正确的有( )A .821a =B .732S =C .135212n n a a a a a -++++= D .22212202120222021a a a a a +++= 9.设数列{}{},n n ab 的前n 项和分别为,n n S T 1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( )A .20202020a =B .()12n n n S +=C .()112n b n n =-+ D .1334n T n ≤-<10.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.11.如图甲是第七届国际数学教育大会的会徽.它的主题图案是如图乙所示的直角三角形演化而成的.设其中的第一个直角三角形12OA A 是等腰三角形,且112233478 1OA A A A A A A A A ====⋅⋅⋅==,它可以形成近似的等角螺线,记1 OA ,2OA ,3OA ,…,8OA 的长度组成数列{}n a (*n ∈N ,18n ≤≤),且11n n n b a a +=+,则数列{}n b 的前7项和为________.12.已知数列{}n a 满足11a =,()221212n n a a n n n +=-+++,现有如下四个结论:①{}n a 是单调递增数列;①*n N ∃∈,12n n a a +=;①10611a =;①数列{}(1)nn a -的前2n 项和为41(21)3n n n -++.其中所有正确结论的序号是______.13.已知n S 是各项均不为零的等差数列{}n a 的前n 项和,且()2*21n n S a n -=∈N ,使不等式1231a a a +2234345121111142n n n n n a a a a a a a a a λ++⎛⎫++++ ⎪⎝⎭成立,则实数λ的最大值是___________.14.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足下面条件,11a >,9910010a a ⋅->,99100101a a -<-.给出下列结论:①01q <<;①991010a a -<;①100T 的值是n T 中最大的;①1n T >成立最大的自然数n 等于198.其中正确的结论是__________. 15.在数列{}n a 中,()1*111,32n n n a a a n -+==-∈N ,记32(1)n n n n c a λ=-⨯-,若对任意的*1,n n c n c +∈>N 恒成立,则实数λ的取值范围为__________.16.已知数列{}n a 的前n 项和为*1,4,n n n S S a n +=∈N ,且14a =.(1)证明:{}12n n a a +-是等比数列,并求{}n a 的通项公式;(2)在①1n n n b a a +=-;①2log nn a b n=;①21n n n n a b a a ++=这三个条件中任选一个补充在下面横线上,并加以解答.已知数列{}n b 满足___________,求{}n b 的前n 项和n T .注:如果选择多个方案分别解答,按第一个方案解答计分.17.已知数列{}n a 是各项均为正数的等比数列,且11a =,32232a a =+.数列{}n b 满足()1122123n n n n a b a b a b b a +++⋅⋅⋅+=-+.(1)求数列{}n a ,{}n b 的通项公式;(2)若数列()111n n n n b b ++⎧⎫-⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,求证:13n S ≤.18.给出以下三个条件:①11a =,22121n n a a n +-=+,*n N ∈;①22n nS a n =+,*n N ∈;①数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n .请从这三个条件中任选一个,将下面题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,0n a >,________. (1)求数列{}n a 的通项公式;(2)若12n a nn nS b a +=,*n N ∈,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. .五、双空题20.设n S 是数列{}n a 的前n 项和,满足()()()*2113322,N n n n n S S S S n n ++-+-+=≥∈,且12a =,26a =,312a =,则n a =______;若1n nb a =,则数列{}n b 的前2021项和为______.。

2025年高考数学总复习课件59第七章第六节数列的综合问题

2025年高考数学总复习课件59第七章第六节数列的综合问题

所以f
′(x)=145x
+x-8=
x2-8x+145 x

x-12
x-125 x
.
令f ′(x)=0,解得x=12或x=125. 因为数列{an}的公差d>0,所以数列{an}是递增数列.
又a6和a8是函数f (x)的极值点,所以a6=12 ,a8= 125,
所以൞aa11++75dd==12125
又a1a4=a2a3,所以a1a4=-2 025.
第六节 数列的综合问题
核心考点 提升“四能”
课时质量评价
2.已知等差数列{an}的前n项和为Sn,公差d>0,a6和a8是函数f (x)=145ln x+12x2 -8x的极值点,则S8=________.
-38 解析:因为f (x)=145ln x+12x2-8x,

a1=-17,
,解得ቐ d=
7 2
.
所以S8=8×(-17)+8×
8-1 2
× 72=-38.
THANKS
第六节 数列的综合问题
核心考点 提升“四能”
课时质量评价
(2022·全国甲卷)记Sn为数列{an}的前n项和.已知2nSn+n=2an+1.
(1)证明:{an}是等差数列;
证明:由2nSn+n=2an+1,得2Sn+n2=2n·an+n①,
所以2Sn+1+(n+1)2=2(n+1)·an+1+(n+1)②, ②-①,得2an+1+2n+1=2(n+1)·an+1-2n·an+1,化简得an+1-an=1, 所以数列{an}是公差为1的等差数列.
考向2 证明问题 【例3】(2024·济南模拟)已知数列{an}的前n项和为Sn,3an=2Sn+2n(n∈N*). (1)证明:数列{an+1}为等比数列,并求数列{an}的前n项和Sn; 证明:当n=1时,3a1=2S1+2=2a1+2,解得a1=2. 由3an=2Sn+2n,得3an-1=2Sn-1+2(n-1),n≥2, 两式相减,化简可得an=3an-1+2,所以an+1=3(an-1+1).

高中数学复习:数列求和及综合问题

高中数学复习:数列求和及综合问题

高中数学复习:数列求和及综合问题1.数列{a n }满足a n +2+(-1)na n =3n -1,前16项和为540,则a 1=________. 解析 法一 因为a n +2+(-1)na n =3n -1, 所以当n 为偶数时,a n +2+a n =3n -1,所以a 4+a 2=5,a 8+a 6=17,a 12+a 10=29,a 16+a 14=41, 所以a 2+a 4+a 6+a 8+a 10+a 12+a 14+a 16=92. 因为数列{a n }的前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540-92=448.① 因为当n 为奇数时,a n +2-a n =3n -1,所以a 3-a 1=2,a 7-a 5=14,a 11-a 9=26,a 15-a 13=38, 所以(a 3+a 7+a 11+a 15)-(a 1+a 5+a 9+a 13)=80.② 由①②得a 1+a 5+a 9+a 13=184.又a 3=a 1+2,a 5=a 3+8=a 1+10,a 7=a 5+14=a 1+24,a 9=a 7+20=a 1+44,a 11=a 9+26=a 1+70,a 13=a 11+32=a 1+102,所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +12=32(1+n )·n +12-n +12=34n 2+n +14, 所以a n +2=34n 2+n +14+a 1.所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=a 1+⎝ ⎛⎭⎪⎫34×12+1+14+a 1+⎝ ⎛⎭⎪⎫34×32+3+14+a 1+⎝ ⎛⎭⎪⎫34×52+5+14+a 1+⎝ ⎛⎭⎪⎫34×72+7+14+a 1+⎝ ⎛⎭⎪⎫34×92+9+14+a 1+⎝ ⎛⎭⎪⎫34×112+11+14+a 1+⎝ ⎛⎭⎪⎫34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 72.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1.所以S 6=-1×(1-26)1-2=-63.法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.答案 -633.已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)设{}a n 的公比为q (q >1). 由题设得a 1q +a 1q 3=20,a 1q 2=8. 解得q =12(舍去),q =2.由题设得a 1=2.所以{}a n 的通项公式为a n =2n.(2)由题设及(1)知b 1=0,且当2n ≤m <2n +1时,b m =n .所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480. 4.设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3, 即2a 1=a 1q +a 1q 2.所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和.由(1)及题设可得a n =(-2)n -1,所以S n =1+2×(-2)+…+n ·(-2)n -1,-2S n =-2+2×(-2)2+…+(n -1)·(-2)n -1+n ·(-2)n.所以3S n =1+(-2)+(-2)2+…+(-2)n -1-n ·(-2)n=1-(-2)n3-n ·(-2)n .所以S n =19-(3n +1)(-2)n9.考点1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14,所以数列{a n }是公比、首项均为-14的等比数列.所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n. (2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2,c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【训练1】 已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2),a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1, ∴a 22=2+a 2,a 2>0,∴a 2=2.因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 热点二 数列求和 方法1 分组转化求和【例2】 已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n.因为b n =a 2n +2a n -1,所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【训练2】 设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎪⎨⎪⎧a 1+d =8,4a 1+6d =40,解得⎩⎪⎨⎪⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎪⎨⎪⎧4n ,n 为奇数,3·2n -1,n 为偶数, 当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎪⎨⎪⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数. 方法2 裂项相消求和【例3】 设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎨⎧⎭⎬⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围. (1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2). 又a 2=2a 1,所以a n +1a n=2(n ∈N *), 所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1, 因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n, 因为10(n +1)n=10⎝ ⎛⎭⎪⎫1+1n ≤20,所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 【训练3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. 解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =1-12n +1=2n 2n +1.方法3 错位相减法求和【例4】在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题.已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________.(1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =6d , 解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=-1,d =-2(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1qn -1=2n -1.(2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1qn -1=2n -1.(2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练4】在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n =5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1=23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1. 所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2. 因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2. 因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n .所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意. 热点三 与数列相关的综合问题【例5】 设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2.∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1. (2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n1-3=3n-12.T n ≤S n 可化为3n-12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意; (2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式;(2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8, ∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *).∴2b n =21+22+23+ (2)=2(1-2n)1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n-1-12n +1-1, ∴T n =c 1+c 2+…+c n =121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.巩固提升一、选择题1.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 因为2n+12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013,所以整数m 的最小值为1 024. 答案 C2.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009B.1 010C.2 019D.2 020解析 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2 020项的和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×1 010=2 020. 答案 D3.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998B.2C.9950 D.99100解析 对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+...+(a 2-a 1)+a 1=n +(n -1)+ (1)n (n +1)2,则1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1+1a 2+…+1a 99=2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫199-1100]=2×⎝ ⎛⎭⎪⎫1-1100=9950.答案 C4.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=S n +2a n +1,数列⎩⎨⎧⎭⎬⎫2na n a n +1的前n 项和为T n ,n ∈N *,则下列选项正确的为( ) A.数列{a n +1}是等差数列 B.数列{a n +1}是等比数列 C.数列{a n }的通项公式为a n =2n-1 D.T n <1解析 由S n +1=S n +2a n +1,得a n +1=S n +1-S n =2a n +1,可化为a n +1+1=2(a n +1).由a 1=1,得a 1+1=2,则数列{a n +1}是首项为2,公比为2的等比数列.则a n +1=2n,即a n =2n-1.由2n a n a n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1,得T n =1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1<1.所以A 错误,B ,C ,D 正确.故选BCD.答案 BCD5.(多选题)(2020·烟台模拟)已知数列{a n }满足a n +1+a n =n ·(-1)n (n +1)2,其前n 项和为S n ,且m +S 2 019=-1 009,则下列说法正确的是( ) A.m 为定值B.m +a 1为定值C.S 2 019-a 1为定值D.ma 1有最大值解析 当n =2k (k ∈N *)时,由已知条件得a 2k +a 2k +1=2k ·(-1)k (2k +1),所以S 2 019=a 1+a 2+a 3+…+a 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=a 1-2+4-6+8-10+…-2 018=a 1+1 008-2 018=a 1-1 010,所以S 2 019-a 1=-1 010.m +S 2 019=m +a 1-1 010=-1 009,所以m +a 1=1,所以ma 1≤⎝ ⎛⎭⎪⎫m +a 122=14,当且仅当m =a 1=12时等号成立,此时ma 1取得最大值14.故选BCD. 答案 BCD 二、填空题6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案 2n +1-27.已知数列{a n }的前n 项和为S n ,且2S n =3a n +1,则a 1=________,a n =________. 解析 令n =1,则2S 1=3a 1+1,又S 1=a 1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=12(3a n -3a n -1),整理得a n =3a n -1,即a na n -1=3(n ≥2).因此,{a n }是首项为-1,公比为3的等比数列. 故a n =-3n -1.答案 -1 -3n -18.已知数列{na n }的前n 项和为S n ,且a n =2n,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析 S n =1×21+2×22+…+n ×2n, 则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案 5 三、解答题9.记S n 为等差数列{a n }的前n 项和,且a 10=4,S 15=30. (1)求数列{a n }的通项公式以及前n 项和S n ;(2)记数列{2a n +4+a n }的前n 项和为T n ,求满足T n >0的最小正整数n 的值. 解 (1)记数列{a n }的公差为d ,S 15=30⇒15a 8=30⇒a 8=2,故d =a 10-a 810-8=1,故a n =a 10+(n -10)d =4+n -10=n -6,S n =na 1+n (n -1)d2=-5n +n (n -1)2=n 22-11n2. (2)依题意,2a n +4+a n =n -6+2n -2T n =(-5-4+…+n -6)+(2-1+20+…+2n -2)=n (n -11)2+2n -12,当n =1时,T 1=-1×10+21-12<0;当n =2时,T 2=-2×9+22-12<0;当n =3时,T 3=-3×8+23-12<0;当n =4时,T 4=-4×7+24-12<0;当n ≥5时,n (n -11)2≥-15,2n-12≥312,所以T n >0.故满足T n >0的最小正整数n 的值为5.10.甲、乙两同学在复习数列时发现曾经做过的一道有关数列的题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列{a n }的前n 项和为S n ,已知________. (1)判断S 1,S 2,S 3的关系;(2)若a 1-a 3=3,设b n =n 12|a n |,记{b n }的前n 项和为T n ,求证:T n <43.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是S 1,S 3,S 2成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题. (1)解 由S 1,S 3,S 2成等差数列,得 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=2a 1+a 1q , 解得q =-12或q =0(舍去).若乙同学记得的缺少的条件是正确的,则公比q =-12.所以S 1=a 1,S 2=a 1+a 2=a 1-12a 1=12a 1,S 3=a 1+a 2+a 3=a 1-12a 1+14a 1=34a 1,可得S 1+S 2=2S 3,即S 1,S 3,S 2成等差数列.(2)证明 由a 1-a 3=3,可得a 1-14a 1=3,解得a 1=4,所以a n =4×⎝ ⎛⎭⎪⎫-12n -1.所以b n =n 12|a n |=n 12⎪⎪⎪⎪⎪⎪4×⎝ ⎛⎭⎪⎫-12n -1=23n ·⎝ ⎛⎭⎪⎫12n.所以T n =23⎝ ⎛⎭⎪⎫1×12+2×14+3×18+…+n ×12n ,12T n =23⎝ ⎛⎭⎪⎫1×14+2×18+3×116+…+n ×12n +1,两式相减,得12T n =23⎝ ⎛⎭⎪⎫12+14+18+116+…+12n -n ·12n +1=23⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫1-12n1-12-n ·12n +1, 化简可得T n =43⎝ ⎛⎭⎪⎫1-n +22n +1.由1-n +22n +1<1,得T n <43.能力突破11.设数列{a n }的各项均为正数,前n 项和为S n ,对于任意的n ∈N *,a n ,S n ,a 2n 成等差数列,设数列{b n }的前n 项和为T n ,且b n =(ln x )na 2n,若对任意的实数x ∈(1,e](e 为自然对数的底数)和任意正整数n ,总有T n <r (r ∈N *),则r 的最小值为________. 解析 由题意得,2S n =a n +a 2n , 当n ≥2时,2S n -1=a n -1+a 2n -1, ∴2S n -2S n -1=a n +a 2n -a n -1-a 2n -1, ∴(a n +a n -1)(a n -a n -1-1)=0,∵a n >0,∴a n -a n -1=1,即数列{a n }是公差为1的等差数列, 又2a 1=2S 1=a 1+a 21,a 1=1,∴a n =n (n ∈N *). 又x ∈(1,e],∴0<ln x ≤1,∴T n ≤1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2,∴r ≥2,即r 的最小值为2.答案 212.等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c n a n=b n +1,求数列{c n }的前2 020项的和. 解 (1)依题意得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2. ∴a n =2n .设等比数列{b n }的公比为q ,所以q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,∴b n =4×2n -2=2n.(2)由(1)知,a n =2n ,b n =2n. 因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n=2n +1① 当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n② 由①-②得,c n a n=2n,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式,∴c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2. 故S 2 020=8+2×23+3×24+…+2 020×22 021=4+1×22+2×23+3×24+…+2 020×22 021设T 2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021③, 则2T 2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022④,由③-④得:-T 2 020=22+23+24+…+22 021-2 020×22 022=22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T 2 020=2 019×22 022+4,所以S 2 020=T 2 020+4=2 019×22 022+8.。

2023年高考数学一轮复习第六章数列6数列中的综合问题练习含解析

2023年高考数学一轮复习第六章数列6数列中的综合问题练习含解析

数列中的综合问题考试要求 1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题. 题型一 数学文化与数列的实际应用例1 (1)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块答案 C解析 设每一层有n 环,由题意可知,从内到外每环之间构成公差为d =9,首项为a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,解得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3402(块).(2)(2021·新高考全国Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm,20dm× 6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑k =1n S k =_______dm 2.答案 5 240⎝⎛⎭⎪⎫3-n +32n解析 依题意得,S 1=120×2=240;S 2=60×3=180;当n =3时,共可以得到5dm×6dm,52dm×12dm,10dm×3dm,20dm×32dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120;当n =4时,共可以得到5dm×3dm,52dm×6dm,54dm×12dm,10dm×32dm,20dm×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75; ……所以可归纳S k =2402k ×(k +1)=240k +12k. 所以∑k =1nS k =240⎝ ⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,①所以12×∑k =1nS k=240⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,②由①-②得,12×∑k =1nS k=240⎝ ⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1=240⎝ ⎛⎭⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1, 所以∑k =1nS k =240⎝⎛⎭⎪⎫3-n +32ndm 2. 教师备选1.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为( ) A .4.5尺 B .3.5尺 C .2.5尺 D .1.5尺答案 A解析 冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{a n },设公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+a 2+a 3=28.5,a 10+a 11+a 12=1.5,解得⎩⎪⎨⎪⎧a 1=10.5,d =-1,所以a n =a 1+(n -1)d =11.5-n , 所以a 7=11.5-7=4.5, 即春分时节的日影长为4.5尺. 2.古希腊时期,人们把宽与长之比为5-12⎝ ⎛⎭⎪⎫5-12≈0.618的矩形称为黄金矩形,把这个比值5-12称为黄金分割比例.如图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 之间的距离超过1.5m ,C 与F 之间的距离小于11m ,则该古建筑中A 与B 之间的距离可能是(参考数据:0.6182≈0.382,0.6183≈0.236,0.6184≈0.146,0.6185≈0.090,0.6186≈0.056,0.6187≈0.034)( )A .30.3mB .30.1mC .27mD .29.2m答案 C解析 设|AB |=x ,a ≈0.618,因为矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形, 所以有|BC |=ax ,|CF |=a 2x ,|FG |=a 3x , |GJ |=a 4x ,|JK |=a 5x ,|KM |=a 6x .由题设得⎩⎪⎨⎪⎧a 6x >1.5,a 2x <11,解得26.786<x <28.796,故选项C 符合题意. 思维升华 数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值. (2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n 与a n +1(或者相邻三项)之间的递推关系,或者S n 与S n +1(或者相邻三项)之间的递推关系.跟踪训练1 (1)(2022·佛山模拟)随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月 B .2023年2月 C .2023年4月 D .2023年6月答案 B解析 每个月开通5G 基站的个数是以5为首项,1为公差的等差数列, 设预计我国累计开通500万个5G 基站需要n 个月,则70+5n +n n -12×1=500,化简整理得,n 2+9n -860=0, 解得n ≈25.17或n ≈-34.17(舍),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.(2)(多选)(2022·潍坊模拟)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n },则( )A .a 4=12B .a n +1=a n +n +1C .a 100=5050D .2a n +1=a n ·a n +2解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n ,故a n =n n +12,∴a 4=4×4+12=10,故A 错误; a n +1=a n +n +1,故B 正确; a 100=100×100+12=5050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n n +1n +2n +34,显然2a n +1≠a n ·a n +2,故D 错误.题型二 等差数列、等比数列的综合运算例2 (2022·滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解 (1)设等差数列{a n }的公差为d , 因为b 2=4,所以a 2=2log 2b 2=4, 所以d =a 2-a 1=2, 所以a n =2+(n -1)×2=2n . 又a n =2log 2b n ,即2n =2log 2b n , 所以n =log 2b n , 所以b n =2n.(2)由(1)得b n =2n=2·2n -1=a 2n -1, 即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n , 因为b 7=62a =a 64,b 8=72a =a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的, 所以S 100=P 107-Q 7=107×2+2142-2-281-2=11302.(2020·浙江)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b nb n +2c n ,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式; (2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.(1)解 由b 1=1,b 1+b 2=6b 3,且{b n }为等比数列,得1+q =6q 2,解得q =12(负舍).∴b n =12n -1.∴c n +1=b nb n +2c n =4c n ,∴c n =4n -1. ∴a n +1-a n =4n -1,∴a n =a 1+1+4+…+4n -2=1-4n -11-4+1=4n -1+23. (2)证明 由c n +1=b n b n +2·c n (n ∈N *), 可得b n +2·c n +1=b n ·c n , 两边同乘b n +1,可得b n +1·b n +2·c n +1=b n ·b n +1·c n , ∵b 1b 2c 1=b 2=1+d ,∴数列{b n b n +1c n }是一个常数列, 且此常数为1+d ,即b n b n +1c n =1+d , ∴c n =1+db n b n +1=1+d d ·d b n b n +1=⎝⎛⎭⎪⎫1+1d ·b n +1-b n b n b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1,又∵b 1=1,d >0,∴b n >0, ∴c 1+c 2+…+c n=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b 2+⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 2-1b 3+…+⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b n -1b n +1 =⎝ ⎛⎭⎪⎫1+1d ⎝⎛⎭⎪⎫1b 1-1b 2+1b 2-1b 3+…+1b n-1b n +1=⎝⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1b 1-1b n +1=⎝ ⎛⎭⎪⎫1+1d ⎝ ⎛⎭⎪⎫1-1b n +1<1+1d,∴c 1+c 2+…+c n <1+1d.思维升华 对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b 1=1,d >0证明不等式成立.另外本题在探求{a n }与{c n }的通项公式时,考查累加、累乘两种基本方法.跟踪训练2 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.题型三 数列与其他知识的交汇问题 命题点1 数列与不等式的交汇例3 已知数列{a n }满足a 1=12,1a n +1=1a n +2(n ∈N *).(1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.(1)解 因为1a n +1=1a n+2(n ∈N *),所以1a n +1-1a n=2(n ∈N *),因为a 1=12,所以1a 1=2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以首项为2,公差为2的等差数列,所以1a n =2+2(n -1)=2n (n ∈N *),所以数列{a n }的通项公式是a n =12n (n ∈N *).(2)证明 依题意可知a 2n =⎝ ⎛⎭⎪⎫12n 2=14·1n 2<14·1n ·1n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n >1), 所以a 21+a 22+a 23+…+a 2n<14⎝ ⎛⎭⎪⎫1+1-12+12-13+…+1n -1-1n=14⎝⎛⎭⎪⎫2-1n <12.故a 21+a 22+a 23+…+a 2n <12.命题点2 数列与函数的交汇例4 (1)(2022·淄博模拟)已知在等比数列{a n }中,首项a 1=2,公比q >1,a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,则数列{a n }的前9项和是________. 答案 1022解析 由f (x )=13x 3-6x 2+32x ,得f ′(x )=x 2-12x +32,又因为a 2,a 3是函数f (x )=13x 3-6x 2+32x 的两个极值点,所以a 2,a 3是函数f ′(x )=x 2-12x +32的两个零点,故⎩⎪⎨⎪⎧a 2+a 3=12,a 2·a 3=32,因为q >1,所以a 2=4,a 3=8,故q =2, 则前9项和S 9=21-291-2=210-2=1022.教师备选1.已知函数f (x )=log 2x ,若数列{a n }的各项使得2,f (a 1),f (a 2),…,f (a n ),2n +4成等差数列,则数列{a n }的前n 项和S n =______________. 答案163(4n-1) 解析 设等差数列的公差为d ,则由题意,得2n +4=2+(n +1)d ,解得d =2, 于是log 2a 1=4,log 2a 2=6,log 2a 3=8,…, 从而a 1=24,a 2=26,a 3=28,…,易知数列{a n }是等比数列,其公比q =a 2a 1=4, 所以S n =244n-14-1=163(4n-1).2.求证:12+1+222+2+323+3+…+n 2n +n <2(n ∈N *).证明 因为n 2n+n <n2n , 所以不等式左边<12+222+323+…+n2n .令A =12+222+323+…+n2n ,则12A =122+223+324+…+n 2n +1, 两式相减得12A =12+122+123+…+12n -n 2n +1=1-12n -n2n +1,所以A =2-n +22n<2,即得证.思维升华 数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n 项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.跟踪训练3 (1)(2022·长春模拟)已知等比数列{a n }满足:a 1+a 2=20,a 2+a 3=80.数列{b n }满足b n =log 2a n ,其前n 项和为S n ,若b nS n +11≤λ恒成立,则λ的最小值为________.答案623解析 设等比数列{a n }的公比为q , 由题意可得⎩⎪⎨⎪⎧a 1+a 1q =20,a q +a q 2=80,解得a 1=4,q =4,故{a n }的通项公式为a n =4n,n ∈N *.b n =log 2a n =log 24n =2n , S n =2n +12n (n -1)·2=n 2+n ,b nS n +11=2n n 2+n +11=2n +11n+1,n ∈N *, 令f (x )=x +11x,则当x ∈(0,11)时,f (x )=x +11x单调递减,当x ∈(11,+∞)时,f (x )=x +11x单调递增,又∵f (3)=3+113=203,f (4)=4+114=274,且n ∈N *,∴n +11n ≥203,即b nS n +11≤2203+1=623, 故λ≥623,故λ的最小值为623.(2)若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式; ②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 ①设{a n }的公差为d (d ≠0), 则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列, 所以a 1·(4a 1+6d )=(2a 1+d )2. 所以2a 1d =d 2.因为d ≠0,所以d =2a 1.又因为S 2=4,所以a 1=1,d =2, 所以a n =2n -1. ②因为b n =3a n a n =32n -12n +1=32⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =32⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =32⎝⎛⎭⎪⎫1-12n +1<32. 要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30. 课时精练1.(2022·青岛模拟)从“①S n =n ⎝ ⎛⎭⎪⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.解 (1)选①: S n =n ⎝ ⎛⎭⎪⎫n +a 12=n 2+a 12n , 令n =1,得a 1=1+a 12,即a 1=2, 所以S n =n 2+n .当n ≥2时,S n -1=(n -1)2+n -1,当n ≥2时,a n =S n -S n -1=2n ,又a 1=2,满足上式,所以a n =2n .选②:由S 2=a 3,得a 1+a 2=a 3,得a 1=d ,又由a 4=a 1a 2,得a 1+3d =a 1(a 1+d ),因为d ≠0,则a 1=d =2,所以a n =2n .选③:由a 4是a 2,a 8的等比中项,得a 24=a 2a 8,则(a 1+3d )2=(a 1+d )(a 1+7d ),因为a 1=2,d ≠0,所以d =2,则a n =2n .(2)S n =n 2+n ,b n =(2n +1)2+2n +1-(2n )2-2n =3·22n +2n ,所以W n =3×22+2+3×24+22+…+3×22n +2n =12×1-4n 1-4+2×1-2n 1-2=4(4n-1)+2(2n -1)=4n +1+2n +1-6.2.(2022·沈阳模拟)已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2,得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1,即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1.当n =1时,a 22=2a 1+2=4,∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n .(2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n ,2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·1-2n 1-2-n ·2n +1 =(1-n )2n +1-2,∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0,∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022,当n =8时,T 8=7×29+2=3 586>2 022,∴使T n >2 022的最小的正整数n 的值为8.3.(2022·大连模拟)已知等差数列{a n }的前n 项和为S n ,S 5=25,且a 3-1,a 4+1,a 7+3成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n +1,T n 是数列{b n }的前n 项和,求T 2n .解 (1)由题意知,等差数列{a n }的前n 项和为S n ,由S 5=25,可得S 5=5a 3=25,所以a 3=5, 设数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列,可得(6+d )2=4(8+4d ),整理得d 2-4d +4=0,解得d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)知 b n =(-1)n a n +1=(-1)n (2n -1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n -3)+1]+(4n -1+1)=4n .4.(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.解 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧ a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1, 因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×1-22n +11-2+3+2n +42n +22=4n +1+2n 2+9n +5.5.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列, ∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1.(2)由(1)可得b n =(-1)n -14na n a n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1;当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫15+17-…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.∴T n =⎩⎪⎨⎪⎧ 2n2n +1,n 为偶数,2n +22n +1,n 为奇数.。

考点38数列中的综合问题(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点38数列中的综合问题(2种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点38数列中的综合问题(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等【核心题型】题型一 等差数列、等比数列的综合运算 数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.【例题1】(2023·湖北荆门·模拟预测)血药浓度检测可使给药方案个体化,从而达到临床用药的安全、有效、合理.某医学研究所研制的某种新药进入了临床试验阶段,经检测,当患者A 给药3小时的时候血药浓度达到峰值,此后每经过2小时检测一次,每次检测血药浓度降低到上一次检测血药浓度的40%,当血药浓度为峰值的1.024%时,给药时间为( )A .11小时B .13小时C .17小时D .19小时【变式1】(2023高三·全国·专题练习)已知集合{}*112|,A x x k k ==ÎN ,{}2*2|3,k B x x k ==ÎN ,将A B È中所有元素按从小到大的顺序排列构成数列{}n a ,设数列{}n a 的前n 项和为n S ,若27m a =,则m 的值等于,50S 的值为 .【变式2】(2024·四川绵阳·三模)已知首项为1的等差数列{}n a 满足:123,,1a a a +成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:121131n n n n a b a b a b -+++=-L ,求数列{}n b 的前n 项和n T .【变式3】(2023高三·全国·专题练习)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:1111()n n n n n n n S a b S b S b +++++=-;题型二 数列与其他知识的交汇问题(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形命题点1 数列与不等式的交汇【例题2】(2024·重庆·三模)数列{}n a 的前n 项和为n S ,234n n S a n =-+,若()3320n a n l +-+>对任意*n ÎN 恒成立,则实数l 的取值范围为( )A .1,2æö+¥ç÷èøB .()1,+¥C .5,4æö+¥ç÷èøD .()2,+¥【变式1】(2024·江苏苏州·三模)已知函数*(),N n f n a n =Î.①当2a =时,11()n b f n =+,记{}n b 前n 项积为n T ,若n m T >恒成立,整数m 的最小值是;②对所有n 都有33()1()11f n n f n n -³++成立,则a 的最小值是 .【变式2】(2024·湖南长沙·模拟预测)已知数列{}n a 满足()*321223n a a a a n n n++++=ÎN L .(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足12nn n a b +=.①求数列{}n b 的前n 项和n T ;②若不等式()12nn n n T l -<+对任意*n ÎN 恒成立,求实数l 的取值范围.【变式3】(2024·辽宁·二模)设等差数列{}n a 的前n 项和为n S ,公差为d ,且10a d ¹.若等差数列{}n b ,满足2nn nS b a =.(1)求数列{}n b 的通项公式;(2)若514d =,记数列{}n b 的前n 项和为n T ,且n n T S >,求n 的最大值.命题点2 数列与函数的交汇【例题3】(2024·福建莆田·三模)已知定义在(0,)+¥上的函数()f x 满足()()121f x f x +=+,且(1)1f =,则()100f =( )A .10021-B .10021+C .10121-D .10121+【变式1】(2024·广西来宾·模拟预测)函数()|1||2||3||15|f n n n n n =-+-+-++-L (n 为正整数)的最小值为 .【变式2】(2024·浙江绍兴·三模)已知函数()()cosπR f x x x x =+Î的所有正零点构成递增数列{}()N*n a n Î.(1)求函数()f x 的周期和最大值;(2)求数列{}n a 的通项公式n a 及前n 项和n S .【变式3】(2024·上海·模拟预测)已知()21122f x x x =+,数列{}n a 的前n 项和为n S ,点()()*,N n n S n Î均在函数()y f x =的图象上.(1)求数列{}n a 的通项公式;(2)若()442x x g x =+,令()*N 2025n n a b g n æö=Îç÷èø,求数列{}n b 的前2024项和2024T .【课后强化】【基础保分练】一、单选题1.(2024·山西阳泉·三模)已知等差数列{}n a 中,7a 是函数π()sin(2)6f x x =-的一个极大值点,则59)tan(a a +的值为( )ABC.D.2.(2020·辽宁辽阳·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令11n n n b a a +=,则数列{}n b 的前50项和50T =( )A .5051B .4950C .100101D .501013.(2024·山东·二模)欧拉函数()()*n n j ÎN 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如()42j =.已知()123n n nb j +=,*n ÎN ,n T 是数列{}n b 的前n 项和,若n T M <恒成立,则M 的最小值为( )A .34B .1C .76D .24.(2024·福建泉州·二模)在等比数列{}n a 中,15,a a 是函数2()10ln(3)f x x x t x =-+的两个极值点,若2432a a =-,则t 的值为( )A .4-B .5-C .4D .5二、多选题5.(2024·云南·模拟预测)已知定义在R 上的函数()f x 满足:()()()()2f x y f x y f x f y ++-=,且()21f =-,则下列说法中正确的是( )A .()f x 是偶函数B .()f x 关于点()2,1-对称C .设数列{}n a 满足()n a f n =,则{}n a 的前2024项和为0D .103f æöç÷èø可以是126.(2024·湖北·模拟预测)对于正整数n ,()n j 是小于或等于n 的正整数中与n 互质的数的数目.函数()n j 以其首名研究者欧拉命名,称为欧拉函数,例如()96j =(1,2,4,5,7,8与9互质),则()A .若n 为质数,则()1n n j =-B .数列(){}n j 单调递增C .数列()2nn j ìüïïíýïïîþ的最大值为1D .数列(){}3nj 为等比数列三、填空题7.(2021·江西·模拟预测)已知公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ,……构成等比数列{}n a ,且11k =,22k =,35k =,则n k =.8.(2023·陕西宝鸡·模拟预测)已知实数a 、b 、c 、d 成等差数列,且函数()ln 2y x x =+-在x b =时取到极大值c ,则a d += .9.(2024·四川成都·模拟预测)已知数列{}n a 满足1ln 1n n a a +=+,函数()ln 1xf x x =+在0x x =处取得最大值,若()420ln 1a a x =+,则12a a += 四、解答题10.(2023·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,124325a a a ++=,且32a +,4a ,52a -成等比数列.(1)求数列{}n a 的通项公式;(2)设n n b a ={}n b 的前n 项和n T .11.(2024·浙江·二模)欧拉函数()()*N n n j Î的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,例如:()11j =,()42j =,()84j =,数列{}n a 满足()()*2N n n a n j =Î.(1)求1a ,2a ,3a ,并求数列{}n a 的通项公式;(2)记()222log 1nnn na b a =-,求数列{}n b 的前n 和n S .【综合提升练】一、单选题1.(2024·辽宁·二模)设等差数列{}n a 的前n 项和为n S ,点(,)(N )n n S n *Î在函数2()(,,)f x Ax Bx C A B C =++ÎR 的图象上,则( )A .01C =B .若0A =,则0N n *$Î,使n S 最大C .若0A >,则0N n *$Î,使n S 最大D .若0A <,则0N n *$Î,使n S 最大2.(2022高三·全国·专题练习)已知数列{}n a 为等差数列,且7π2a =.设函数()2sin22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( )A .13π2B .7πC .7D .133.(23-24高三下·重庆·阶段练习)定义:满足(211:n n n na a q q a a +++= 为常数,*N n Î)的数列{}n a 称为二阶等比数列,q 为二阶公比.已知二阶等比数列}n a ∣的二阶公比为121,a a ==,则使得2024n a > 成立的最小正整数n 为( )A .7B .8C .9D .104.(2024·江苏徐州·一模)已知数列{}n a 的前n 项和为n S ,且321n n S a =+,*n ÎN .若2024k S ³,则正整数k 的最小值为( )A .11B .12C .13D .145.(23-24高三上·山西运城·期末)已知等差数列{}n a 中,97π12a =,设函数44()cos sin cos 1f x x x x x =---,记()n n y f a =,则数列{}n y 的前17项和为( )A .51-B .48-C .17-D .06.(2024·安徽池州·二模)对于数列{}n a ,若点(),n n a 都在函数x y cq =的图象上,其中0q >且1q ¹,则“1c q >”是“{}n a 为递增数列”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.(2024·上海奉贤·三模)若数列{}n a 的前n 项和为n S ,关于正整数n 的方程1n n S S a +×=记为F ,命题p :对于任意的R a Î,存在等差数列{}n a 使得F 有解;命题q :对于任意的R a Î,存在等比数列{}n b 使得F 有解;则下列说法中正确的是( )A .命题p 为真命题,命题q 为假命题;B .命题p 为假命题,命题q 为真命题;C .命题p 为假命题,命题q 为假命题;D .命题p 为真命题,命题q 为真命题;8.(2024·青海·模拟预测)已知定义在R 上的函数()f x 满足()()()()()226f x y f x f y f x f y +=--+,()14f =,则()()()1299f f f ++×××+=( )A .992198+B .992196+C .1002198+D .1002196+二、多选题9.(2024·贵州·三模)已知定义域为R 的函数()f x 满足()()()()22,f x y f x f y x y xy f x +=+¢++为()f x 的导函数,且()12f ¢=,则( )A .()00f =B .()f x 为奇函数C .()27f ¢-=D .设()()*n b f n n ¢=ÎN ,则2024202320252b =´+10.(2024·河南·三模)将函数()2πsin (0,0)3f x x x w w æö=->>ç÷èø的零点按照从小到大的顺序排列,得到数列{}n a ,且123a =,则( )A .2w =B .()f x 在()1,2上先增后减C .10313a =D .{}n a 的前n 项和为236n n +11.(2022·海南·模拟预测)对于无穷数列{}n a ,给出如下三个性质:①10a <;②*,n s "ÎN ,n s n s a a a +>+;③*n "ÎN ,*t $ÎN ,n t n a a +>,定义:同时满足性质①和②的数列{}n a 为“s 数列”,同时满足性质①和③的数列{}n a 为“t 数列”,则下列说法正确的是( )A .若23n a n =-,则{}n a 为“s 数列”B .若12n n a =-,则{}n a 为“t 数列”C .若{}n a 为“s 数列”,则{}n a 为“t 数列”D .若等比数列{}n a 为“t 数列”,则{}n a 为“s 数列”三、填空题12.(2024·浙江·模拟预测)已知数列{}n a 的前n 项和为n S,且n a ={}n b 的前n 项和为n T ,且()121n bn n S a +-=,则满足2n T ³的正整数n 的最小值为.13.(2023高三·全国·专题练习)函数()f x 满足()()()()*111,1N 12f n f n f n +==Î+.若不等式()()1f n f n M +-£对任意的n 恒成立,则M 的最小值是.14.(23-24高三上·河北邢台·开学考试)函数()2f x x x a =-+的最小值是12,数列{}n a 满足()1n n a f a +=,11a =,则数列{}n a 的通项公式是 .四、解答题15.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432mS >,求正整数m 的最小值.16.(2024·江苏连云港·模拟预测)已知数列{}n a 的前n 项和为n S ,且12n n na S a =+.(1)证明:数列{}2n S 是等差数列;(2)数列{}n S 的每一项均为正数,11,11,2nn n n n S b n S S -ì=ïï=íï³ï+î,数列{}n b 的前n 项和为n T ,当21012n T ³时,求n 的最小值.17.(2024·四川成都·三模)已知数列{}n a 的前n 项和为,342n n n S S a =-.(1)证明:数列{}n a 是等比数列,并求出通项公式;(2)设函数()21ln 2f x x x æö=×-ç÷èø的导函数为()f x ¢,数列{}n b 满足()n n b f a =¢,求数列{}n b 的前n 项和n T .18.(23-24高三下·河北衡水·期中)已知数列{}n a 的前n 项和为n S ,且()21,1n n S a n =-³.(1)求数列{}n a 的通项公式;(2)求证:12311112nS S S S ++++<L .19.(2024·湖南衡阳·三模)已知正项数列{}n a 的前n 项和为n S ,首项11a =.(1)若2421n n n a S a =--,求数列{}n a 的通项公式;(2)若函数()2e x f x x =+,正项数列{}n a 满足:*1)()(n n a f a n +=ÎN .(i )证明:31nn S n ³--;(ii)证明:*2222234)1111(1)(1)(1)(1)2,5555nn n a a a a ++++<³ÎN L .【拓展冲刺练】一、单选题1.(2023·陕西安康·模拟预测)设函数()21f x x =+,数列{}n a ,{}n b 满足()(),n n a f n f b n ==,则2a =( )A .7b B .9b C .11b D .13b 2.(23-24高三上·广东揭阳·阶段练习)已知等差数列{}n a 中,73π8a =,设函数()24cos 2sin cos 222x f x x x æö=-++ç÷èø,记()n n y f a =,则数列{}n y 的前13项和为( )A .7B .13C .20D .263.(2022高三·全国·专题练习)已知数列{}n a 满足1145,31n n a a a +==-,则满足不等式10k k a a -×<的k 的值为( )A .4B .5C .6D .74.(23-24高三上·四川·阶段练习)已知数列{}n a 满足113a =-,且()112n n n a a ++=+-,若使不等式n a l £成立的n a 有且只有三项,则l 的取值范围为( )A .1135,33æùçúèûB .1335,33æùçúèûC .1135,33éö÷êëøD .1335,33éö÷êëø二、多选题5.(23-24高三下·河北·开学考试)欧拉函数()()*N n n j Î是数论中的一个基本概念,()n j 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数(只有公因数1的两个正整数互质,且1与所有正整数(包括1本身)互质),例如()84j =,因为1,3,5,7均与8互质,则( )A .()()()4610j j j ×=B .数列()2n j 单调递增C .()10040j =D .数列()()23nn j j ìüïïíýïïîþ的前n 项和小于326.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +£+,则下列结论可能成立的是( )A .n mmn a a a m n+=B .m n m n na ma a ++=C .2m n mn a a a ++=D .2m n m na a a +×=三、填空题7.(2024·云南楚雄·一模)将函数()2sin f x x x =+(0x >)的所有极小值点按从小到大的顺序排列成数列{}n a ,则()2023tan a = .8.(23-24高三上·上海杨浦·阶段练习)设函数21()1f x x =-,122()ex f x --=,31()sin 2π3f x x =,99i ia =,0,12,,99i =L .()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k =,试将1I 、2I 、3I 从小到大排列为 .9.(2024·全国·模拟预测)已知等比数列{}n a 的首项1012a =,且()23568a a a a +=+,记{}n a 的前n 项和为n S ,前n 项积为n T ,则当不等式0n n S T -<成立时,n 的最大值为 .四、解答题10.(23-24高三上·湖南衡阳·阶段练习)点(,)n A n a (N n *Î)在函数2()log (32)f x x =+图象上.数列{n b }满足2n a n b =.(1)证明:数列{n b }为等差数列.(2)数列{n c }满足231()2n b n c -=.求n T 为{n n b c }前n 项和及当274n T >,求n 的最小值.11.(23-24高三下·湖南·阶段练习)若数列{}n a 在某项之后的所有项均为一常数,则称{}n a 是“最终常数列”.已知对任意()*,n m m n ³ÎN ,函数()f x 和数列{}n a 满足{}()11min n i i na f a +££=.(1)当()f x x >时,证明:{}n a 是“最终常数列”;(2)设数列{}n b 满足11m b a +=,对任意正整数()1,n n n b f b +=.若方程()0fx x-=无实根,证明:{}n a 不是“最终常数列”的充要条件是:对任意正整数i ,i m i b a +=;(3)若(){}21,,n m f x x a ==不是“最终常数列”,求1a 的取值范围.。

数列综合题型

数列综合题型

(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列 C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列 D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->; ③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是 ( )A .①③B .①④C .②③D .②④二、填空题3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(n i i i i ,,,,321⋅⋅⋅)(n 是不小于3的正整数),若对任意的q p ,∈{n ,,⋅⋅⋅3,2,1},当q p <时有q p i i >,则称q p i i ,是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1) 2 4(3题图)6 .(2013朝阳二模数学理科)数列{21}n-的前n 项1,3,7,,21n - 组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为m a x {,,}m i n {,a b ca tbc a b =⋅,}bc ca .(ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.8 .(海淀区北师特学校13届高三第四次月考理科)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = . 9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25 填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列; ②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ .三、解答题13.(海淀区2013届高三上学期期中练习数学(理))已知数集12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立. (Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.15.(西城区2013届高三上学期期末考试数学理科)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥ 满足1||1(1,2,,1)k k a a k n +-==- ,则称n A 为E 数列.记12()n n S A a a a =+++ (Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明: E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013丰台二模数学理科)已知等差数列{}n a 的通项公式为23-=n a n ,等比数列{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈ {},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c .(Ⅰ)求数列{}n b 的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.nS18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|kk k S xx τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值;(Ⅱ)求()S τ的最大值; (Ⅲ)求使()S τ达到最大值的所有排列τ的个数.19.(顺义13届高三第一次统练理科)已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y的图像上.(I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围20.(丰台区2013届高三上学期期末理 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(海淀区2013届高三上学期期末理科)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(石景山区2013届高三上学期期末理)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(朝阳区2013届高三上学期期中考试(理))给定一个n 项的实数列12,,,(N)n a a a n *∈ ,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c --- ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;(Ⅲ)对于数列231,2,3,,nn ,是否存在“1n -次归零变换”?请说明理由.24.(2013届丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++= ;② 1231n a a a a ++++= . (Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n = ,试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(昌平区2013届高三上学期期末理)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤= ,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理))已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线21=x 上,且.(1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c .(Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由; (Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.22221212a a a a a a a a ------31.(东城区2013届高三上学期期末考试数学理科)已知实数组成的数组123(,,,,)n x x x x 满足条件:①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值; (Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥ ,且1n a a >(2)n ≥,求证:111()2ni in i a xa a =≤-∑.32.(东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。

高考数学冲刺专题3.4 数列的综合问题(结构不良型)(新高考)(解析版)

高考数学冲刺专题3.4 数列的综合问题(结构不良型)(新高考)(解析版)

专题3.4 数列的综合问题(结构不良型)1.等差(比)数列问题解决的基本方法: 基本量代换和灵活运用性质. 2.“结构不良问题”此类试题是2020年高考出现的新题型:题目所给的三个可选择的条件是平行的,即无论选择哪个条件,都可解答题目,而且,在选择的三个条件中,并没有哪个条件让解答过程比较繁杂,只要推理严谨、过程规范,都会得满分. 3.数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.4.常见的裂项公式: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(3)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦;(4(1k=; (5)()()1121121212121n n n n n ++=-----.【预测题1】已知{}n a 是公差为d 的无穷等差数列,其前n 项和为n S .又___________,且540S =,是否存在大于1的正整数k ,使得1k S S =?若存在,求k 的值;若不存在,说明理由.从①14a =,②2d =-.这两个条件中任选一个,补充在上面问题中并作答. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析【分析】根据所选条件得出1a 、d 的值,可求得k S 的表达式,然后解方程1k S S =即可得出结论.【解析】若选①,14a =,因为{}n a 是等差数列,所以51510201040S a d d =+=+=,解得2d =, 所以,()()2114132k k k dS ka k k k k k -=+=+-=+, 又14S =,由1k S S =,可得234k k +=,k N *∈,解得1k =,不合乎题意.因此,不存在1k >使得1k S S =; 若选②,2d =-,因为{}n a 是等差数列,所以51151052040S a d a =+=-=,解得112a =, 所以,()()211121132k k k dS ka k k k k k -=+=--=-+, 又112S =,由1k S S =,可得21312k k -+=,即213120k k -+=,k N *∈,解得1k =(舍)或12k =,合乎题意.所以,存在121k =>使得1k S S =.【预测题2】已知数列{}n a 中,11a =,且满足___________. (1)求数列{}n a 的通项公式; (2)求数列{}12n n a -+的前n 项和nS.从①()12n n a a n *+=∈N;②()12n n aa n *+-=∈N ;③()12n n a a n *++=∈N 这三个条件中选择一个,补充在上面的问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)答案见解析,(2)答案见解析【分析】(1)若选①,则可得数列{}n a 是以2为公比的等比数列,从而可求出其通项,若选②,则数列{}n a 是以2为公差的等差数列,从而可求出其通项,若选③,则可知数列{}n a 为常数数列,且1n a =,(2)若选①,则利用等比数列求和公式求n S ,若选②或③,则利用分组求和法求n S【解析】(1)若选①,由()12n n a a n *+=∈N ,得12n na a +=, 因为11a =,所以数列{}n a 是以2为公比,1为首项的等比数列,所以11122n n n a --=⨯=,若选②,因为()12n n a a n *+-=∈N ,11a =,所以数列{}n a 是以2为公差,1为首项的等差数列, 所以12(1)21n a n n =+-=-, 若选③,因为()12n n a a n *++=∈N,11a=,所以1n a =,(2)若选①,则由(1)得1112222n n n nn a ---+=+=,则12312(12)22222(21)2212n n nn n S +-=+++⋅⋅⋅+==-=--,若选②,则由(1)得112212n n n a n --+=-+,则0121(12)(32)(52)[(21)2]n n S n -=++++++⋅⋅⋅+-+0121[135(21)](2222)n n -=+++⋅⋅⋅+-++++⋅⋅⋅+(121)12212nn n +--=+- 221n n =+-,若选③,则由(1)得11212n n n a --+=+,则011(12)(12)(12)n n S -=++++⋅⋅⋅++011(222)n n -=+++⋅⋅⋅+1212nn -=+- 21n n =+-.【预测题3】在①a 4=b 4,②a 2+b 5=2,③S 6=﹣24这三个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设S n 为等差数列{a n }的前n 项和,{b n }是等比数列,______,b 1=a 5,b 3=﹣9,b 6=243.是否存在k ,使得S k >S k ﹣1且S k +1<S k ?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析【分析】方案①②③解题思路均为如下思路:根据等比数列通项公式可求得1,b q ,进而求得n b ;根据两数列中的项的等量关系和等差数列通项公式可求得n a ,将结论变为1110k k k k k k S S a S S a -++-=>⎧⎨-=<⎩,从而构造出不等式,结合k 为正整数即可求得结果. 【解析】选择①a 4=b 4,又b 1=a 5,b 3=﹣9,b 6=243. 则b 1﹣d =﹣9q ,﹣9q 3=243,b 1q 2=﹣9,a 1+3d =b 1﹣d . 解得q =﹣3,b 1=﹣1,d =﹣28.a 1=111. 所以a n =111﹣28(n ﹣1)=139﹣28n . 假设存在k 使得S k >S k ﹣1且S k +1<S k . 则139﹣28k >0,139﹣28(k +1)<0, 化为11128<k 13928<,解得k =4. 选择②a 2+b 5=2,又b 1=a 5,b 3=﹣9,b 6=243. 所以a 1+d ﹣9q 2=2,b 1=a 1+4d ,b 1q 2=﹣9,﹣9q 3=243, 解得a 1=111,d =﹣28,q =﹣3,b 1=﹣1. a n =111﹣28(n ﹣1)=139﹣28n . 假设存在k 使得S k >S k ﹣1且S k +1<S k . 则139﹣28k >0,139﹣28(k +1)<0,化为11128<k 13928<,解得k =4. 选择③S 6=﹣24,又b 1=a 5,b 3=﹣9,b 6=243.所以6a 1+15d =﹣24,b 1=a 1+4d ,b 1q 2=﹣9,﹣9q 3=243, 解得q =﹣3,b 1=﹣1,d =2.a 1=﹣9. 所以a n =﹣9+2(n ﹣1)=2n ﹣11. 假设存在k 使得S k >S k ﹣1且S k +1<S k . 则2k ﹣11>0,2(k +1)﹣11<0, 化为112<k 92<,无解. 【名师点睛】该题考查的是有关数列的问题,正确解题的关键是能够利用前n 项和的最大项得到项的符号,由此简化运算的同时构造出不等关系求得结果.【预测题4】在①136a a +=,59a =,②11a =,2441n n S a n =+-,③12a =,2372a a a =这三个条件中任选一个,补充在下面问题中并解答.问题:已知等差数列{}n a 为递增数列,其前n 项和为n S ,且______.在数列{}n a 的前20项中,是否存在两项m a ,t a (*,m t ∈N 且m t <),使得21a ,1m a ,1ta 成等比数列.若存在,求出m ,t 的值;若不存在,请说明理由. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案不唯一,具体见解析.【分析】根据条件,求出等差数列的通项公式,进而假设存在,列方程,求出满足条件的正整数解即可.【解析】设等差数列{}n a 的公差为d ,0d >.选条件①:由1356,9a a a +=⎧⎨=⎩得113,49,a d a d +=⎧⎨+=⎩ 解得11a =,2d =,所以()1121n a a n d n =+-=-,*n ∈N .因为21a ,1m a ,1ta 成等比数列,所以22111m ta a a =⋅,即22m t a a a =,所以()()221321m t -=-. 因为20t ≤,所以()221117m -≤. 又*m ∈N ,所以2110m -≤,所以5m ≤. 又()221m -为3的倍数,且*21m -∈N ,所以2,2m t =⎧⎨=⎩或5,14.m t =⎧⎨=⎩因为m t <,所以5m =,14t =.选条件②:因为2441n n S a n =+-,11a =,0d >,所以()()211141412n n na d a n d n -⎡⎤+=+-+-⎡⎤⎢⎥⎣⎦⎣⎦, 即()()21411412n n n d n d n -⎡⎤+=+-+-⎡⎤⎢⎥⎣⎦⎣⎦, 整理得()()22211n n d -=-,所以2d =, 所以()1121n a a n d n =+-=-,*n ∈N . 因为21a ,1m a ,1ta 成等比数列,所以22111m t a a a =⋅,即22mt a a a =, 所以()()221321m t -=-.因为20t ≤,所以()221117m -≤. 又*m ∈N ,所以2110m -≤,所以5m ≤. 又()221m -为3的倍数,且*21m -∈N ,所以2,2m t =⎧⎨=⎩或5,14.m t =⎧⎨=⎩因为m t <,所以5m =,14t =.选条件③:因为12a =,2372a a a =,0d >, 所以()()()222226d d d ++=+,整理得()30d d -=,解得3d =(0d =舍去),所以()1131n a a n d n =+-=-,*n ∈N .因为21a ,1m a ,1ta 成等比数列,所以22111m t a a a =⋅,即22m t a a a =;所以()()231531m t -=-.因为20t ≤,所以()231295m -≤. 又*m ∈N ,所以3117m -≤,所以6m ≤.又()231m -为5的倍数,且*31m -∈N ,所以2m =,2t =. 因为m t <,所以不存在m ,t 满足题意.【名师点睛】关于是否存在问题,假设存在,列方程,找出满足方程()()221321m t -=-的整数解是解题的关键.本题考查了运算求解能力和逻辑推理能力,属于一般题目.【预测题5】从①233b S =,②13n a n b -=,③536a b S +=这三个条件中任选一个,补充在下面的问题中并作答.设数列{}n a 的前n 项和为n S ,11a =,()21n n S n a =+,{}n b 是各项均为正数的等比数列,11b a =,___________,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析【分析】先利用11a =,()21n n S n a =+求得n a n =,分别用①②③求出公比q : 选择①:直接求出b 2,求出q ,,再求数列{}n b 的前n 项和n T . 选择②:由1133n a n n b --==,直接得到通项公式,求出前n 项和n T .选择③:用基本量代换,求出q ,,再求数列{}n b 的前n 项和n T . 【解析】由11a =,()21n n S n a =+,得()1122n n S n a ++=+, 两式相减得()()11221n n n a n a n a ++-=++, 即()11n n na n a +=+,所以11n na a n n+=+, 所以11111n n a a an n +==⋅⋅⋅==+,所以n a n =. (或由()11n n na n a +=+得11n n a n a n++=, 所以321121231121n n n a a a na a n a a a n -=⋅⋅⋅⋅⋅=⨯⨯⨯⋅⋅⋅⨯=-)设数列{}n b 的公比为q ,因为等比数列{}n b 的各项均为正数,所以0q >. 选择①:由233b S =得231236b =++=,则22b =, 又111b a ==,所以212b qb ==, 所以数列{}n b 是首项为1,公比为2的等比数列, 所以()1122112n n nT ⨯-==--.选择②:由1133n a n n b --==,得数列{}n b 是首项为1,公比为3的等比数列,所以()11331132nnnT ⨯--==-.选择③:因为536a b S +=,所以()216651212q +⨯+⨯==,所以216q =,解得4q =(负值舍去),所以()11441143nnnT ⨯--==-.【预测题6】从①11a +,31b -,71a +成等比数列,②43a b =,③443S b =-这三个条件中任选一个,补充到下面问题中,并作答.已知等差数列{}n a ,其前n 项和为n S ,数列{}n b 满足11b =,130n n b b +-=,13a =,______,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】31142224n n n T --++=. 【分析】根据递推关系可知{}n b 为等比数列,根据等比数列通项公式可求得n b ; 若选①:根据三项成等比数列可得()()()2317111b a a -=++,构造方程求得方差d ,由等差数列求和公式可求得n S ,进而得到1nS ,采用裂项相消法可求得结果; 若选②:根据43a b =可构造方程求得方差d ,之后同选①的方法;若选③:根据443S b =-,利用等差数列求和公式可构造方程求得方差d ,之后同选①的方法.【解析】130n n b b +-=,{}n b ∴是首项为1,公比为3的等比数列,1113n n n b b q --∴==.若选①:11a +,31b -,71a +成等比数列,()()()2317111b a a ∴-=++,即()()()29131361d -=+++,解得2d =,()1121n a a n d n =+-=+∴,()1222n n n a a S n n +∴==+,则()11111222nS n n n n ⎛⎫==- ⎪++⎝⎭, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111111112324352n T n n ⎛⎫=-+-+-+⋅⋅⋅+- ⎪+⎝⎭11113111221242224n n n n ⎛⎫=+--=-- ⎪++++⎝⎭. 若选②:43a b =,13339a d d ∴+=+=,解得2d =,()1121n a a n d n =+-=+∴,()1222n n n a a S n n +∴==+,则()11111222nS n n n n ⎛⎫==- ⎪++⎝⎭,∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111111112324352n T n n ⎛⎫=-+-+-+⋅⋅⋅+- ⎪+⎝⎭11113111221242224n n n n ⎛⎫=+--=-- ⎪++++⎝⎭. 若选③:443S b =-,14342732a d ⨯∴+=-,解得2d =,()1121n a a n d n =+-=+∴, ()1222n n n a a S n n +∴==+,则()11111222nS n n n n ⎛⎫==- ⎪++⎝⎭, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和1111111112324352n T n n ⎛⎫=-+-+-+⋅⋅⋅+- ⎪+⎝⎭11113111221242224n n n n ⎛⎫=+--=-- ⎪++++⎝⎭. 【名师点睛】本题重点考查了裂项相消法求解数列的前n 项和的问题,裂项相消法适用于通项公式为()()m f n f n d ⋅+⎡⎤⎣⎦形式的数列,即()()()()11m m d f n f n d f n f n d ⎛⎫=- ⎪ ⎪+⋅+⎡⎤⎝⎭⎣⎦,进而前后相消求得结果.【预测题7】给出以下两个条件:①数列{}n a 的首项11a =,23a =,且14n n a a n ++=,②数列{}n a 的首项11a =,且()2121n n n SS n ++=.从上面①②两个条件中任选一个解答下面的问题.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足122n a nb n +=⨯,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)21n a n =-;(2)()1122n n T n +=-⨯+.【分析】(1)若选①,根据题意,由等差数列的定义,可判断数列{}21k a -,{}2k a ()k ∈Z 均为公差为4的等差数列,分别计算数列{}21k a -,{}2k a 的通项公式,合并以后即可得{}n a 的通项公式;若选②,由累乘法计算得2n S n =,再由n S 与n a 的关系求解n a ;(2)由(1)得2nn b n =⨯,利用错位相减法求解数列{}n b 的前n 项和n T .【解析】若选条件①:(1)由条件14n n a a n ++=,得()2141n n a a n +++=+,两式相减得24n n a a +-=,所以数列{}21k a -,{}2k a ()k ∈Z 均为公差为4的等差数列.因为11a =,()2114143k a k k -=+-=-,所以当n 为奇数时,21n a n =-;因为23a =,所以()234141k a k k =+-=-, 当n 为偶数时,21n a n =-,综上,21n a n =-. (2)由(1)得1222n a n nb n n +=⨯=⨯,则其前n 项和为212222n n T n =⨯+⨯++⨯①,所以231212222n n T n +=⨯+⨯++⨯②,①-②得,231121212122n n n T n +-=⨯+⨯+⨯++⨯-⨯()1212212n n n +-=-⨯-()1122n n +=-⨯-,所以()1122n n T n +=-⨯+.若选条件②:(1)因为()2121n n n S S n ++=,所以222121S S =,232232S S =,242343S S =,…,()2211n n S n S n -=-, 上面1n -个式子相乘得2211n S n S =(2n ≥),所以2n ≥时,2221121n n S S n a n ===, 而1n =时,111n S S a ===,也满足上面等式,所以2n S n =,所以2n ≥时,()221121n n n a S S n n n -=-=--=-,而1n =时,11n a a ==,也满足上面等式,所以21n a n =-. (2)由(1)得1222n a n nb n n +=⨯=⨯,则其前n 项和为212222n n T n =⨯+⨯++⨯①,所以231212222n n T n +=⨯+⨯++⨯②,①-②得,231121212122n n n T n +-=⨯+⨯+⨯++⨯-⨯()1212212n n n +-=-⨯-()1122n n +=-⨯-,所以()1122n n T n +=-⨯+.【名师点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.【预测题8】在①226a b +=,3311+=a b ;②312S =,531T =两个条件中选择一个,补充在下面的问题中,并解答该问题.已知数列{}n a 为等差数列,数列{}n b 为等比数列,数列{}n a 前n 项和为n S ,数列{}n b 前n 项和为n T ,11a =,11b =,______. (1)求{}n a ,{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)32n a n =-,12n n b -=;(2)()8682n n --+.【分析】(1)直接将已知条件写成首项和公差、首项和公比的形式,联立方程求解出对应的公差和公比,则{}n a ,{}n b 的通项公式可求;(2)记列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n A ,然后采用错位相减法对数列n n a b ⎧⎫⎨⎬⎩⎭进行求和.【解析】选择①:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为()0q q ≠, 由11a =,11b =,226a b +=,3311+=a b , 得216,1211,d q d q ++=⎧⎨++=⎩解得3,2,d q =⎧⎨=⎩ 所以32n a n =-,12n n b -=.(2)记()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯;(1) 又()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯;(2)(1)-(2),得()()12111322 (23222)n n n A n ---+-=++++--⋅, 所以()()121+12622 (2)322n n n A n ---+-=++++--⋅,所以()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-,所以()8682nn A n -=-+.选择②:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为()0q q ≠,且1q ≠. 由11a =,11b =,312S =,531T =,得()53312,1311,d q q +=⎧⎨-=-⎩解得3,2,d q =⎧⎨=⎩ 所以32n a n =-,12n n b -=.(2)记()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯;(1) 又()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯;(2)(1)-(2),得()()12111322 (23222)n n n A n ---+-=++++--⋅, 所以()()121+12622 (2)322n n n A n ---+-=++++--⋅,所以()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-,所以()8682nn A n -=-+.【名师点睛】满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法): (1)先根据数列的通项公式写出数列n S 的一般形式:123...nn S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S .【预测题9】已知数列{}n a 的前n 项和为n S ,11a >,若数列{}n a 满足1n n a a +>,且()()10212n n n S a a =++,*n N ∈.(1)求数列{}n a 的通项;(2)是否存在m ,n ,*k N ∈,且m n k <<,使得______成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.从①()3n m k S S S -=,②()2m n k a a a +=这两个条件中任选一个,补充在上面问题中,并作答.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)()1512n a n =-;(2)答案见解析. 【分析】(1)利用已知条件和数列通项n a 与前n 项和n S 间的关系进行推理,利用定义得到数列为等差数列,最后利用等差数列的通项公式求得数列的通项n a ;(2)首先假设存在m ,n ,*k N ∈,且m n k <<,使得结论成立,然后利用等差数列的通项公式或前n 项和公式进行推理,求得一组值或说明正整数m ,n ,k 不存在.【解析】(1)由()()11110212a a a =++,得2112520a a -+=,解得12a =或112a =. 由于11a >,所以12a =.因为()()10212n n n S a a =++,所以210252n n n S a a =++.故221111101010252252n n n n n n n a S S a a a a ++++=-=++---,整理,得()()2211250n n n n a a a a ++--+=,即()()11250n n n n a a a a +++--=⎡⎤⎣⎦.因为数列{}n a 满足1n n a a +>,所以{}n a 是单调递增数列,且12a =, 故10n n a a ++≠,因此152n n a a +-=, 则数列{}n a 是以2为首项,52为公差的等差数列, 所以()()51215122n a n n =+-=-. (2)若选①:满足条件的正整数m ,n ,k 存在,如1m =,2n =,3k =.假设存在m ,n ,*k N ∈,且m n k <<,使得()3n m k S S S -=. 因为25344n S n n =+,则2225353533444444n n m m k k ⎡⎤⎛⎫+-+=+ ⎪⎢⎥⎝⎭⎣⎦,整理,得()()22235353n mn m kk ⎡⎤-+-=+⎣⎦,所以不妨设()()2223,3,n m k n m k ⎧-=⎪⎨-=⎪⎩,所以13m k =,23n k =.所以取3k =,则1m =,2n =.若选②:满足条件的正整数m ,n ,k 不存在.理由如下:假设存在m ,n ,*k N ∈,且m n k <<,使得()2m n k a a a +=, 则()15151512m n k -+-=-,整理,得3225m n k +-=,()* 显然,左边为整数,所以()*式不成立.故满足条件的正整数m ,n ,k 不存在. 【名师点睛】本题以数列为载体,要求考生掌握等差数列的定义、通项公式及前n 项和公式,体现了数学抽象、逻辑推理和数学运算的数学核心素养,关键在于准确地运用相应的公式,建立方程组,运用方程的思想求解. 【预测题10】在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2n a n n b a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)21n a n =-;(2)答案见解析.【分析】(1)由{}n a 中35a =且636S =,列出方程组,求得1,a d 的值,即可求解; (2)选条件①得到112121n b n n =--+,结合裂项法,即可求解; 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,结合分组求和法,即可求解; 选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅,结合乘公比错位相减法,即可求解.【解析】(1)由题意,等差数列{}n a 中35a =且636S =, 可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121n b n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 【预测题11】在①213nn S +=;②22123n nn a a a -=;③2310n n S a -+=这三个条件中任选一个,补充在下面问题中并作答.已知数列{}n a 的前n 项和为n S ,若11a =,且满足______,设数列()31111log n n a n a +⎧⎫⎪⎪+⎨⎬+⋅⎪⎪⎩⎭的前n 项和为n T ,求n T ,并证明52n T <. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】选择见解析;151112231n n T n -⎛⎫=--⎪+⎝⎭;证明见解析. 【分析】①利用1(2)n n n S S a n --=≥及11a =首先写出数列{}n a 的通项公式,再代入()31111log n n a n a +⎧⎫⎪⎪+⎨⎬+⋅⎪⎪⎩⎭可得所求数列的通项公式,利用分组求和的方法求出其前n 项和为n T ,再利用不等式的性质证明52n T <;②首先根据22123n n n a a a -=及11a =求出数列{}n a 的通项公式,再代入()31111log n n a n a +⎧⎫⎪⎪+⎨⎬+⋅⎪⎪⎩⎭得所求数列的通项公式,利用分组求和的方法求出其前n 项和为n T ,再利用不等式的性质证明52n T <;③利用1(2)n n n S S a n --=≥及11a =首先写出数列{}n a 的递推关系,再利用等比数列的定义写出数列列{}n a 的通项公式,再代入()31111log n n a n a +⎧⎫⎪⎪+⎨⎬+⋅⎪⎪⎩⎭得所求数列的通项公式,利用分组求和的方法求出其前n 项和为n T ,再利用不等式的性质证明52n T <; 【解析】选①:因为213n n S +=,所以当2n ≥时,11213n n S --+=, 两式相减得1223n n a -=⋅,所以13(2)n n a n -=≥,因为11a =满足上式,故13-=n n a ,令()()131311111log 31log 3n n nn n b a n a n -+⎛⎫=+=+⎪++⎝⎭ ()11111113131n n n n n n --⎛⎫⎛⎫=+=+- ⎪ ⎪++⎝⎭⎝⎭, 所以12n n T b b b =+++121111111111133332231n n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-++- ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111151113111223113nn n n -⎛⎫- ⎪⎛⎫⎝⎭=+-=--⎪++⎝⎭-, 因为111023n -⎛⎫> ⎪⎝⎭,101n >+,所以52n T <. 选②:因为221213n nn n a a a a --=,所以当2n ≥时,()()21121213n n n a aa ----=,两式相除得()()221122133(2)n n n n n na n ------==≥,当1n =时,11a =满足上式,故13-=n n a , 以下同选①.选③:因为2310n n S a -+=,所以当2n ≥时,112310n n S a ---+=, 两式相减得12330n n n a a a --+=,所以13n n a a -=, 又11a =,所以0n a ≠,所以13nn a a -=, 即{}n a 是以1为首项,3为公比的等比数列,故13-=n n a , 以下同选①.【预测题12】在①550S =,②1S ,2S ,4S 成等比数列,③()6632S a =+.这三个条件中任选两个,补充到下面问题中,并解答本题.问题:已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足______. (1)求n a ;(2)若()122n n n b b a n --=≥,且111b a -=,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】选择见解析;(1)42n a n =-;(2)21n nT n =+. 【分析】(1)若选①②,将①②用首项1a 和公差d 的形式表示,由此得到关于1,a d 的方程组,从而求解出1,a d ,则{}n a 通项公式可求;若选①③,将①用首项1a 和公差d 的形式表示,再根据③求解出1a 的值,则d 的值可求,则{}n a 通项公式可求;若选②③,根据②先得到1,a d 的倍数关系,然后根据③求解出1a 的值,则d 的值可求,则{}n a 通项公式可求;(2)先根据累加法求解出{}n b 的通项公式,然后利用裂项相消法求解1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【解析】(1)选择条件①② 由550S =,得()1154552502a d a d ⨯+=+=,即1210a d +=, 由1S ,2S ,4S 成等比数列,得2214S S S =,即22211114446a a d d a a d ++=+,即12d a =,解得12a =,4d =,因此42n a n =-. 选择条件①③ 由550S =,得()1154552502a d a d ⨯+=+=,即1210a d +=; 由()6632S a =+,得()16166633362a a a a a +=+=+,即12a =; 解得4d =,因此42n a n =-. 选择条件②③由1S ,2S ,4S 成等比数列,得2214S S S =,22211114446a a d d a a d ++=+, 即12d a =, 由()6632S a =+,得()16166633362a a a a a +=+=+,即12a =, 解得4d =,因此42n a n =-. (2)由12a =,42n a n =-可得13b =,1284n n n b b a n --==-,当2n ≥时,()()()11221n n n n b b b b b b ----+-++-()()()()2841218481212442n n n n n -+-⎡⎤⎣⎦=-+-++==-,即2144n b b n -=-,则241n b n =-,当1n =时,13b =,符合241n b n =-,所以当n *∈N 时,241n b n =-, 则2111114122121n b n n n ⎛⎫==- ⎪--+⎝⎭, 因此111111111121335212122121n nT n n n n ⎛⎫⎛⎫=-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭. 【预测题13】在①3420a b =+,②12a b =,③3454S b =+这三个条件中任选一个,补充在下面的问题中并解答.已知数列{}n a 为正项递增等比数列,其前n 项和为n S ,{}n b 为等差数列,且2421b b =-,523b b =,25a b =,________,求数列3211log n n b a +⎧⎫⎨⎬⎩⎭的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】21nn + 【分析】根据题意求出21n b n =-,再根据所选择的条件求出3nn a =,然后利用裂项求和法可求出结果.【解析】设{}n a 公比为q (1)q >,{}n b 公差为d ,则:24111521121223112134332n b b b d b d b b n b b b d b d d ⎧=-⎧+=+-=⎧⎪⇒⇒⇒=-⎨⎨⎨=+=+=⎩⎪⎩⎩,所以259a b ==, 若选①322234227202733993n n n n a a b q a a a q --====+=⇒===⨯⇒, 若选②2121333n n a a b q a a ==⇒==⇒=,若选③3211391399(1)39574S a q q q q ⎛⎫=⇒++=⇒++⎭+ ⎪⨯==⎝, 所以231330q q -+=,解得3q =或13q =(舍), 所以222933n n n n a a q--==⨯=, 所以32111111log (21)(21)22121n n b a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 111111121335212121n n T n n n ⎛⎫=-+-+⋅⋅⋅+-= ⎪-++⎝⎭. 【名师点睛】熟练掌握等差、等比数列的通项公式以及裂项求和法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲座高中数学“数列的综合问题”一、对本专题数学知识的深层次理解(一)数列综合问题的几个重点内容数列的综合问题课标中并没有明确的陈述,但往往是高考考查涉及到的问题,如:数列求和问题;数列与不等式综合问题;关于递推数列的问题等。

这些问题往往涉及数列知识的综合和高考的考查重点,教学中教师要给予关注并较好的把握。

(二)教学内容的重点、难点重点:在解决数列问题中要关注数列的属性、项数,用函数的观点研究数列;掌握数列求和的基本方法及基本的递推数列问题。

难点:数列与不等式综合问题中的放缩问题;解决递推数列问题的策略。

二、“数列综合问题”的教与学的策略(一)解决数列问题的基本思路判断所要求研究的数列是否为特殊数列:等差数列或等比数列,如果是,用公式和性质解决 . 如果不是等差、等比数列,要么转化为等差数列或等比数列,要么寻找其它方法 .因此我们拿到一个数列的问题时,要注意关注数列的属性。

1.关注数列的属性本题的关键是定性,即关注数列的属性。

2.关注数列的项数此题涉及等差、等比数列的综合问题,考查了等比中项,等差数列的通项公式等基本知识,考查了方程思想,关键是利用已知条件找到 K n与 n的关系。

3.用函数的观点认识数列本题的关键是用函数的观点去看待数列问题,此题也涉及到不等式的知识 .以上几个例题从不同角度反映了数列是特殊的函数这一问题,因此解决数列问题,往往可以利用解决函数问题的思考方式。

(二)关注数列求和问题的教学数列求和的问题需要根据数列特点选择解决方法,必须掌握常用的数列求和方法,但数列求和往往和其他知识综合在一起,综合性较强 . 若为等差(比)数列,则直接用公式求和;若非等差(比)数列,则需寻找间接求和的方法 . 常见的有:“倒序相加法”“错位相减法”“裂项相消法”等 .1.用公式求和分析 : 课本上推导等差数列的前项和公式的方法为倒序相加法 , 故设数列求和的问题需要根据数列特点选择解决方法这一点在教学中应该始终坚持。

(三)数列与不等式综合问题的教学对于学生来说,他们非常清楚证明此题的方向,即先放缩再求和,但是学生的问题就是放缩的误差过大,而不能判断是什么原因导致的误差过大 .学生解法:提出以下改进方案 .方案 1 :通项放缩不变,减少放缩的项数尝试 1 :第一项不放缩,从第二项开始放缩仍然失败,不过离成功更近了 .尝试 3 :前三项不放缩,从第四项开始放缩终于成功了!方案 2 :减小通项的放缩误差反思:对于改进 1 ,尽管最后没有成功,但从上面方案 1 的最终成功可以得到启发,改进为在求和时第一项不放缩,从第二项开始放缩。

不等式得证 .解题要在已有的知识基础上,探索解题思路的发现过程。

(四)关于递推数列的教学这类问题是学生学习的疑点或盲点。

一方面,他们不能牢固掌握解决此类问题的一般思维方式:即首先利用公式中消去a n或 S n使递推式得以统一,再思考能否从简化的递推式中发现与 a n或 S n相关的特殊数列,甚至是走“观察—归纳—猜想—证明”的探索之路;另一方面,在应用公式进行变换的过程中,常忽视 n取值范围的变化,而使求解与论证失去严谨性。

在教学中要避免题型套题型,没有思想方法的主线,教学变为杂乱无章的堆砌的现象。

也要避免采取灌输的方法,将这些题型和方法强加给学生的现象,这种只给结果的教学是不可能奏效的,因为没有对解法的来源的任何交代,学生是无法理解的。

常见做法——归纳题型,总结技巧:题型套题型,没有思想方法作为主线,显得杂乱无章。

这是一个数列递推问题,一般地,抽象问题具体化,一般问题特殊化是数学中采用的基本策略。

因此,先考察几个特殊的具体问题,以便从中找出思路。

设计意图:本题是解决整个问题的关键,取 p=2, q=1,是因为这时比较容易观察出其结构特点,并可以采用“凑”的办法,将数列化归为等比数列。

注意,教学中应该在这里舍得花时间,放手让学生自己去做,教师不必干预过多。

学生可能会计算出数列的前几项,从而猜想出通项公式,这应该是学生思维的火花,教师应该及时鼓励。

当 n=1时也成立能够用思考五解题的学生,很好地利用迭代的方法解决问题。

设计意图:在前面几个问题的铺垫下,这一问题的解决已经水到渠成,当然,因为推广了“同类事物”,所以要注意“完备性”,要对细节、特例进行讨论。

上述设计,我们不是把“待定系数法”强加给学生,而是通过从特殊到一般引导学生发现这类问题的结构特征,让学生通过独立思考而得到这类问题的一般解法。

虽然其构造性很强,但方法不是从天上掉下来的,而是“合情推理”的结果。

重点掌握三种类型的由递推公式求通项方法此题学生应该在理解的基础上,自觉应用迭乘法,而不是简单的套用公式。

三、学生学习目标的检测(一)课标与高考对数列综合问题内容的要求数列作为一种特殊的函数,是反映自然规律的基本数学模型.学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题.在数列的基本问题一讲中,我们已经陈述了课标对数列内容的要求,对于数列的综合问题课标没有具体的陈述,但是从历年高考的情况我们可以发现,高考数列综合试题往往呈现以下特点:以知识和方法立意考查等差、等比数列的有关知识,以求数列的通项公式和前 n 项和公式为主线,考查数列中的重要方法能力立意,以数列为素材,重点考查学生的探究能力、思维能力、综合能力、创新意识,此类题目背景、立意、结构都较新颖。

(二)典型题目分析通过例题看考查要求本题以数列为背景,通过新定义考查学生自学能力、创新能力、探究能力。

这类题目经常作为高考创新问题,本题学生在阅读理解上可能会遇到障碍,即是怎样产生的,另外学生也可能会在运用新定义上产生困惑,教师应该从特殊到一般的方法引导学生解决问题。

互动对话【参与人员】郭洁北京市东城区教师研修中心中学数学教研室主任,特级教师陈昌林东城区骨干教师,高级教师胡园燕东城区骨干教师,一级教师【互动话题】1.教学设计要有利于不同层次学生的学习教学设计是多种多样的,有的以“教”为中心,有的以“学”为中心,风格各异。

怎样进行数列的教学设计才能让学生更好地学会知识和方法呢?我觉得采用哪种模式的教学设计,要根据学生的情况而决定,并不是一定要肯定一方,而否定另一方。

比如,等差数列引入概念教学,我们给出两个方案,面对不同层次的学生就可以选择不同的方案。

2.如何把握数列综合问题的处理方法有一些数列,它既不是等差数列,也不是等比数列,但是却可以通过代数变形转化为等差等比数列,然后用等比数列的知识解决此类问题。

用例题说明。

3.解决数列综合问题中如何渗透“消项”的思想求数列前 n 项和的思路和方法是多种多样的,必须根据所求和式的特点来选取。

推导等差数列的前 n 项和公式 , 是根据等差数列的对称性,所用的方法是“倒序相加法”。

对等比数列的前 n 项和 , 是用错位相减法得到的。

其实这些方法的本质类似于初中方程组求解的消元思想,消元的目的是减少未知数的个数,消项的目的是减少数列和式中的多个项数,他们有异曲同工之妙。

4.如何处理好数列中的实际问题数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 . 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度 . 下面以分期付款中的有关计算为例说明。

5.如何把握数列综合问题习题的难度——用例题说明。

案例评析【案例信息】案例名称:《递推数列求通项公式问题》授课教师:胡晓梅(北京宏志中学)评析教师:郭洁(北京市东城区教师研修中心)【课堂实录】【案例评析】递推数列求通项公式问题这节课教师首先设置了明确的教学目标。

即加深理解等差数列、等比数列的通项公式及求通项公式的方法。

通过构造等差、等比数列求递推数列通项公式,使学生体会化归转化的数学思想,通过由特殊到一般的解决问题方法,培养学生的归纳推理能力。

带领学生经历将陌生问题转化为熟悉问题,复杂问题转化为简单问题,再利用有关知识解题的过程,开阔学生思考问题思路,优化学生数学思维品质。

另外教师准确把握了教学的重点:递推数列通项公式的求法探究和教学难点:等差、等比数列的构造方法。

在课堂教学中教师采用了教师引导,学生探究的教学方式,符合新课标的理念,符合学生的思维特点。

在教学过程中,教师通过问题串儿的形式,启发学生的思维,通过从特殊到一般的思维路线引导学生学习递推数列求通项公式问题。

在复习引入阶段教师通过以下三个问题:1. 等差数列、等比数列的定义。

2. 等差数列、等比数列的通项公式。

3. 提出问题,还有一类用递推公式表示的数列,叫做递推数列。

也是一种比较特殊的数列,我们如果来求它的通项呢?加深学生对等差数列、等比数列这类特殊数列的认知,同时激发学生对对递推数列通项求法的探究热情。

在问题探究阶段,教师注意突出重点,突破难点,先后设置了四个问题问题 1 :已知数列的通项公式 .对于问题 1 ,教师启发学生,解决这个问题的关键是什么引导学生关注式子,从而希望找到对式子的处理方法。

当学生用两边各加 1 的办法解决此题后,教师及时总结解决此题的关键是构造等比数列,将复杂问题转化为简单问题,将未知问题转化为已知问题。

并追问学生怎么想到这种解法的,从而揭示学生的思维过程。

紧接着,教师将问题由特殊引向一般,追问:具有何种形式的递推公式可用此类方法求通项公式?进一步将学生的思维引向深入,解决形如的问题,并研究解决的方法:待定常数法,化为等比数列。

教学中“待定系数法”不是强加给学生,而是通过从特殊到一般引导学生发现这类问题的结构特征,让学生通过独立思考而得到这类问题的一般解法。

虽然其构造性很强,但方法不是从天上掉下来的,而是“合情推理”的结果。

通过问题 1 的解决过程学生体会到如何将一个递推数列转化成为熟悉的特殊数列,常用的方法是构造的方法,也就是说,根据题目所给的条件,构造一个新数列,使这个数列转化成为等差数列或等比数列 .在学生已有认知的基础上,通过对问题 1 的探究让学生感知如何由递推公式构造出符合等差数列定义的新数列,进而求通项的方法。

体会化归的思想 . 通过对问题 1 这类递推公式求通项方法的总结,使学生体会由解决一个题到解决一类题,由特殊到一般的思维过程,提高归纳推理能力。

同时对已有知识的一次新认识又激发了学生更浓的探究兴趣 .有了问题 1 的铺垫,对问题 2 的思考及类型和方法的总结就显得水到渠成了。

同时学生也会因为初步掌握这类研究问题的方法而有成就感。

在问题再探究阶段,对等差、等比数列求通项的方法进行回顾,学生可以从中读出了不一样的内容,是很典型的“温故而知新”。

相关文档
最新文档