锂离子电池电解液的基础(终极版)
锂电离子电池电解液基本概念
有机溶剂的选择标准
1.有机溶剂对电极应该是惰性的,在电池的充放 电过程中不与正负极发生电化学反应,稳定性好
2.有机溶剂应该有较高的介电常数和较小的黏度 以使锂盐有足够高的溶解度,保证高的电导率
但是砜类的熔点高和黏度大,成为它的最大缺点。
常见溶剂的物理性质
有机溶剂 沸点 EC 248 DMC 90 EMC 108 DEC 127 PC 241.7 MPC 130
DMSO 189 GBL 206
熔点 闪点 黏度 相对介电常数
36 150 1.86
89.6
3 15 0.59
3.1
-55 23 0.65
常用锂盐
LiClO4 LiAsF6 LiBF4 LiPF6 LiCF3SO3 LiN(CF3SO2)2 LiC(SO2CF3)3 新型的硼酸锂盐
几种常用锂盐的简单性能对比
❖ LiBF4:低温性能比较好,但是价格昂贵和溶解度 比较低;
❖ LiPF6:综合性能比较好,缺点是易吸水水解,热 稳定性差;
3.熔点低、沸点高、蒸气压低,从而使工作温度 范围较宽
4.与电极材料有较好的相容性,电极在其构成的 电率、成本、环境因素等方面的考虑
锂离子电池所使用的有机溶剂
1.碳酸酯类 2.羧酸酯类 3.醚类有机溶剂 4.含硫有机溶剂
1 碳酸酯类
碳酸酯类溶剂具有较好的电化学稳定性、较高的闪点 和较低的熔点在锂离子电池中得到广泛的使用。碳酸 酯类的溶剂就其结构而言,主要分为两类: 1.环状碳酸酯 PC和EC 2.链状碳酸酯 DMC、EMC、DEC
3
锂电池电解液基础知识
锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。
电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。
有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。
自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。
目前锂离子电池电解液产品技术也正处于进一步发展中。
在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。
国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。
不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。
电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。
EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。
据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。
锂离子电池电解液的基础(终极版)
2:1溶剂一一常规溶剂
Solvent Structure Mw Melting point (℃)
EC
PC DMC DEC EMC
。o
「y一�
88
36.4
。 。飞o一y「0
'o)l_o,,.
。
0)1...0
102 -48.8 90 4.6 118 -74.3
/气。人。 。/ 104 -53
Boiling point (℃) 248
14
3:1离子传导特性一一混合溶剂(1)
·通常一种溶剂难以同时满足高的介 电常数和低粘度的要求, 因此需要 采用混合溶剂体系: 一 种溶剂提供高的介电常数: 另 一种溶剂提供低的粘度。
·二兀溶剂体系的介电常数和粘度可 以按下式计算:
乌= (1 - x2) ε I + Xzζz 1/s =ηl (1-xv,,2
1.063 0.969 1.006
·环状碳酸醋类溶剂具有极高的介电常数, 但是粘度也大。 ·链状碳酸醋的介电常数低, 但是粘度也低。 ·为了满足工作温度范围、 电导率等多方面的要求, 通常是将介电常数高的环 状碳酸酷和粘度低的链状碳酸醋混合使用。
7
2:1溶剂一一选择碳酸醋类溶剂的理由
·电极体系:Li/Mn02 一次锺电池I ·电解液:LiCIOiPC-DME
3
1电解液的功能与要求一一基本要求
电解液的理想状态: 1)对铿离子来说是优良的导体, 对电子来说是绝缘体。 2)在电极表面除了发生锺离子的迁移之外, 不发生其它副反应。 3)不与其它电池组件发生反应。 4)化学稳定性好。 5)安全、 环保。
电解液的现状: 1)受限于有机溶剂和键盐的选择, 离子电导率一般在5~15mS/cm范围。 2)由于钮离子电池的正极具有很强的氧化性, 而负极具有很强的还原性, 电
一文读懂锂电池电解液
一文读懂锂电池电解液在电解液这一块呢,我们要学习的一个核心的内容就是电化学(Electrochemistry)电化学那么废话不用多说,要真的深入的了解电解液还是要从最基础的机理来入手,结合电解液在锂电池中的作用可以知道有几点:1,电解液溶剂在化成时候参与成膜,有些添加剂比如VC也参与成膜2,充当锂离子移动的通道,运送锂离子到正负极之间。
表现上是这些作用,其实究其机理可以知道有关电荷转移(Charge transfer process),扩散传质(diffusion process)反应物和产物在电极静止液层中的扩散。
电极界面双电层充电(charging process of electric double layer),电荷的电迁移过程(migration process )主要是溶液中离子的电迁移过程,也称离子电导过程。
当电解液注入电池内部的时候,这个时候要引入一个概念,就是接触角(contact angle),不管是气体液体,还是固体,在接触的时候就会发生润湿现象,电解液注入电池内部,电池内部主要是正负极,隔膜等,那么就是液体接触固体,那么之间就会形成一个接触角θ,如果θ《90°,则液体较容易润湿固体,浸润性越好,然后电解液与极片浸润性好,那么在电池充放电过程中,效果就好。
如不是,则反之。
当化成开始的时候,之前都是物理的过程,这时候开始发生反应,电流通过电极时候,电化学反应开始,这时候就产生了界面上的反应物的消耗和产物的积累,出现了浓度差。
在电极通电的初期,扩散层很薄,浓度梯度很大,扩散传质速率很快,因此没有浓差极化出现/ 随着时间的推移,扩散层逐步向溶液内部发展,浓度梯度下降,扩散速率减慢,浓差极化慢慢变大。
这个时候就要引入等效电路来,因为在这个过程中,产生了两个电阻,一个是扩散阻抗Zw,一个是传荷电阻Rct,他们之间是串联关系,总的阻抗为法拉第阻抗。
那么电解液在这过程中,如何评价呢?我们知道一般的电解液中溶剂主要有环状碳酸酯(EC等)和线性碳酸酯(DMC等),一般来说环状碳酸酯的电化学动力学比线性碳酸酯的大,那么在选取溶剂的时候就要考虑到这点,有时候为了增大扩散速率就要多比例的线性碳酸酯。
锂电池电解液概述(范本模板)
锂离子电池电解液概述一、锂离子电池电解液电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证.电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成.1.1有机溶剂有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。
常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。
锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。
有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。
水分降低至10—6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等.利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。
为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC).1.2电解质锂盐电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。
LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。
但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。
从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质.除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI 等一系列安全性高、循环性能好的锂盐电解质体系得到关注。
锂离子电池电解液
• ② 用 Born-Landé公式计算 • 假如没有热力学数据,可以用Born-Landé (波恩-朗德)公式计算晶格能的理论值: • 式中:R0 为正、负离子的核间距(R0≈r+ + r-),单位为 pm。z1和z2分别为正负离 子电荷数的绝对值。A 为 Madelung(马德隆) 常量,其数值与晶体类型有关:
无机空心微球的制备
• 喷雾干燥法 :用喷雾的技术,使物料以雾滴状态分 散于热气流中,物体与热气体充分接触在瞬间完 成传热和传质的过程,使溶剂迅速增发为气体, 达到干燥的目的。 • 模板法:主要过程是先选取成分和尺寸适宜的可 牺牲性模板(sacrificed template)作为主体,再通 过控制前驱体在模板表面沉积或反应,形成表面 包覆层,最后用溶解、加热或化学反应等方法去 核,即获得所期望尺寸的空心微球材料。
• 固体聚合物电解质具有良好的柔韧性、成 膜性、稳定性、成本低等特点,既可作为 正负电极间隔膜用又可作为传递离子的电 解质用。
• 固体聚合物电解质一般可分为干形固体聚 合物电解质(SPE)和凝胶聚合物电解质 (GPE)。SPE固体聚合物电解质主要还是基 于聚氧化乙烯(PEO),其缺点是离子导电率 较低,在100℃下只能达到10-40cm。
某样品在相同倍率下的充放电曲线 如下:
样品在不同放电倍率下的 充放电曲线
循环伏安(CV)测试
• 循环伏安(Cyclic Voltammetry)扫描技术是 研究电化学反应机理的重要实验手段。循 环伏安又称为三角波线性电位扫描,一般 采用三电极体系,通过控制研究电极的电 位在一定范围内以固定速率正/负放向的循 环扫描,检测出电极机化电流随电极电位 的变化曲线。
• 利用反应生成模板法制备得到粒径为 1.7~2.5 µm的SnO2空心微球,并将SnO2 空心微球和SnO2纳米颗粒分别用作为LIB 电极材料。
锂离子电池的电解液
目录1. 电解液综述 (3)1.1 有机溶剂电解质的性能要求: (3)1.2 电解液目前存在的突出问题 (4)1.3 改善措施 (4)2. 有机溶剂性能及特点 (4)2.1 有机溶剂的分类 (4)2.2溶剂的性质描述 (5)2.2.1 锂盐的电导率 (5)2.2.2 溶剂的介电常数εr (5)2.2.3 粘度和溶剂化 (5)2.3 常用的几种有机溶剂 (6)3. 电解质 (8)3.1总述 (8)3.2 无机阴离子盐 (8)3.3 有机锂离子盐 (8)4. 电解液的电导率 (9)4.1 电导率的计算 (9)4.2 电解液电导率的影响因素 (10)4.2.1 溶剂的影响 (10)4.2.2 电解质对电导率的影响 (11)5. SEI膜 (12)5.1 膜的简介及作用 (12)5.2 负极成膜 (13)5.3 正极成膜 (13)5.4 溶剂组成与SEI膜牲 (13)6. 添加剂 (14)6.1 介绍 (14)6.2 改善电极SEI膜的形成和化学组成的添加剂 (14)6.3 提高电解液电导率的添加剂 (15)6.4控制电解液中酸和水含量的添加剂 (15)6.5 改善电池安全性的添加剂 (15)6.5.1 过充电保护添加剂 (15)6.5.2 提高低温性能添加剂 (16)7. 制备 (16)7.1 六氟磷酸锂(LiPF6)的制备 (16)7.1.1传统制备 (17)7.1.2 络合法 (17)7.1.3 溶液法 (17)7.2 常用有机溶剂的制备 (18)7.2.1 环状碳酸酯(EC、PC)的合成 (18)7.2.2链状碳酸酯的合成 (18)8. 检测 (19)8.1检测设备 (19)8.2 检测方法 (20)8.3 执行国家标准 (20)9. 电解液因素对电池性能的影响 (20)9.1 电解液组成对负极性能的影响 (20)9.2 电解液组成对正极性能的影响 (21)9.3 电化学窗口对电池性能的影响 (22)9.4 微量添加剂对电池性能的影响 (22)9.5 有机溶剂对电池性能的影响 (22)9.5.1 碳酸丙烯酯对电池性能的影响 (22)9.5.2碳酸乙烯酯对电池性能的影响 (23)9.5.3 其它溶剂 (24)10. 国内电解液生产商及其产品 (25)10.1 美国LITHCHEM公司 (25)10.2 北京星恒电源股份有限公司<方向电池> (26)10.3 伊.默克(Merck)国际贸易(上海)有限公司 (27)10.4 三菱化学香港有限公司(MitsuBISH Chemical)(三菱电解液) (28)10.5 肥城恒光无机氟化物有限公司 (29)10.6 深圳图尔实业发展有限公司 (30)10.7 东莞市锦泰电池材料有限公司 (31)10.8 张家港翔达电池材料有限责任公司 (33)10.9 汕头市金光高科有限公司 (36)锂离子电池的电解液―――易世明1. 电解液综述电池的电解液是电池的一个重要组成部分,对电池的性能有很大的影响。
《锂离子电池电解液》课件
电解液主要由溶剂、锂盐和其他添加剂组成。其 中,溶剂是电解液的主要成分,决定了电解液的 基本性质;锂盐是传导锂离子的介质;添加剂则 可改善电解液的某些性能。
02
电解液的物理化学 性质
电导率
总结词
电导率是衡量电解液传导电流能力的重要参数。
详细描述
电导率决定了锂离子在电解液中的迁移速度,进而影响电池的充放电性能。高 电导率的电解液有助于提高电池的倍率性能。
乳化法
将锂盐、有机溶剂和水等原料混合,通过乳化剂的作用形成稳定的乳液,再经过蒸发、 冷却等处理得到电解液。该方法操作简便,环境友好,但乳化剂的用量和稳定性控制要
求较高。
电解液的优化策略
添加剂改性
有机溶剂优化
通过添加特定的添加剂,如成膜剂、 阻燃剂、导电剂等,改善电解液的性 能。该方法简单易行,但添加剂的选 择和用量需经过精心设计。
03
同,但都需要具备较高的稳定性和安全性。
THANKS
感谢您的观看
研究高电压下的电解液稳定性,以适应锂离 子电池高能量密度的需求。
阻燃电解液
开发具有阻燃性能的电解液,提高电池的安 全性,降低燃烧和爆炸的风险。
降低成本与环保问题
要点一
低成本制备技术
研究电解液的低成本制备技术,如溶剂法、一步法等,以 降低生产成本。
要点二
绿色环保电解液
开发环保型的电解液,减少对环境的影响,如使用可再生 资源或无毒溶剂等。
快速充电
02
03
循环稳定性
具有良好电化学性能的电解液可 以降低内阻,允许电流更快地通 过,从而缩短充电时间。
良好的电解液可以减少电池在充 放电过程中的容量衰减,提高电 池的循环寿命。
安全性能
锂离子电池电解液详解
锂电池培训-电解液一、电解液基础知识二、电解液添加剂知识三、电解液主盐四、电解液国内外厂家介绍一、电解液基础知识电解液为溶解有锂盐LiPF6、LiAsF6、LiBOB等的有机溶液;电解液的主要功能使为锂离子提供一个自由脱嵌的环境。
二、电解液添加剂知识⏹依非水电解液添加剂的作用机制分类:⏹1、SEI(solid electrolyte interface) 成膜添加剂⏹2、导电添加剂⏹3、阻燃添加剂⏹4、过充电保护添加剂⏹5、控制电解液中水和HF含量的添加剂⏹6、改善低温性能的添加剂⏹7、多功能添加剂1、SEI(solid electrolyte interface) 成膜添加剂有机成膜添加剂-硫代有机溶剂⏹硫代有机溶剂是重要的有机成膜添加剂,包括亚硫酰基添加剂和磺酸酯⏹添加剂。
ES(ethylene sulfite, 亚硫酸乙烯酯)、PS(propylene sulfite, 亚硫酸丙烯酯)、DMS(dimethylsulfite, 二甲基亚硫酸酯)、DES(diethyl sulfite,二乙基亚硫酸酯)、DMSO(dimethyl sulfoxide, 二甲亚砜)都是常用的亚硫酰基添加剂,亚硫酰基添加剂还原分解形成SEI膜的主要成分是无机盐Li2S、Li2SO3 或Li2SO4 和有机盐ROSO2Li,碳负极界面的成膜能力大小依次为:ES>PS>>DMS>DES,链状亚硫酰基溶剂不能用作PC基电解液的添加剂,因为它们不能形成有效的SEI 膜,但可以与EC溶剂配合使用,高粘度的EC 具有强的成膜作用,可承担成膜任务,而低粘度的DES 和DMS 可以保证电解液优良的导电性磺酸酯是另一种硫代有机成膜添加剂,不同体积的烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、甲基磺酸乙酯和甲基磺酸丁酯具有良好的成膜性能和低温导电性能,是近年来人们看好的锂离子电池有机电解液添加剂有机成膜添加剂-卤代有机成膜添加剂卤代有机成膜添加剂包括氟代、氯代和溴代有机化合物。
电解液培训
满足高温(60℃-80℃) 循环、存储的要求
一、按应用领域分类
序号 类别 人造 石墨 普通、循环 天然 石墨 产品型号 功能特点
LE-16 LE-1601
容量发挥充分,循环好
3
软包
钴酸锂
满足铝塑电池高温 ( 85℃, 4h )存储的 要求,容量发挥充分
人造 石墨
高温
LE-28BK01 LE-13408
电导率(25℃) (ms/cm)
性能
EC/DEC/PC LiPF6 添加剂
EC/DEC/PC LiPF6 添加剂 EC/DMC/EMC LiPF6 添加剂 EC/DEC/EMC LiPF6 添加剂
7.6±0.2
适合软包锂离子电池 (85 ℃ ,4h,鼓胀 <5% )
多应用于铝壳锂离子电 池(75 ℃ ,24h,鼓 胀<5% ) 适合软包、铝壳锂离子 电池(85℃4h,鼓胀 <5% )
11±0.2
适合圆柱、铝壳, 满足10C-15C放电要 求 多用于圆柱,满足 15C放电的要求 大倍率电解液,满 足20C-40C倍率放电, 同时兼顾低温放电 的要求。
LE-41系列
\
\
二、按功能分类
技术指标 型号 安 全 型 LE-18 EC/DMC/EMC LiPF6 添加剂 体系 密度 (20℃) (g/cm3) 电导率 (25℃) (ms/cm) 性能
适用于圆柱电池,高温、 倍率性能良好
LE-41系列
EC/DMC/EA LiPF6 添加剂
\
11.9
满足大倍率(20C-40C) 放电的需求
三、客户沟通
1、客户电池类型(铝壳、圆柱、软包等) 2、正负极材料类型 3、需达到的功能要求 ①、普通要求(循环、容量发挥) ②、高温要求(高温存储?、高温循环?) ③、低温要求(-5、-10、-20?) ④、倍率要求(充放电倍率?循环?) ⑤、安全要求(过充、热冲击、针刺) ⑥、其它要求(浸润性、气味、腐蚀性)
锂电离子电池电解液基本概念
电解液组成对SEI膜的稳定性影响
电解液的组成在很大程度上决定了SEI膜的 化学组成。化学组成不同,膜的结构和性质 必然不同,因此电解液的组成是影响SEI膜 性质的关键。
杂质对SEI膜的稳定性影响
锂离子电池电解液对纯度要求很高,杂质往 往对电极电化学性能产生显著的影响。 H2O HF 正极溶解的阳离子
SEI膜的结构
有关SEI膜的导Li+机理目前有两种假设:
1.液相中的Li+到达SEI膜界面,借助SEI膜 锂盐组分发生阳离子互换传递 2.液相中的Li+去溶剂化后直接穿越SEI膜 微孔向电极本体迁移
SEI膜的形成是碳负极与电解液相互作用的结 果,其稳定性取决于电极和电解液的性质。 1.电极界面性质对SEI膜的稳定性影响 2.电解液组成对SEI膜稳定性的影响 3.电解液中杂质的影响 4.温度的影响 5.电流密度的影响
3
醚类有机溶剂
醚类有机溶剂介电常数低,黏度较小,但 是醚类的性质活泼,抗氧化性不好,故不 常用作锂离子电池电解液的主要成分,一 般做为碳酸酯的共溶剂或添加剂使用来提 高电解液的电导率.
4 含硫有机溶剂
含硫溶剂中最有可能在锂离子电池中使用的是砜类。 但是大部分砜类室温下为固体,只有与其它溶剂混 合才能构成液体电解液。此外砜类溶剂一般具有非 常高的稳定性和库仑效率,有利于提高电池的安全 性和循环性能。
保护——溶剂化的锂离子也在碳负极表面获得电子 而发生还原分解反应,这样的过程同样有锂盐和气 体生成,但是生成的锂盐电介质会沉积在碳负极表 面形成钝化膜,阻止溶剂嵌入还原。
关于碳负极表面的SEI膜,必须明确以下4个 方面: 1.SEI膜的形成机制 2.SEI膜的结构与形成SEI膜的反应 3.SEI膜的结构和导Li+机理 4.SEI膜的电极界面稳定性
锂电池电解液简介
结构图
碳酸乙烯酯
88.6
Ethylene carbonate
EC
37 248 160
-3.0 3.2
89.78 20/oC
1.321 1.9 16.4
丙稀碳酸酯
propylene PC
102
-49 242 128 -3.0
3.6
65
1.204 2.5 15.1 18.4
二甲基碳酸酯
90.1
3
90 21.7 -3.0 3.7
/g
/℃
在溶剂中的 分解温度/℃
是否腐蚀 铝箔
LiBF4 LiPF6
93.9 293
>100
N
151.9
200
~80 (EC/DMC)
N
LiAsF6
195.9 340
>100
N
LiClO4
106.4 236
>100
N
Li+CF3SO3简称LiTf
- 155.9 >300
>100
Y
Li+[N SO2CF3)2]简称LiTPSI
LiBOB 等
有毒
腐蚀集流体
合成困难或价 格昂贵 成膜性能好, 解度低
(1)在电极上,尤其是 碳负极上,形成适当
的SEI膜; (2)对正极集流体实现 有效的钝化,以阻止
其溶解; (3)有较宽广的电化学 稳定窗口; (4)在各种非水溶剂中 有适当的溶解度和较
高的电导率; (5)有相对较好的环境 友好性。
2. 电解液性质
2.1.1 相关名词解释
电化学窗口
在循环伏安曲 线上没有发生电化学 反应的那一段。对于 电解液来说,电化学 窗口指的是电解液不 发生电化学反应而分 解的那个电势范围, 这个电势范围越宽, 电化学窗口越宽,电 解液的稳定性就越好
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EC>PC, DMC>EMC>DEC
Solvent
EC PC DMC EMC DEC
EC-DMC (50:50 vol.%) EC-EMC (50:50 vol.%) EC D幽 EC (50:50 vol.%) PC-DMC (50:50 vol.%) PC-EMC (50:50 vol.%) PC-DEC (50:50 vol.%)
1.063 0.969 1.006
·环状碳酸醋类溶剂具有极高的介电常数, 但是粘度也大。 ·链状碳酸醋的介电常数低, 但是粘度也低。 ·为了满足工作温度范围、 电导率等多方面的要求, 通常是将介电常数高的环 状碳酸酷和粘度低的链状碳酸醋混合使用。
7
2:1溶剂一一选择碳酸醋类溶剂的理由
·电极体系:Li/Mn02 一次锺电池I ·电解液:LiCIOiPC-DME
>100
y
1.7 a
>100
y
5.1 4
9.0 °
N
Average ion mobility: LiBF4 > LiC104 > LiPF6 > LiAsF6 > LiTf > Lilm
Dissociation constant: LiTf < LiBF4 < LiC104 < LiPF6 < LiAsF6 < Lilm
6电解液的功能化·添加剂 61 . 成膜添加剂 62 . 防过充添加剂 63. 阻燃添加剂 64 . 电解液稳定剂 65. 其它添加剂
7电解液的新材料体系 7.1 新型溶剂 7.2 新型键盐
8电解液对电池性能的影响 91 . 对电池性能的影响机理 92 . 对电池性能的影响实例
9电解液的生产 10 电解液的使用 11 电解液的技术发展方向
电导率高于LiPF6, 热稳定 性好, 腐蚀铝馅
尚未应 用, 昭和 电工在推
尚未应用, LiPF6 的有力竞争者
12
2:·2鲤盐一一选择LiPF6的理由
LiPF6 的优点:
·电导率高 ·电化学稳定性好 ·有效钝化铝馅 ·与石墨负极相容性好 ·成本较低
锺盐
LiC104 LiBF4 LiAsF6 LiTf LiTFSI LiBOB LiFSI
1 mol dm·3 LiPF6, 25°C.
KI mS cm-1
7.2 5.8 7.1 4.6 3.1
11.6 9.7 8.2 11.0 8.7 7.3
3:1离子传导特性一一混合溶剂(2)
混合溶剂体系的电导率随低粘度溶 剂含量的变化存在一个极大值, 这 个极大值一般出现在低粘度溶剂的
体积分数为50o/o附近。
193.8 143.8
电导率较高, 链状碳酸酶 中溶解度低, 石墨负极表 面成膜性能好,
LiBF4与 LiBOB的结合体
少量应用(添加 剂〉
少量应用〈添加 剂)
Li2DFB Li+2 [812F12]2LiFSI Li+ [N(S02F)2]-
371.6 187.1
热稳定性好, 有氧化还原 穿梭功能
100
σ= A1 cfiPF6 + A2clι
Aifl0-1 Sdm8 mol3
A2/10-1 Sdm3.5/mol1.5
A3/10-1 $dm2/mol
1.297士0.059
-25.1土0.44
33.29士0.39
16
3:1离子传导特性 温度的影响
T / °C
电导率随温度的变化符合 Volgel-Tamma-Fulcher(VTF)方程:
·要防止键离子与阴离子缔合, 它们 之间的问距必须小于一定值q:
q 一 lzt号1e2
8πε0<;kT
因此, 熔剂的介电常数越高, 越有利 于防止离子的缔合。
·离子的迁移遵循Stokes-Einstein方
程: Jf-j =百万三
因此, 电解液的粘度越低, 离子的迁 移就越快。 ·溶剂需要同时具有高的介电常数和 低的粘度才能保证高的电导率。
1 )铿盐的解离和溶剂化;
2)溶剂化的离子在溶剂中的迁移。 ·电导率是由溶液中各种离子的数量及 其迁移率决定的。
三 σ = n.piZie
·电解液中解离出来的自由离子数量越 多, 离子的迁移率越大, 则电导率越高。 ·键离子在电解液中都是以溶剂化的形
式Li+(S)n存在的, 配位数n通常在2-3之
间。 因此在电解液中迁移的并非Li+本 身, 而是Li+(S)no
·电极体系:Coke/LiCo02 二次锺电池|·电解液:叫/PC-DEC
(初期〉
二次型电池|·电 电 D… M解阳C液 : -… DELC1均 PG阳 问 F唰阳斗均刷r a6叩 /… p叩 E忡 阶hC叫 叫-E『 MC-
〈成熟)
电解液选用碳酸醋类溶剂的理由: ·环状碳酸醋类溶剂具有极高的介电 常数,在有机溶剂中首屈 一 指。 ·电化学稳定性好,氧化电位高。 ·与石墨负极的相容性好,尤其是 时时负极表阳良好的 j SEI膜。 ·环状碳酸酶与链状碳酸醋混合使用 能够较好地满足工作温度范围、电
2
1电解液的功能与要求一一基本功能
e
磊毒素 鑫箩
@
M
。
Li
|| !;三
c
Electrolyte:
LiCo02
LiPF6 / EC,.OMC, EMC, DEC
Csi
·�丁
’ /
Li+ (S)n飞 /’92
Li0_5Co02
s ,./ C6Li ..,/ "也 n
'-也2 LiCo02
电解液的基本功能: 在正极与负极之间传递铿离子, 但是对电子绝缘, 从而保证电池的充放电能够顺利进行。
电导率随铿盐浓度的变化存在一个极大值, 室温下这个极大值一般出现在1M左右。
10 9
16 14 12 俨 10
eεn 8
挝6
。2 。
Coke/LiCo02
1 mol dm-3 Li吭 I PC-DEC
20 40 60 80 χLVS /vol.%
8
’’E-
的U
EP
飞、23zu2huCDQ
O
反 - v
有机溶剂
钮盐
常规溶剂
新型溶剂| |常规鲤盐| |新型组盐
EC ||| DMC
PC IL斗 DEC
EMC
亚硫酸酶 氟代溶剂
LiPF6 LiBF4
LiBOB LiODFB LiTFSI Li2DFB
LiFSI
5
2.1溶剂
理想的溶剂: ·介电常数高旦粘度低。 ·沸点高且熔点低。 ·化学稳定性好。 ·电化学稳定性好。 ·安全性和环境相容性好。 ·成本低。
解液在正极和负极表面或多或少都会发生一些副反应, 从而导致电池性能 发生不同程度的劣化。 3)通常不会与其他电池组件发生反应, 但是特殊情况下可能腐蚀某些组件。 4)常用的铿盐LiPF6的化学稳定性不够好, 尤其对水分敏感。 5)存在易燃等安全性隐患, 存在环境污染的可能性。
4
鲤离子电池电解液的组成
a a 『
2
。
0.5
1.0
1.5
2.0
LiPF6 Concentration I mol dm蝇3
Fig. 6. The conductivity of LiPF5 in EC:EMC(3:7) with 95% confidence interval(+) and fitted oolvnomial. Eo. (22) (-).
LiCJO"
Li Triflate
也�1到?
Li Beti
J,!- u·
Li + CF3S03.
Li + (N(S02Cf3)2] ·
Li + [N(S02CF2CF3)2).
106.4
155.9 286.9
236
>300 234 b
•LiPF6 的电导率具有明显优势。
>100
N
5.6 8
8.4 d
基本不用
195.85 电导率高, 还原产物有 停止使用
剧毒
11
铿离子电池电解液组成一鲤盐
有机组盐
缩写
LiTFSI
结构式
Mw
Li+ [N(S02CF3)2l 286.9
特性
电导率高, 热稳定性好, 腐蚀铝馅
应用
少量应用(添加 剂)
LiBOB Li+ [B(C204)2]LiODFB Li+ [BF2(C204)]-
缺点 安全性差 电导率低 毒性大 电导率低, 腐蚀铝宿 腐蚀铝筒, 成本高 溶解度偏低, 成本高 腐蚀铝馅, 成本高
•LiPF6的胜出是由于其综合性能的优势, 没有致命的缺点。 ·随着成本的不断降低,LiPF6的地位越来越难以被撼动。
13
3:1离子传导特性一一电导率
·电解液的离子传导包括两个过程:
3
1电解液的功能与要求一一基本要求
电解液的理想状态: 1)对铿离子来说是优良的导体, 对电子来说是绝缘体。 2)在电极表面除了发生锺离子的迁移之外, 不发生其它副反应。 3)不与其它电池组件发生反应。 4)化学稳定性好。 5)安全、 环保。
电解液的现状: 1)受限于有机溶剂和键盐的选择, 离子电导率一般在5~15mS/cm范围。 2)由于钮离子电池的正极具有很强的氧化性, 而负极具有很强的还原性, 电
TrJ °C 293 (d)
。c I Td翩翩p·, In solution
> lOO
Alcorrosion
N
200 (d)
-80