压杆稳定
材料力学之压杆稳定
材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
材料力学第九章 压杆稳定
02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
工程力学压杆稳定
MA=MA =0 相当长为2l旳两端简支杆
Fcr
EI 2
(2l ) 2
l
F
0.5l
两端固定 EI 2
Fcr (0.5l) 2
图形比拟:失稳时挠曲线 上拐点处旳弯矩为0,故可设想 此处有一铰,而将压杆在挠曲 线上两个拐点间旳一段看成为 两端铰支旳杆,利用两端铰支 旳临界压力公式,就可得到原 支承条件下旳临界压力公式。
两端铰支
= 1
一端固定,一端自由 = 2
一端固定,一端铰支 = 0.7
两端固定
= 0.5
§11-4中小揉度杆旳临界压力
一、临界应力与柔度
cr
Fcr A
对细长杆
cr
2 EI (l)2 A
2 Ei2 ( l ) 2
2E ( l )2
记 l
i
i
cr
2E 2
––– 欧拉公式
:柔度,长细比
[cr] = [] < 1,称为折减系数
[ cr ] [ ]
根据稳定条件
F Fcr nst
F A
Fcr Anst
cr
nst
[ cr : 工作压力
: 折减系数
A: 横截面面积
[]:材料抗压许用值
解:首先计算该压杆柔度,该丝杆可简化为图示
下端固定,上端自由旳压杆。
=2
F
l=0.375m
i I d A4
l l 2 0.375 75
i d 0.04 / 4 4
查表, = 0.72
F
A
80 103
0.72 0.042
88.5106 88.5MPa [ ] 160MPa
4
故此千斤顶稳定性足够。
第七章压杆稳定
第七章压杆稳定一、压杆稳定的基本概念受压直杆在受到干扰后,由直线平衡形式转变为弯曲平衡形式,而且干扰撤除后,压杆仍保持为弯曲平衡形式,则称压杆丧失稳定,简称失稳或屈曲。
压杆失稳的条件是受的压力P P cr。
P cr称为临界力。
二、学会各种约束情形下的临界力计算压杆的临界力P cr cr A,临界应力cr 的计算公式与压杆的柔度所处的范围有关。
以三号钢的压杆为例:p ,称为大柔度杆,cr 22Es p ,称为中柔度杆,cr a b s ,称为小柔度杆,crs 。
三、压杆的稳定计算有两种方法1)安全系数法n P P cr n st,n st为稳定安全系数。
2)稳定系数法PP [ ] st [ ] ,为稳定系数A四、学会利用柔度公式,提出提高压杆承载能力的措施根据l,i A I,愈大,则临界力(或临界应力)愈低。
提高压杆承载能力的措施为:1)减小杆长。
2)增强杆端约束。
3)提高截面形心主轴惯性矩I。
且在各个方向的约束相同时,应使截面的两个形心主轴惯性矩相等。
4)合理选用材料。
§15-1 压杆稳定的概念构件除了强度、刚度失效外,还可能发生稳定失效。
例如,受轴向压力的细长杆,当压 力超过一定数值时, 压杆会由原来的直线平衡形式突然变弯 (图 15-1a ),致使结构丧失承载能力;又如,狭长截面梁在横向载荷作用下,将发生平面弯曲,但当载荷超过一定数值时, 梁的平衡形式将突然变为弯曲和扭转 (图 15-1b );受均匀压力的薄圆环, 当压力超过一定数 值时, 圆环将不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式 (图 15-1c )。
上 述各种关于 平衡形式的突然变化 ,统称为 稳定失效 ,简称为 失稳或屈曲 。
工程中的柱、 桁架 中的压杆、薄壳结构及薄壁容器等,在有压力存在时,都可能发生失稳。
由稳定平衡转变为不稳定平衡时所 受的轴向压力,称为临界载荷,或简称 为临界力 ,用 P cr 表示。
压 杆 稳 定
压杆稳定
环保设 备
2.不同约束条件下压杆的欧拉公式
压杆稳定
压杆稳定
三、压杆的稳定性校核
F [F ] Fcr nst
工作安全系数
或
压杆稳定性条件
Fcr — 压杆临界压力
nst— 稳定安全系数
n
Fcr F
nst
n cr
nst
n
Fcr F
nst
F— 压杆实际压力
四、提高压杆稳定性的措施
1.合理的选用材料 2.减小压杆的柔度 (1) 选择合理的截面形状,增大截面的惯性矩 (2) 减小压杆的长度。 (3) 改善压杆支承。
一、压杆稳定的概念
压杆稳定
压力小于临界力
压力大于临界力
压力等于临界力
压杆稳定
压力等于临界力
压杆的稳定性试验
压杆丧失直 线状态的平衡, 过渡到曲线状态 的平衡。称为丧 失稳定,简称失 稳,也称为屈曲
压杆稳定
二、计算临界力的欧拉公式
1.两端铰支中心压杆的欧拉公式
----欧拉公式
适用条件: •理想压杆(轴线为直线,压 力与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
环保设 备
当细长杆受压时,在应力远远 低于极限应力时,会因突然 产生显著的弯曲变形而失去 承载能力。
当压力超过一定数值后,在外 界微小的扰动下,其直线平 衡形式将转变为弯曲形式, 从而使杆件或由之组成的机 器丧失正常功能。这是一种 区别于强度失效与刚度失效 的又一种失效形式,称为
“稳定失效”。ຫໍສະໝຸດ 压杆稳定
压杆稳定的概念
二、压杆的失稳12-2 细长压杆临界力公式——欧拉公式一、两端钝支细长压杆的j l P令: EI K j =则: Y K Y ⋅-=即: 02=⋅+''Y K Y此微分方程的通解:Y=C ;kx C kx cos sin 2+ ——(1) 边界条件: 当X=0, 02=C , kx C Y sin 1= ——(2) 又杆上端边界条件:X=l 代入(2)式kl sin 0=——(3) 若要使(3)式成立必有1C 或0sin =kl 方可。
如果 01=C 式就不成立,所以必定是0sin =kl πn kl =当 ππππn kl 3,2,,0=时,0sin =kl 得 ln EI P K jl π==又得 222l EI n P j l π= n=1 时, 2min2l EI P j l π=——临界力欧拉公式j l P ——临界力min I ——截面z I 、y I 选小值l ——杆长二、其他支座j l P()2min25.0l EI P j l π= u=0.5三、临界应力()()()2222min22min2r ul EAul EI Aul EI AP lj l j πππσ====——(1)式中: AI r min= ——截面的回转半径λ=rul——压杆的长细比 (1)式可成: 22λπσEjl =12-3 临界应力总图目的: 了解临界应力适应范围 关键是看懂j l σ总图一、临界应力的公式的适用范围(因为挠曲线近似微分方程只在材料服从虎克定律的前提下成立,即在材料不超过比例极限时成立,而j l P 又是通过挠曲线微分方程推倒出来的故p l j σσ≤)P l E jσλπσ≤=22 即: P p EE σπσπλ=≥2 即只有当λ大于或等于极限值p p Eσπλ=时 22λπσEjl *=方成立。
那么j l σ适用的范围总:p λλ≥ 如:钢 100≥p λ 铸铁 80≥p λ 木材 100≥p λ二、超过p σ后压杆的临界应力⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=21c l j λλασσ ——经验公式其中: s σ——材料的屈服极限 α——系数 0.43 Sc Eσπλ57.0=例: S A 钢: cmkgs 2400=σ 26102cm kgE ⨯=20715.02400λσ-=j l三、j l σ总图总图:p l j σσ≤和p l j σσ>的图形, j l σλ-曲线图12-4 压杆稳定计算一、压杆的稳定条件: []σϕσ≤=APjj l l K P P ≤其中j l P 压杆的临界力jl K 稳定安全系数,随λ变化比例强度安全系数K 的实际作用在杆上的应力则: []j jjj j l l l l l K K A P A Pσσσ==*≤=其中σ为实际杆内力[]j l σ为稳定许用应力稳定条件:[]j l σσ≤ []jjj l ll K σσ=,[]Kσσ=[]︒*=∴σσσKK JJJ L LL ,[][]σϕσ= 其中 ϕ 为折减系数,可查表 又[]σϕσ≤=∴AP说明:(1)式中j l σ总小于︒σ,()︒<σσj l ;k K j l > 故ϕ是小于1的。
压杆稳定
例11-3 校核木柱稳定性。已知l=6m,圆截面d=20cm,两端
铰接,轴向压力P=50kN,木材许用应力[σ]=10MPa。
解:
i I d 20 l 1 600 5cm; 1; 120; A 4 4 i 5
20 d 20 l 1l 600 1 600 5cm ;5cm ; 1 ; 1; 120 ; 120; 4 4 i i 5 5
y
120
z
200
z 200
y
120
(图a)
(图b)
解:(1)计算最大刚度平面内的临界压力
120 200 80106 m m4 中性轴为y轴:I y 12
3
y
120
z 200
木柱两端铰支,,则得:
Plj
2 EI y
l 2
3.142 10103 80106 123kN 2 1 8000
压杆稳定
压杆稳定的概念
压杆的稳定计算
细长压杆的临界力
小结
压杆的临界应力
第一节
压杆稳定的概念
压杆稳定—压杆保持其原有直线平衡状态的能力,称其 稳定性。(指受压杆件其平衡状态的稳定性) 细长压杆在压力逐渐增大至某一数值时,突然变弯直至 弯断的现象称为丧失稳定或失稳。
临界力—压杆在临界平衡状态时所受的轴向压力。
4 d C
64
;
a
B
l
i
11000 142 .9 p 123; 大柔度杆; 7
A
2 E 2 200000 lj 2 96.7 MPa 2 142.9
N CB a
P B
第八章:压杆稳定
材料
(强度极限 b/ MPa ) (屈服点 S /MPa )
a
b
(MPa) (MPa)
P
S
Q235 钢( b 372 , S 235 ) 304 1.12 100
62
优质碳钢( b 471 ,S 306 ) 461 2.568 100
60
硅钢 ( b 510 , S 353 ) 578 3.744 100
二、其他支座条件下细长压杆的临界应力 表8-1 压杆的长度系数
Fcr
2EI ( l)2
杆端约束 情况
一端固定 一端自由
两端铰支
一端固定 一端铰支
两端固定
挠 曲 线 形 状
长度系数
2.0
1.0
0.7
0.5
第二节:细长压杆的临界荷载
例8-3 图示细长压杆,已知材料的弹性模量 E 210GPa,压杆
第二节:细长压杆的临界荷载
例8-1 细长压杆为钢制空心圆管,外径和内径分别为 20mm 和 16mm,杆长 0.8m,钢材的弹性模量为 210GPa,
压杆两端铰支,试求压杆的临界载荷 Fcr。
解:压杆横截面的惯性矩为
I (D4 d 4 ) (0.024 0.0164 ) m4
64
64
4.63109 m4
(2)如果 F k l ,即 F k l ,则杆将继续偏斜,不能回复到原来的竖直平衡位
置,表明其原来的竖直平衡状态是不稳定的;
(3)如果 F k l ,即 F k l ,则杆不仅在竖直位置保持平衡,而且在偏斜状
态也能够保持平衡。
第一节:压杆稳定的概念
临界压力或临界力:当压力逐渐增加到某一极限值时,如果再作用 一个微小的侧向干扰力,使其产生微小的侧向变形,在除去干扰力 后,压杆将不再能够恢复其原来的直线平衡状态,这说明压杆原来 直线形状的平衡是不稳定的,上述压力的极限值称为临界压力或临 界力。一般用Fcr表示,它是判断压杆是否失稳的一个指标。
压杆稳定—压杆稳定的概念(建筑力学)
二、压杆稳定概念
压杆稳定
当FP值超过某一值Fcr时,撤除干扰后,杆不能恢复到原来 的直线形状,只能在一定弯曲变形下平衡(图d),甚至折 断,此时称杆的原有直线状态的平衡为不稳定平衡。
由此可知,压杆的直线平衡状态是否稳定,与压力FP的大 小有关。
压杆稳定
当压力FP逐渐增大至某一特定值Fcr时,压杆将从稳定平 衡过渡到不稳定平衡,此时称为临界状态。 压力Fcr称为压杆的临界力。 当外力达到压杆的临界力值时,压杆即开始丧失稳定。
压杆稳定
第一节 压杆稳定概念
一、稳定问题的提出
两根相同材料(松木)制成的杆,
σb=20MPa;A=10mm×30mm
短杆长:l=30mm;
长杆长:l=1000mm F
若按强度条件计算,
两根杆压缩时的极限承载
能力均应为:
F
F =σbA=6kN
F
1m 30mm
F
压杆的破坏实验结果:
(1)短杆在压力增加到约 为6kN时,因木纹出现裂纹而 破坏。
(2)长杆在压力增加到约40N 时突然弯向一侧,继续增大压力 ,弯曲迅速增大,杆随即折断。
F
1m
F
30mm
F
F
结论:
短压杆与长压杆在压缩时的破坏 性质完全不同
• 短压杆的破坏属于强 度问题;
F• 长压杆的破坏则属于能否保持其原来的直线平衡
状态的问题
F
F
1m 30mm
F
压杆稳定性:压杆保持其原来直线平衡状态 的能力。
压杆稳定
压杆稳定
学习目标:
1.深刻理解压杆稳定的概念,理解临界力和柔度的概念。 2. 理解杆端约束对临界力的影响,了解压杆的分类和临界 应力总图。 3.掌握压杆临界力、临界应力的计算。 4.掌握压杆的稳定计算以及提高压杆稳定性的措施。
压杆稳定
设 杆CD的抗弯刚度为EI2 ,则
P B
当 EI2∞ μ 0.7
当 EI20 μ 1.0
杆AB: μ=0.7~1.0
C
EI
EI2
A
D
例:已知 圆截面直钢杆,长度l=2m,直径d=20mm,
弹性模量E=200GPa, 屈服极限s =230MPa
求 按强度理论计算的最大许用载荷PS 按稳定理论计算的最大许用载荷Pcr 解:1) 按强度理论
当P<Pcr ,稳定平衡
Mr
当 P>Pcr ,失稳
当 P=Pcr ,临界平衡
P Pcr
干扰力F
稳定平衡
加干扰力,产生变形 撤去干扰力,变形恢 复。
P Pcr
干扰力F
临界平衡
加干扰力,产生变形 撤去干扰力,变形不 能恢复。
P Pcr
不能平衡
加干扰力,变形将持续 增加。
压杆失稳的内在原因 对于可变形压杆,干扰力 F 起到使压杆脱离 原直线平衡位置的作用,而杆的弯曲变形起 到使压杆恢复原直线平衡位置的作用。压杆 随纵向力P的改变,平衡的稳定性会发生改变 ,由稳定平衡转为不稳定平衡的纵向力临界 值称压杆的临界压力或临界载荷Pcr(critical load);它是压杆保持稳定平衡状态压力的最 大值。
工程上用“经验公式”代替“欧拉公式”。
如:可用直线经验公式: σ cr= a - b λ
a、b为材料常数,见表9-2。
A3钢:a=304MPa,b=1.12MPa
小柔度杆
当直线经验公式σ cr= a - b λ σ s(或σ b)时,
压杆的失效由强度控制。
第七章 压杆稳定
例7-3 用Q235钢制成的矩形截面杆的受力及两端约束 如图所示,其中(a)为正视图,(b)为俯视图。在A 、 B 两处用螺栓夹紧。已知l=2.3m,b=40mm,h=60mm, 材料的弹性模量E=205GPa,求此杆的临界力。
解:压杆在A、B两处的 连接不同于球铰约束。 在正视图x~y平面内失 稳时,A、B两处可以自 由转动,相当于铰链约 束;在俯视图x~z平面 内失稳时,A、B两处不 能自由转动,可简化为 固定端约束。 F A h h F A b b x y B F B
1 2
30 FAx2 D
30 5
平面桁架如图所示, 求桁 架的临界载荷力Pcr.
2P F2 2 F1 / 3 3
1 (1 2 / 3) 4 1 115.47 i 0.040
l
λ1>100,属于大柔度杆,用欧拉公式:
2E 2 200 109 Fcr 2 A 0.042 N 186.04kN (115.47)2 4
临界应力总图
表示临界应力随压杆柔度变化的情况.
σcr σs σp
cr s
A B
cr a1 b1 cr a b
C
2
E cr 2
2
D λ
λs λp
例题 如图所示的压杆,其直径均为d,材料都是Q235 钢,但两者的长度和约束都不相同。(1)分析哪一根 杆的临界力较大。(2)若d=160mm ,E=205GPa,计 算两杆的临界力。 d 4 解 (1)计算柔度 64 d F F i 2 d 4 4
回代得: y cos kx (1 cos kx)
x l 时 y cos kl 0 kl
压杆稳定
cr a b
cr
2E 2
小柔度杆
中柔度杆
大柔度杆
O
s
a
s
b
p
2E p
l
i
例:图示圆截面压杆d=40mm,σs=235MPa。求可以用 经验公式σcr=304-1.12λ (MPa)计算临界应力时的最 小杆长。
F
解: s
a s
b
304 235 61.6
1.12
由
l
i
s
得:
l
0.04
相同的压杆
P
细长压杆失效原因:杆突然 发生显著弯曲变形而失去承 载能力。
P
P
失稳(也叫屈曲)
一、稳定与失稳
1.压杆稳定性:压杆维持其原有直线平衡状态的能力;
2.压杆失稳:压杆丧失原有直线平衡状态,不能稳定地工作。
3.压杆失稳原因:①杆轴线本身不直(初曲率); ②加载偏心; ③压杆材质不均匀; ④外界干扰力。
b(MPa) 1.12 2.568 3.744 5.296 1.454 2.15 0.19
下面考虑经验公式的适用范围:
对于塑性材料:
cr a b s
即
as
b
记
s
a
s
b
则 s p
经验公式的适用范围
对于 λ<λs的杆,不存在失稳问题,应考虑强度问 题
cr s
经验公式中,抛物线公式的表达式为
感谢下 载
cr a1 b12
a 、b 式中
查到。 1
也是与材料性质有关的系数,可在有关的设计手册和规范中
1
三、临界应力总图
1. 细长杆( p ), 用欧拉公式
cr
第七章 压杆稳定
∫
l
0
EI ( y") dx
l 2 0
2
∫ ( y' ) dx
=m in
∫
l
0
EI ( y")2 dx
l 0
( y' )2 dx ∫
这是一个泛函数驻值问题,与上节的平衡微分 方程的本征值问题完全等价。求精确解就要求 泛函的最小值。 实际计算时,不必要取出一切可能的y。 通常的作法是缩小范围求近似解。例如可以把 原来的大范围缩小到只包含一个参数 α 的挠度 函数集。
若取 n = 2,3,4L 则
k= 2π 3π 4π ⋅ ⋅ L l l l
3π Asin x l 4π Asin x l KK
2π y = Asin x l
若拐点处不存在夹持,这些只是理论上可能存在 的形状,只要稍有扰动,就立即消失。而实际中 干扰因素很多,不可避免,初曲率、力偏心等。 ∴实际中这些临界状态不存在。工程上有实际意 义上的就是 n = 1时的 P 。 cr
称为压杆的柔度或长细比。它反映了压杆 i 长度、支承条件、截面尺寸形状对的影响是很 重要的参数。
.5.2
欧拉公式适用范围
欧拉公式是由导 EIy"= M(x) 出的,而它又用到 胡克定律 ∴ 欧拉公式只有在 σcr ≤ σ P 时才适用 即 设
λP = π
E
π 2E λ≥ σP
σP
欧拉公式适用于 λ ≥ λP
.1.2
弹性压杆的平衡路径及分叉屈曲
细长压杆,当压力达到 P ,杆中应力一般< P 。 cr cr ∴ 细长压杆是在弹性范围内失稳的。∴细长压 杆也称为弹性压杆。
P D
f
P cr
第十五章 压杆稳定
课题一 压杆稳定的概念
如上图,在自由端沿杆轴线方向施较小压力时,压杆处于直线平 衡状态(图a),此时若施加一微小横向干扰力,使杆处于微弯状 态(图b),然后将干扰力去除,杆经过几次左右摆动后,仍能回 复到原来的直线平衡状态(图c),这说明压杆的直线平衡状态是 稳定的。
但当压力F增大到某一数值时,压杆在微小干扰力作用下,杆即变 弯。当去除干扰力,杆不再回复到原来的直线平衡状态,而是处 于微弯平衡状态,称此时压杆的直线平衡状态不稳定。
(1)计算螺杆的柔度: i
I A
d
4 0
/
64
d0
40 mm 10mm
d
2 0
/
4
4
4
l 2 375 75
i 10
(2)计算临界应力
cr s a2 275 0.00853 压杆稳定校核与提高压杆稳定性的措施
(3)校核螺杆的稳定性。
稳定许用应力为:
[
w
]
cr nw
227 4
MPa
56.8MPa
螺杆的工作应力为: F 70 103 MPa 55.7MPa
A 40 2 / 4
[ w ]
,所以螺杆是稳定的。
二、提高压杆稳定性的措施
提高压杆的稳定性,关键在于提高压杆的临界力或临界应力。
第十五章 压杆稳定 课题三 压杆稳定校核与提高压杆稳定性的措施
对于钢材 cr s a2 对于铸铁 cr b a2
式中是与材料有关的常数,单位为MPa,其值可从表中10-2查得。
第十五章 压杆稳定
课题二 临界力和临界应力
压杆的临界应力是其柔度λ的函数,其函数图象(下图)称为临界 应力总图。
第十五章 压杆稳定
《材料力学》第九章 压杆稳定
第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。
压杆稳定
EI
2
l2
两端铰支细长压杆临界压力的欧拉公式。
Fcr 与抗弯刚度( EI )成正比。
压杆失稳时,总是绕抗弯刚度最小的轴发生弯曲变形。
因此,对于各个方向约束相同的情形
I
应是截面最小的形心主惯性矩。
l 1、两端为铰支座的细长杆
2、线弹性,小变形
公式的推导中应用了弹性小挠度微分方程,因 此公式只适用于弹性稳定问题。
p cr s
p cr
cr s
1
cr a b
a s b
(直线公式)
a b s
a s 令 2 b
材料的第二特征柔度
1 2
中粗杆
1 2
这类杆又称中柔度杆。
cr a b
(0.5l )2
长度系数
一端固定、一端自由 两端铰支
Fcr
2 EI
( 2. 0 l ) 2
2
Fcr
2 EI
( 1. 0 l ) 2
1
0.7
一端固定、一端铰支 两端固定
Fcr
Fcr
2 EI
( 0. 7 l ) 2
2 EI
( 0. 5 l )
2
i
i
I A
l
截面的惯性半径 工作柔度
又称为压杆的长细比。它全面反映了压杆长度、约束条件、 截面尺寸和形状对临界力的影响。
E cr 2
2
临界应力的欧拉公式
塑性材料在压缩时的应力应变曲线
σ
σp
O
σs σ σp
O
σs
细长杆
1
压杆稳定
压杆稳定一、压杆稳定的概念压杆的稳定性,是指受压杆件保持其原有平衡状态的能力。
压杆不能保持原有平衡状态的现象,称为丧失稳定,简称失稳。
压杆处于稳定平衡和不稳定平衡之间的临界状态时,其轴向压力称为临界力或临界荷载,用表示。
临界力是判别压杆是否会失稳的重要指标。
二、两端铰支细长压杆的临界力两端为铰支的细长压杆,如图所示。
取图示坐标系,并假设压杆在临界荷载作用下,在xy平面内处于微弯平衡状态。
两端铰支细长压杆的临界荷载为称为欧拉公式。
在两端支承各方向相同时,杆的弯曲必然发生在抗弯能力最小的平面内,所以,式(1)中的惯性矩I应为压杆横截面的最小惯性矩;对于杆端各方向支承情况不同时,应分别计算,然后取其最小者作为压杆的临界荷载。
三、各种支承情况下压杆临界力计算公式可以写成统一形式的欧拉公式式中:μ反映了杆端支承对临界力的影响,称为长度系数,μL称为相当长度。
一端自由,一端固定m=2.0;两端固定 m=0.5一端铰支,一端固定 m=0.7;两端铰支m=1.0四、压杆的临界应力(一)、临界应力与柔度将临界荷载除以压杆的横截面面积A,即可求得压杆的临界应力,即将截面对中性轴的惯性半径代入,--临界应力欧拉公式---柔度或长细比。
它是一个无量纲量。
λ值愈大,压杆就愈容易失稳。
(二)、欧拉公式的适用范围于是欧拉公式的适用范围可用柔度表示为是与压杆材料性质有关的量。
对于,钢制成的压杆,E=200GPa,,=100的压杆称为大柔度杆或细长杆,其临界力或临界应力可用欧拉公式来计算。
(三)、超出比例极限时压杆的临界应力1、经验公式式中:a、b是与材料的力学性能有关的两个常数,可以通过试验加以测定,使用时可从有关手册上查取。
2、临界应力总图&如果将临界应力与柔度之间的函数关系绘在~λ直角坐标系内,将得到临界应力随柔度变化的曲线图形,称为临界应力总图。
临界应力均随柔度λ的增大而呈逐渐衰减的变化规律。
也就是说压杆越细越长,就越容易失去稳定。
第9章压杆稳定
长度系数
=1 =2 =0.7 =0.5
两端固定
§9-4 欧拉公式的使用范围 经验公式
1、临界应力和柔度
1)临界应力: 压杆处于临界状态时横截面上的平均应力
EI E Fcr cr l 2 2 ( l ) A ( ) A i
2
2
2)柔度:
l
i
柔度也称细长比与长度、截面性质、支撑条件有关
p 20010 100 6
2 9
20010
3)用柔度表示的临界压力
2 E A Fcr 2
3、中、小柔度杆的临界应力 1.s>cr>p时采用经验公式
直线经验公式: cr a b
对于Q235钢: s 1
cr s
a s s 2 b
x
F x
解:1)失稳形式判断: 若连杆在x—y平面内失稳,则连 F 杆两端可视为铰支:
z
580 700 580 l
z Lz
iz
z Lz
Iz / A
4
z F
1 700 6.5 10 / 720
73.7
y y
F
若连杆在x—z平面内失稳, 则连杆两端可视为固定端:
z
y
y Ly
工程实例
2、稳定平衡与不稳定平衡
稳定平衡是能够保持原有平衡状态的平衡。
3、压杆的失稳与原因
1)压杆的稳定性: 压杆维持其原有直线平衡状态的能力
2)压杆的失稳:压杆丧失其原有直线平衡状态,不能稳 定地工作。 3)压杆失稳的原因 1)杆轴线本身不直(有初曲率); 2)加载偏心; 3)压杆的材质不均匀; 4)外界干扰力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
6
3 两端固定
Pcr
C,D为拐点
AD
Fcr
2EI
(0.5l)
2
l
C
B
7
4 一端固定,另端自由
Fcr
2EI
(2l)2
l 2l
8
9
欧拉公式 的统一形式
F
cr
2 EI (l)2
为压杆的长度系数; l 为相当长度。
讨论:
(1)相当长度 l 的物理意义
1 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当
1.6a
(1)
(2)
(3)
(l)1 2a (l)2 1.3a (l)3 0.7 1.6a 1.12a (1)杆能承受的压力最小,最先失稳;
(3)杆能承受的压力最大,最稳定。
12
例:图示各细长压杆材料和截面均相同,试比较各杆的 承载能力。
细长压杆,可用欧拉公式求临界压力 Fcr 2EI /(l)2
长度 l 。
2 l 是各种支承条件下,细长压杆失稳时,挠曲线中相当于
半波正弦曲线的一段长度
10
F
cr
2 EI (l)2
为长度系数 l 为相当长度
(2)横截面对某一形心主惯性轴的惯性矩 I 1 若杆端在各个方向的约束情况相同(球形绞等),则 I
应取最小的形心主惯性矩。 2 若杆端在各个方向的约束情况不同(柱形绞),应分别
6 12
z 24
6 y 22
15
解:
在xy平面内失稳时,z为中性轴
Iz
1 12
12
243
2
(1 12
22
63)
2(22 6 152)
F
cr1
I 2E z
( zl1)2
I 2E z
(1l1)2
在xz平面内失稳时,y为中性轴
Iy
1 12
(24123)
2
1 12
计算杆在不同方向失稳时的临界力。I 为其相应的对
中性轴的惯性矩。
11
例题 2: 图示各杆材料和截面均相同,试问哪一根杆能承 受的压力最大, 哪一根的最小?
F F
F 因为 l1 l2 l3
又
Fcr
2EI
l 2
可知
Fcr1 Fcr2 Fcr3
a 1.3 a
3
10
12
4.1710
9
m
4
10 30
z
y
Fcr
2Im (1l
E in )2
24.17200 (0.70.5)2
67
.14
kN
图(b):P393查表,得
(4545 6) 等边角钢
图(b)
IminI z 3.8910 8 m4
Fcr
2 IminE (2l)2
2 EI y L2
2
②绕 z 轴,左端固定,右端铰支:
=0.7,
bh3 I z 12 ,
Fcrz
2EIz
(0.7 L1 ) 2
③压杆的临界力 Fcr min( Fcry , Fcrz )
17
例6 求下列细长压杆的临界力。 解:图(a)
L L
F 图(a)
F
I
m
in
5010 12
6223
F
cr 2
I 2E y
( yl 2)2
I 2E y
(1l 2)2
F F F cr min{ ,cr1 } cr2
6 12
z 24
6 y 22
16
例5 求下列细长压杆的临界力。
y
y
z L1 L2
x
z
h
b
解:①绕 y=轴1.0,,两端铰支I y :b132h ,
Fcry
2
压杆失稳的现象: 1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯
一的平衡状态;
ቤተ መጻሕፍቲ ባይዱ
稳定:
理想中心压杆能够保持稳定的(唯一的) 直线平衡状态;
失稳: 理想中心压杆丧失稳定的(唯一的)直 线平衡状态;
临界力
压杆失稳时,两端轴向压力的特殊值
3
§9-2 临界载荷的欧拉公式
20.389200 (20.5)2
76
.8kN
18
例7、图示三角架结构,BC杆为细长压杆,已知:AC=1.5m, BC=2m,d=2cm,E=200GPa,求不会使刚架失效的载荷F。
解: 1)计算压杆BC的临界力
F
F BC cr
2EI
L2
3.76(KN)
2)计算许可载荷[P]
Fy
0 : [F ]
F BC cr
1.5 2
0
F
[F ] 2.82(KN)
19
例8:图示结构,①、②两杆截面和材料相同,为细长压杆。 确定使载荷 F 为最大值时的θ角(设0<θ<π/2)。
F
① 90 ②
20
解:由静力平衡条件可解得两杆的压力分别为:
FN1 F cos ,FN 2 F sin
F
解: lAB 0.7 a 0.7 a
c
lBC 1 0.5a 0.5a
B
F AB cr
2EI
(0.7a)2
A
FBC cr
2EI
0.5a 2
a
故取
2EI
Fcr 0.7a2
14
例4 由A3钢加工成的工字型截面杆,两端为柱形绞。在xy平面 内失稳时,杆端约束情况接近于两端绞支,z = 1,长度为 l1 。在 xz平面内失稳时,杆端约束情况接近于两端固定 y = 0.6 ,长度 为 l2 。试用欧拉公式求 Fcr。
§9-1 压杆稳定的概念
不稳定平衡
微小扰动就使小球远 离原来的平衡位置
稳定平衡
微小扰动使小球离开原 来的平衡位置,但扰动撤销 后小球回复到平衡位置
1
F
F(较小) F(较小) F(特殊值) F(特殊值)
轴压
压弯
恢复
直线平衡 曲线平衡 直线平衡
压弯
失稳
曲线平衡 曲线平衡
保持常态、稳定
失去常态、失稳
5m
5m
5m
7m
9m
3m
5m
5m
(a)
μl=1×5=5
(b)
0.7×7=4.9
(c)
0.5×9=4.5
(d)
2×3=6
(e)
上1×5=5 下0.7 ×5=3.5
(f)
上0.7×5=3.5 下0.5 ×5=2.5
承载能力依次为:d<a=e<b<c<f
13
例题3 已知:图示细长压杆EI,求:临界压力
a\2
两杆的临界压力分别为:
Fc r1
2E l12
I
,
Fcr 2
2E
l22
I
F
要使F最大,只有 FN1、FN 2都达
适用条件: •理想压杆(轴线为直线,压力 与轴线重合,材料均匀) •线弹性,小变形 •两端为铰支座
4
例题1
解: 截面惯性矩
临界力
269103 N 269kN
5
二、其他支座条件下细长压杆的临界压力
1 两端绞支
2EI
F l cr
2
Pc
r
2 一端固定另端绞支
A
l
C
B
C为拐点
Fcr
2EI