时间序列分析模拟试卷3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 填空题
1. ARMA(p, q)模型_________________________________,其中模型参数为
____________________。 2. 设时间序列{}t X ,则其一阶差分为_________________________。 3. 设ARMA (2, 1):
1210.50.40.3t t t t t X X X εε---=++-
则所对应的特征方程为_______________________。
4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是
_______________________。
5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。
6. 对于一阶自回归模型MA(1):
10.3t t t X εε-=-,其自相关函数为
______________________。 7. 对于二阶自回归模型AR(2):
120.50.2t t t t X X X ε--=++
则模型所满足的Yule-Walker 方程是______________________。 8. 设时间序列{}t X 为来自ARMA(p,q)模型:
1111t t p t p t t q t q X X X φφεθεθε----=++++++
则预测方差为___________________。
9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。
10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。
如果没有特别说明,在本练习中
~,,t i i d ε,()()()2t t 0,,0,t E Var E t τεεσεετ===≠ 11.时间序列{}2,5,9的二阶差分为_________.
12.时间序列{}t ε经过一阶差分后序列均值为_________,方差为_________________
13.对于时间序列t X ,∆表示差分运算,则111d d d t t t X X X ---∆=∆-∆表示_____阶差分。
14.差分方程1t t t y y w φ-=+的j 期动态乘子为________________.
15.差分方程01122t t t t y y y φφφε--=+++的特征方程为___________,特征根为_____ 16.差分方程01122t t t t y y y φφφε--=+++可用滞后算子表示成()t t L y εΦ=,则()L Φ=___________.
17.差分方程01122t t t t y y y φφφε--=+++稳定的条件是方程特征根落在单位圆_____,将方程表示成滞后算子形式()2121t t L L y φφε--=,如果想要差分方程稳定,则其辅助方程21210z z φφ--=的根落在单位圆________。
18.一般来说,对于n 阶差分方程的解有两部分组成,其中含有n 个互相独立的任意常数的解称为差分方程的_____,不含有任意常数的解称为差分方程的_____。
19.差分方程11t t t y y φε-=+稳定的条件为________。
20.AR (1)模型150.5t t t y y ε-=++的均值为___________,自方差为_______,自协方差函数满足齐次差分方程______________。
21.MA (1)模型150.5t t t y εε-=+-的均值为________,自方差为_________,一阶自协方差为________,其它为_______。
22.随机过程t Y 的均值函数t μ和协方差函数t j γ与_______无关,则称此过程是协方差平稳过程,也称为弱平稳过程。
23.如果一个协方差平稳过程,如果自协方差函数满足______则随机过程是关于均值遍历的。
24.可将AR (1)过程1t t t y c y φε-=++写成MA (∞)过程_______________. 25.AR (p ):t p t p t t t Y Y Y c Y εφφφ++++=--- 2211的Yule-Walker 方程(自相关函数方程)为___________.
26.在所有线性预测当中,线性投影预测具有最小的___________。
27.两个相互独立的移动过程()11MA q ,()22MA q 相加后的过程满足__________。 28.两个相互独立的自回归移动过程()11AR p ,()22AR p 相加后的过程满足__________。
下列的5道题中第一张为ACF 图,第二张为PACF 图 29.
该随机过程应建模为(指出滞后阶数)___________过程。 30.
该随机过程应建模为(指出滞后阶数)___________过程。 31.
该随机过程应建模为(指出滞后阶数)___________过程。 32.
该随机过程应建模为(指出滞后阶数)___________过程。
该随机过程应建模为(不需指出阶数)___________过程。
34.Ljung-BoxQ 统计量的k 阶滞后的原假设为______________________。 35.若模型A 的AIC 或SBC 值____________模型B 的AIC 或SBC 值,则模型A 优于模型B 。
36.对于AR (p )模型,其随机误差项的方差依赖于滞后1期的平方扰动项,我们称它为_________过程。
37.GARCH(1,2)模型中的(1,2)是指阶数为1的______项和阶数为2的_______项。 38.ARCHLM 检验统计量由一个辅助检验回归计算的,目的检验原假设:_________________________。
39.GARCH 模型的中文名称是________________________模型。
40.对于趋势模型2012t t X t t αααε=+++,可以对随机序列采取_____阶差分的方式使原数列平稳。
41.如果时间序列的d 阶差分是一个平稳的ARMA(p,q)序列,则该序列满足________过程。
42.随机游走过程的均值为______,方差为_______
43.若时间序列的标准差与均值水平成正比,应对原序列进行___________变换;方差与均值水平成正比,应对原序列进行___________变换;标准差与均值水平的平方成正比,应对原序列进行___________变换。
44.如果序列满足()()()()S d D S S t t L U L X L V L εΦ∆∆=Θ,()L Φ为p 阶,()L Θ为q 阶,
()S U L 为k ×s 阶,()S V L 为m ×s 阶,则该模型一般记为______________过程。
45.设时间序列{}t X ,则其一阶差分为_________________________。
46.设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-,则所对应的特征方程为_______________________。
47.对于一阶自回归模型AR(1): 110t t t X X φε-=++,均值μ为_______________________。
48.对于一阶自回归模型MA(1): 10.3t t t X εε-=-,其自相关函数为______________________。
49.对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++,则模型所满足的Yule-Walker 方程是______________________。
50.对于时间序列()22012,~0,t t t X t t N αααεεσ=+++,取___阶差分后序列平稳。7.随机游走(Random Walk )过程的方差为________。
51.若时间序列{}t X 的方差与均值水平成正比,取______________变换后序列平稳
52.假设在时刻(t-1)所有信息已知的条件下,扰动项t u 服从分布
()20110,()t
t u N u αα-+,则时间序列应建模为_______模型
53.定义季节差分算子为S ∆,则一次季节差分S t X ∆=_______________。