长春工业大学物理答案光刚体c 3-5

合集下载

长春工业大学物理答案光稳恒磁场c8-11

长春工业大学物理答案光稳恒磁场c8-11

练习八 电流的磁场(一)1.一无限长直导线abcde 弯成图8-1所示的形状,中部bcd 是半径为R 、对圆心O 张角为1200的圆弧,当通以电流I 时,O 处磁感应强度的在大小B=RI06336μππ+-,方向为垂直纸面向里2.如图8-2所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。

3.(2)两个载有相等电流I的圆圈,半径均为R,一个水平放置,另一个竖直放置,如图8-3所示,则圆心处磁感应强度的大小为:4.(4)如图8-4所示,在无限长载流导线附近作一球形闭合曲面S,当面S向长直导线靠近的过程中,穿过S的磁通量Φ及面上任一点P的磁感应强度大小B的变化为:(1)Φ增大,B增大;(2)Φ不变,B不变;(3)Φ增大,B不变;(4)Φ不变,B增大。

5.(1)磁场的高斯定理说明了下面的哪些叙述是正确的?a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(1)ad ; (2)ac ; (3)cd ; (4)ab 。

6.真空中的两根无限长直载流通导线L 1和L 2相互平行放置,I 1=20A ,I 2=10A ,如图所示,A 、B 两点与两导线共面,a=0.05m 。

求:(1)A 、B 两点处的磁感应强度B 1和B 2;(2)磁感应强度为零的位置。

解:以×为正,(1)7042010104102.122--⨯=⨯⨯=+=πμπμπμT a I a I B A T aI a I B B 520101033.1232-⨯=-⋅=πμπμ (2)经过分析,磁感应强度为零的点应该在L 2的下方,假设到L 2的距离为xma x xI a x I 1.022)2(202010==++⋅-=πμπμ7.两平行长直导线相距d=40cm,通过导线的电流I1=I2=20A,电流流向如图所示。

高二物理3-5试卷含答案

高二物理3-5试卷含答案

高二物理月考试卷一、单项选择题(每题只有一个正确选项,每题4分)1.关于物体的动量,下列说法中正确的是 ( ). A .物体的动量越大,其惯性也越大 B .同一物体的动量越大,其速度一定越大 C .物体的加速度不变,其动量一定不变 D .运动物体在任一时刻的动量方向一定是该时刻的位移方向2.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的 ( ). A .频率 B .强度 C .照射时间 D .光子数目3.有一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是 ( ). A .改用频率更小的紫外线照射 B .改用频率更大X 射线照射 C .改用强度更大的原紫外线照射 D .延长原紫外线的照射时间 4.A 球的质量是m ,B 球的质量是2m ,它们在光滑的水平面上以相同的动量运动.B 在前,A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比vA ′∶vB ′为 ( ). A .1∶2 B .1∶3 C .2∶1 D .2∶35.质量为m 1、m 2的两物体,分别受到不同的恒力F 1、F 2的作用,由静止开始运动,下列说法正确的是 ( ).A .若在相同位移内它们动量变化相同,则F 1F 2=m 1m 2B .若在相同位移内它们动能变化相同,则F 1F 2= m 2m 1C .若在相同时间内它们动能变化相同,则F 1F 2=m 2m 1D .若在相同时间内它们动能变化相同,则F 1F 2= m 1m 26.质量为m 、速度为v 的A 球与质量为3m 的静止B 球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B 球的速度可能有不同的值.碰撞后B 球的速度大小可能是 ( ). A .0.6v B .0.4v C .0.2v D .v7.如图1-3所示,一铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉在地上的P 点.若以2v 速度抽出纸条,则铁块落地点为 ( ).A .仍在P 点B .在P 点左边C .在P 点右边不远处D .在P 点右边原水平位移的两倍处8.载人气球原静止于高h 的空中,气球质量为M ,人的质量为m 。

长春工业大学物理化学考试题及答案

长春工业大学物理化学考试题及答案

)
波义尔温度 TB; D
2.当表面活性物质加入溶剂中以后,结果是( A dγ /dc<0,正吸附;
B dγ /dc>0,负吸附; C dγ /dc>0,正吸附; D dγ /dc<0,负吸
3.在 TK 时纯液体 A 的饱和蒸气压为 PA*,化学势为μ A*,并知它在 101.325kPa 下的凝固点为 Tf*,当 A 中溶入少量非挥发性溶质而成为 稀溶液时,上述物理量分别为 PA,μ A,Tf,则 A PA*<PA, μ A*<μ A, Tf*< Tf B PA*>PA, μ A*<μ A, Tf*< Tf C PA*>PA, μ A*<μ A, Tf*>Tf D PA*>PA, μ A*>μ A, Tf*>Tf 4 在一定温度和压力下,用以直接判定化学反应方向的是( A Kp ;B Δ rGm ;C
-1


)

Δ rGm ;D
∑ν Bμ
B
⊙ ⊙
5.298K 时,反应 CO2 (g) + H2(g) = CO(g) + H2O(g)的平衡常数 K =10-5, 则反应的Δ rGm 约为( A 28.524kJ ;B 6.817kJ ;C 6 二组分理想液态混合物的蒸汽总压( A 与溶液的组成无关 ; 12.389kJ ;D 2.961kJ )
考试形式: [闭卷] 考试题组:[ A ]
长 春 工 业 大 学 试 卷
/20 07 学年第二 学期 050606,050607 班
二 10 三 10 四 60 五 六
_____班 考务编号
姓名________
……………………………………………………○……装……………订……………线……○………………………………………………

长春工业大学大一物理习题册详解答案

长春工业大学大一物理习题册详解答案

(2) 写出 t=2 秒时刻质点的位置矢量, 并计算第 2 秒内的平均 速度量值; x(2)=4, y(2)=11 所以 x(1)=2, y(1)=17 所以 所以
3.初速度为 v0 5i 4 j (m/s) ,质量为 m=0.05kg 的质点, 受到冲量 I 2.5i 2 j (Ns) 的作用, 则质点的末速度 (矢 量)为 。
dx 2t 4 dt 当 v 0时,t 2, 解:v 当 t 0时,v 4, 所以v t图像:
2.质点沿半径 R=0.01 米的圆周运动,其运动方程 =2+4t 3,、 t 分别以弧度和秒计。则 t=2 秒时,其切向加速度量值 at = ; 法向加速度量值 a n = ; 当 a t=a/2 (a 为总加速度量值) 时, = 。 6.在离水面高为 h 米的岸边,有人用绳拉船靠岸,船在离岸边 s 米处, 当人以 v0 米/秒的速率收绳时, 试求船的速度、 加速度。
1 1 2 A J 2 J0 2 2
0
3 g 2L
7.设质量为 M 长为 l 的均匀直棒,可绕垂直于杆的上端的水平 轴无摩擦地转动。它原来静止在平衡位置上,现有一质量 m=M/3 的弹性小球水平飞来,正好碰在杆的下端。相碰后,使 杆从平衡位置摆动到最大位置max=60处,如图所示。求:
3.(2)物体沿一闭合路径运动,经t 时间后回到出发点 A,如 图所示,初速度 v1 ,末速度 v2 ,且 | v1 || v2 | ,则在t 时间 内其平均速度 v 与平均加速度 a 分别为: Nhomakorabea



7.质点沿直线运动,初速度 v0,加速度 为正常数,求: (1)质点完全静止所需的时间;
水被抽到地面,势能的增加量为: E P mgh Vgh 2.45 10 6 J

大学物理物理c答案

大学物理物理c答案

大学物理答案及评分标准(C 卷)一、填空题:1、2m/s -6m/s2、是:保守力做功跟路径无关。

3、ωJ 和221ωJ 4、导体内场强处处为零 5、取向极化和位移极化 6、304r r l Id B d ⨯⋅=μπ 7、M RT 2和M RT 38、R 25和R 23 9、开尔文表述是:不可能从单一的热源吸收热量使之完全变成有用功而不引起其他的变化。

10、频率相同、振动方向相同、位相差恒定。

二、选择题:1、(B )2、(D )3、(B )4、(A )5(A )三、判断题:1.(×) 2.(×) 3. (×) 4. (×) 5. (×) 6. (√) 7. (×) 8. (×) 9. (×)10. (√)四、解答题:1. 解:(1)根据题意:Kv a -=, 所以Kv dt dv -=,分离变量后,Kdt vdv -=,.................................(1分) 积分得,⎰⎰-=t v v Kdt v dv 00,所以有Kt e v t v -=0)(;....................... (3分) 同理,可以求得)1(00Kt e K v x x ---=。

......................................... (1分) (2)根据题意,Kx a =所以, dx Kx dx dtdv ⋅=⋅,积分得⎰⎰=x x v v Kxdx vdv 00;............. (1分) 所以有:)(202202x x K v v -+=.............................................(4分)2. 解:设导体平板的面积为S , 各面的电荷面密度分别为1σ、 2σ、3σ、4σ,根据电荷守恒的条件:A Q S S =+21σσ (1)B Q S S =+43σσ(2)---------------------------- (2分)在金属板内取如图所示的高斯面,根据高斯定理有:032=+σσ (3)---------------------------- (3分)根据场强叠加原理,金属板内某点P 的场强为零:40302012222εσεσεσεσ-+=p E -----------------(3分) 联立求解得:SQ Q B A 241+==σσ SQ Q B A 232-=-=σσ----------------------(2分) 3. 解:由于同轴电缆导体内的电流均匀分布,其磁场轴对称分布。

大学物理c的试题及答案

大学物理c的试题及答案

大学物理c的试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是牛顿第一定律的描述?A. 物体在没有外力作用下,总保持静止或匀速直线运动状态B. 物体的加速度与作用力成正比,与质量成反比C. 物体的加速度与作用力成正比,与质量成正比D. 物体在任何情况下都保持静止或匀速直线运动状态答案:A2. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A3. 以下哪个是电场强度的定义?A. 电场力与电荷的比值B. 电荷与电场力的比值C. 电场力与电场强度的比值D. 电场强度与电荷的比值答案:A4. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与对外做的功之和。

A. 正确B. 错误答案:A5. 电磁波的频率与波长的关系是?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比,但只在特定条件下成立答案:B6. 根据麦克斯韦方程组,变化的磁场会产生什么?A. 变化的电场B. 恒定的电场C. 恒定的磁场D. 没有影响答案:A7. 欧姆定律描述的是电流、电压和电阻之间的关系,其表达式为?A. I = V/RB. I = R/VC. V = I * RD. R = V/I答案:A8. 以下哪个选项是描述波的干涉现象?A. 两个波相遇时,振幅相加B. 两个波相遇时,振幅相减C. 两个波相遇时,振幅不变D. 两个波相遇时,振幅消失答案:A9. 根据量子力学,电子在原子中的运动状态是由什么决定的?A. 电子的电荷B. 电子的质量C. 电子的能级D. 电子的动量答案:C10. 根据相对论,当物体的速度接近光速时,其质量会如何变化?A. 质量不变B. 质量增加C. 质量减少D. 质量消失答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成_______,与物体的质量成_______。

刚体考试题及答案

刚体考试题及答案

刚体考试题及答案一、选择题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的()。

A. 常数B. 函数C. 随机变量D. 无规律变化答案:A2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是()。

A. I = Mr^2B. I = 2MrC. I = MrD. I = 1/2Mr^2答案:D3. 刚体的平移运动和转动运动的合成是()。

A. 平移运动B. 转动运动C. 螺旋运动D. 不确定答案:C4. 刚体的角速度和线速度的关系是()。

A. 线速度是角速度的两倍B. 线速度是角速度的一半C. 线速度与角速度成正比D. 线速度与角速度无关答案:C5. 刚体的角动量守恒的条件是()。

A. 外力矩为零B. 外力为零C. 外力矩和外力都为零D. 外力矩和外力都不为零答案:A6. 刚体的动能与()有关。

A. 质量B. 速度C. 转动惯量D. 所有以上因素答案:D7. 刚体的角加速度与()有关。

A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:A8. 刚体的进动角速度与()有关。

A. 外力矩B. 转动惯量C. 角速度D. 所有以上因素答案:D9. 刚体的章动周期与()有关。

A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A10. 刚体的自由振动的周期与()有关。

A. 转动惯量B. 外力矩C. 角速度D. 所有以上因素答案:A二、填空题(每题2分,共20分)1. 刚体的转动惯量是关于旋转轴的________。

答案:常数2. 刚体绕固定轴的转动惯量I与质量M和半径r的关系是I = ________。

答案:1/2Mr^23. 刚体的平移运动和转动运动的合成是________。

答案:螺旋运动4. 刚体的角速度和线速度的关系是线速度与角速度________。

5. 刚体的角动量守恒的条件是外力矩________。

答案:为零6. 刚体的动能与________有关。

答案:所有以上因素7. 刚体的角加速度与________有关。

刚体答案

刚体答案

n
2 J 0 3R 02 / 16 πg 4M
4、解:根据牛顿运动定律和转动定律列方程 对物体: 对滑轮: 运动学关系: 将①、②、③式联立得
mg-T =ma TR = J a=R
① ② ③
a=mg / (m+
∵ ∴
1 M) 2
T
R M

T a mg
v 0=0,
1 v =at=mgt / (m+ M) 2
① ②
=15 rad /s,t=10 s, =32rad , 0.99 rad /s2
3、解:在 r 处的宽度为 dr 的环带面积上摩擦力矩为
dM
总摩擦力矩 故平板角加速度
mgmgR 0 3
=M /J
设停止前转数为 n,则转角 = 2n 2 由 0 2 4 Mn / J 可得
a=r
解上述 5 个联立方程得:
a
T=11mg / 8
8、解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得
v 2l 2l m 0 J (逆时针为正向) 3 2 3 2l l 又 J m( ) 2 2m( ) 2 3 3 3v 将②代入①得 0 2l mv 0
则人对与地固联的转轴的角速度为
① ②
9、解:(1) 设当人以速率 v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为,
v 2v 1R R 2
设盘的质量为 M,则人的质量为 M / 10,有:

人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.
2 2 1 2 M 1 R 1 MR 2 M 1 R MR ② 0 2 10 2 2 10 2 2v 将①式代入②式得: 0 ③ 21R

长春工业大学物理答案光刚体c3_5

长春工业大学物理答案光刚体c3_5

练习三刚体的定轴转动(一)1.一个转动的轮子由于轴承摩擦力矩的作用,其转动角速度渐渐变慢,第一秒末的角速度是起始角速度0的0.8倍。

若摩擦力矩不变,第二秒末角速度为(用0表示);该轮子在静止之前共转了转。

2.一个可视为质点的小球和两根长均为l的细棒刚性连接成如图3-2所示的形状,假定小球和细棒的质量均为m,那么,该装置绕过O点的OZ轴转动的转动惯量为。

3.(1)两个匀质圆盘A、B的密度分别为A和B,且A>B。

质量和厚度相同。

两圆盘的旋转轴均通过盘心并垂直于盘面,则它们的转动惯量的关系是:(1)I A<I B;(2)I A=I B;(3)I A>I B;(4)不能判断。

分析:m相等,A>B,V A小,厚度相等,R A小,J=1/2mR2,所以J A小4.(3)一力矩M作用于飞轮上,飞轮的角加速度为1,如撤去这一力矩,飞轮的角加速度为-2,则该飞轮的转动惯量为:5.(3)如图,A 与B 是两个质量相同的小球,A球用一根不能伸长的绳子拴着,B 球用橡皮筋拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度(1)B A V V =; (2)B A V V <;(3)B A V V >; (4)无法判断。

6.(4)一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。

系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为 :(1) 1rad/s ; (2) 2rad/s ;(3)2/3rad/s ; (4)4/3rad/s 。

解:角动量守恒7. 如图3-7所示,物体1和2的质量分别为1m 与2m ,滑轮的转动惯量为J ,半径为r 。

(1)如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的力1T 和2T (设绳子与滑轮间无相对滑动,滑轮与转轴无摩擦);(2)如物体2与桌面间为光滑接触,求系统的加速度a及绳中的力1T和2T。

长春工业大学物理答案光导体电介质c5-7

长春工业大学物理答案光导体电介质c5-7

练习五 静电场中导体和电介质(一)1. 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d 。

今使A 板带电量为A q ,B 板带电量为B q ,且A q >B q ,则A 板内侧带电量为 ;两板间电势差AB U = 。

2.把一块两表面电荷面密之和为σ0的无限大导体平板置于均匀电场E 0中,E 0与板面垂直,如图5-2所示,则导体左侧表面电荷面密度σ1= ,在左侧表面外附近的场强E= 。

3.(2)一金属球壳的内外半径分别为R 1和R 2,其中心放一点电荷q ,则金属球壳的电势为:(1)104R qπε (2)204R q πε(3)218πεR q R q + (4))(4210R R q+πε4.(1)带电体外套一个导体球壳,则下列说法中正确的是:(1)壳外电场不影响壳内电场,但壳内电场要影响壳外电场;(2)壳内电场不影响壳外电场,但壳外电场要影响壳内电场;(3)壳内、外电场互不影响; (4)壳内、外电场仍互相影响。

5(4)在静电场中,下列说法中哪一个是正确的: (1)带正电荷的导体,其电势一定是正值; (2)等势面上各点的场强一定相等; (3)场强为零处,电势也一定为零;(4)场强相等处,电势梯度矢量一定相等。

6.(4)在静电场中,下面说法正确的是: (1) 带正电荷的导体,其电势一定是正值; (2) 等势面上各点的场强一定相等; (3) 在导体表面附近处的场强,是由该表面上的电荷产生的,与空间其它地方的电荷无关; (4) 一个孤立的带电导体,表面的曲率半径愈大处,电荷密度愈小。

7.半径为R 的导体球外面,同心地罩一内外半径分别为R 1和R 2的导体球壳,若球和球壳分别带有电荷q 和Q ,试求:(1)球和球壳的电势,以及它们的电势差。

(2)若将球壳接地,求它们的电势差。

(3)若用导线将球和球壳连接,其电势差又多少?)11(41444r 4444)1(1020*********R R V V U R qQ R q Q r qqV R q Q R q R qV -=-=+=++-+++-+πεπεπεπεπεπεπεπε球壳球球壳球==UR R V V U r qq V R qR q V =-=-==-+-+)11(41'''04r 4'44')2(1000100πεπεπεπεπε球壳球球壳球==(3)0=U (等势体)8.三块平行金属板A 、B 、C ,面积均为200cm 2,A 、B 间距4cm ,A 、C 间距2cm ,B 、C 两板都接地,如图5-8所示,A 板带正电荷3⨯10-7c ,(不计边缘效应)求:(1)B 、C 板上的感应电荷。

长春工业大学物理答案光光学16-20

长春工业大学物理答案光光学16-20

练习十六 光的干涉(一)1.如图16-1所示,在杨氏双缝实验中,入射光波长为600nm ,屏幕上的P 点为第3级明纹位置。

则双缝到达P 点的波程差为1800nm 。

在P 点叠加的两光振动的相位差为 6π 。

解:λk x Dd =为明纹 2.如图16-2所示,在杨氏双缝实验中,把两缝中的一条狭缝s 2遮住,并在两缝的垂直平分线上放一块平面反射镜。

则屏幕上的干涉将如何变化? 镜下方无条纹,镜上方明暗条纹分布状况与上一次恰好相反 。

3.( 2 )在杨氏双缝实验中,欲使干涉条纹间距变宽,应怎样调整:(1)增加双缝的间距; (2)增加入射光的波长;(3)减小双缝至光屏之间的距离;(4)干涉级数K 愈大,则条纹愈宽。

λλdD x k x D d =∆= 4.( 1 )在杨氏双缝实验中,原来缝s 到达两缝s 1和s 2的距离是相等的,如图18-3所示,现将s 向下移动一微小距离,则屏幕上干涉条纹将如何变化:(1)干涉条纹向上平移;(2)干涉条纹向下平移;(3)干涉条纹不移动。

5.( 1 )在双缝装置中,用一折射率为n 的薄云母片覆盖其中一条缝,这时屏幕上的第7级明条纹恰好移到屏幕中央原零级明条纹的位置,如果入射光的波长为λ,则这云母片的厚度为:(1)17-n λ(2)λ7(3)n λ7 (4)λ71-n1770-==-+⋅+=-++n e BO EO DE n CD BO EO DE CD λλ所以:有云母片:无云母片:6.在杨氏双缝实验中,双缝间距为0.5毫米,双缝至屏的距离为1.0米,在屏上可见到两组干涉条纹,一组由波长为480nm 的光产生,另一组由波长为600nm 的光产生,问在屏上两组干涉条纹在第3级干涉明条纹的距离是多少?mm x mmx k nm mm x k nm k x Dd 72.060.3'3,600'88.23,480=∆======时,当=时,当λλλ7.杨氏双缝实验中,若两缝间距为0.2mm ,屏与缝间距为100cm 。

大学物理C课后答案

大学物理C课后答案

习题5题5-2图题5-2图5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题5-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示题5-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题5-4图所示由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E5-9 如题5-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题5-9图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=题5-9图 题5-10图5-10 如题5-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题5-10图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 86)35251(5021=+=+=U U U AB V 习题66-5 在真空中,有两根互相平行的无限长直导线L 1和L 2,相距 m ,通有方向相反的电流,120A I =,210A I =,如题6-5图所示.A ,BL 2的距离均为 cm.试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题6-5图解:如题6-5图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m6-7 设题6-7图中两导线中的电流均为8 A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?题6-7图解: ⎰μ=⋅a l B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B 的环路积分为零而非每点0=B.题6-10图6-10 如题6-10图所示,在长直导线AB 内通以电流120A I =,在矩形线圈CDEF 中通有电流210A I =,AB 与线圈共面,且CD ,EF 都与ABa = cm ,b = cm ,d = cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯= ∵ 线圈与导线共面∴ B P m//0=M.题6-12图6-12 一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如题6-ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力ab F ⊥d 向上,大小为rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d Md 方向垂直纸面向外,大小为r I I F r M d 2d d 210πμ== ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμ m N ⋅题6-13图6-13 电子在47010T B -=⨯的匀强磁场中作圆周运动,圆周半径r = cm.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如题6-13图所示.(1)试画出这电子运动的轨道; (2)求这电子速度v 的大小; (3)求这电子的动能k E . 解:(1)轨迹如图题6-13图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J05.1===H H B o r μμμ T习题77-1 一半径r =10 cm 的圆形回路放在B T 的均匀磁场中,回路平面与B =80drdtcm/s 收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V题7-37-3 如题7-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以d Id t的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε习题88-1 质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t8-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为Tt =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x8-3 一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm s ,当t =0时位移为+24 cm.求:(1)t s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E8-5 题8-5图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题8-5图解:由题8-5图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题8-5图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+=习题9 机械波9-4 已知波源在原点的一列平面简谐波,波动方程为y =A cos (Bt -Cx ),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ 将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.9-5 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10πt -4πx ),式中x ,y 以m 计,t 以s 计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x = m 处质点在t =1 s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t s 时刻到达哪一点?解: (1)将题给方程与标准式)22cos(x t A y λππυ-= 相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ.设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m9-7 如题9-7图所示,S 1和S 2为两相干波源,振幅均为A 1,相距λ4,S 1较S 2位相超前π2,求:题9-7图(1)S 1外侧各点的合振幅和强度;(2)S 2外侧各点的合振幅和强度.解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ 2121114,2A A I A A A A ===+=9-9 一驻波方程为y 20x cos 750t (SI),求:(1)形成此驻波的两列行波的振幅和波速;(2)相邻两波节间距离.解: (1)取驻波方程为 t u x A y πυπυ2cos 2cos2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅ (2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离 157.02==∆λx m习题10 波动光学10-4 在杨氏双缝实验中,双缝间距d = mm ,缝屏间距D = m .试求:(1)若第2级明条纹离屏中心的距离为 mm ,计算此单色光的波长;(2)求相邻两明条纹间的距离.解: (1)由λk dD x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000= (2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm10-5 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝, nm ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ10-7 在折射率n 1=2=MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴ 222422)21(n n k n k e λλλ+=+= )9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996o A .当k 为其他整数倍时,也都满足要求.一、选择题1.一质点作直线运动,其运动学方程为)(31232m t t x -+=,则在t=( A )秒时,质点的速度达到最大值。

长春工业大学物理答案光静电场c 1-4

长春工业大学物理答案光静电场c 1-4

练习一 静电场(一)1.如图1-1所示,细绳悬挂一质量为m 的点电荷-q ,无外电场时,-q 静止于A 点,加一水平外电场时,-q 静止于B 点,则外电场的方向为水平向左,外电场在B 点的场强大小为qmg tan2.如图1-2所示,在相距为a 的两点电荷-q 和+4q产生的电场中,场强大小为零的坐标x= 2a 。

3.如图1-3所示,A 、B 为真空中两块平行无限大带电平面,已知两平面间的电场强度大小为0E ,两平面外侧电场强度大小都是0E /3,则A 、B 两平面上的电荷面密度分别为 和 。

4.(3)一点电荷q 在电场中某点受到的电场力,f很大,则该点场强E 的大小:(1)一定很大; (2)一定很小;(3)其大小决定于比值q f /。

5.(2)有一带正电金属球。

在附近某点的场强为E ,若在该点处放一带正电的点电荷q 测得所受电场力为f ,则:(1)E=f/q (2)E>f/q (3)E<f/q6.两个电量都是+q 的点电荷,相距2a 连线中点为o ,求连线中垂线上和。

相距为r 的P 点的场强为E ,r 为多少时P 点的场强最大?解:经过分析,E x =0a r dr E d drdE r a qr a q E r r y 220|,0|)(21sin 412222/3220220±=<=+=+=得:由πεθπε7.长L =15cm 直线AB 上,均匀分布电荷线密度λ=5.0⨯10-9c/m 的正电荷,求导线的延长线上与导线B 端相距d=5.0cm 的P 点的场强。

)/(67544120.005.02020C N x dx E x dxdE ===⎰πελλπε 练习二 静电场(二)1.场强为E 的均匀电场与半径为R 的半球面的轴线平行,则通过半球面的电通量Φe=E R 02επ2.边长为L 的正方形盒的表面分别平行于坐标面XY 、YZ 、ZX ,设均匀电场j i E ρρρ65+=,则通过各面电场强度通量的绝对值 ,6,5,022L L X Z Z Y Y X =Φ=Φ=Φ3.如用高斯定理计算:(1)无限长均匀带电直线外一点P的场强(图2-3(a));(2)两均匀带电同心球面之间任一点P的场强(图2-3(b)),就必须选择高斯面。

物理吉林省试题及答案

物理吉林省试题及答案

物理吉林省试题及答案一、选择题(每题3分,共30分)1. 下列关于光的描述中,不正确的是:A. 光在真空中传播速度最快B. 光的传播不需要介质C. 光是一种电磁波D. 光在所有介质中传播速度都相同答案:D2. 一个物体在水平面上做匀速直线运动,下列说法正确的是:A. 物体所受的合力为零B. 物体所受的合力不为零C. 物体的速度会不断增加D. 物体的速度会不断减小答案:A3. 根据牛顿第三定律,下列说法错误的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力作用在不同的物体上C. 作用力和反作用力同时产生,同时消失D. 作用力和反作用力可以是不同性质的力答案:D4. 一个弹簧振子做简谐运动,下列说法正确的是:A. 振幅与周期无关B. 振幅与频率无关C. 振幅与加速度成正比D. 振幅与能量成正比答案:A5. 以下关于电磁感应的描述,正确的是:A. 只有变化的磁场才能产生感应电流B. 静止的导体在磁场中不会产生感应电流C. 导体在磁场中运动一定会产生感应电流D. 只有闭合电路的一部分导体在磁场中运动才能产生感应电流答案:D6. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造或消灭B. 能量守恒C. 能量的转化和转移具有方向性D. 能量的转化和转移是可逆的答案:B7. 在理想气体状态方程中,下列说法正确的是:A. 温度升高,压强一定增大B. 体积增大,压强一定减小C. 温度不变,压强和体积成反比D. 压强不变,温度和体积成正比答案:C8. 根据欧姆定律,下列说法正确的是:A. 电阻一定时,电流与电压成正比B. 电压一定时,电流与电阻成反比C. 电流一定时,电压与电阻成正比D. 电阻一定时,电压与电流成反比答案:A9. 根据光的折射定律,下列说法正确的是:A. 入射角越大,折射角越小B. 折射角与入射角成正比C. 折射率越大,折射角越小D. 折射率越大,折射角越大答案:D10. 根据动量守恒定律,下列说法正确的是:A. 只有两个物体组成的系统动量才守恒B. 只有不受外力作用的系统动量才守恒C. 动量守恒定律只适用于宏观物体D. 动量守恒定律适用于所有物理过程答案:B二、填空题(每题2分,共20分)1. 光年是______单位。

大学物理c下试题及答案

大学物理c下试题及答案

大学物理c下试题及答案一、选择题(每题2分,共20分)1. 下列关于光的偏振现象描述正确的是:A. 光的偏振只发生在自然光中B. 光的偏振只发生在偏振光中C. 光的偏振是光的电磁波性质的表现D. 光的偏振与光的传播方向无关答案:C2. 根据麦克斯韦方程组,下列说法错误的是:A. 变化的磁场会产生电场B. 恒定的电流不会产生磁场C. 变化的电场会产生磁场D. 恒定的电荷分布不会产生电场答案:D3. 在理想气体状态方程中,下列哪个物理量是温度的函数?A. 体积B. 压力C. 气体常数D. 摩尔质量答案:B4. 根据热力学第一定律,下列说法正确的是:A. 系统对外做功,内能一定增加B. 系统吸收热量,内能一定增加C. 系统对外做功且吸收热量,内能可能不变D. 系统对外做功且吸收热量,内能一定减少答案:C5. 根据量子力学的波粒二象性,下列说法正确的是:A. 光子具有波动性,电子不具有波动性B. 电子具有波动性,光子不具有波动性C. 光子和电子都具有波动性D. 光子和电子都不具有波动性答案:C6. 在电磁波谱中,波长最长的是:A. 无线电波B. 微波C. 红外线D. 可见光答案:A7. 根据狭义相对论,下列说法错误的是:A. 运动的物体长度会变短B. 运动的物体质量会增加C. 运动的物体时间会变慢D. 光速在所有惯性参考系中都是相同的答案:D8. 在电磁感应现象中,下列说法正确的是:A. 只有变化的磁场才能产生感应电动势B. 恒定的磁场也能产生感应电动势C. 变化的电场不能产生感应电动势D. 恒定的电场也能产生感应电动势答案:A9. 根据热力学第二定律,下列说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B10. 在量子力学中,下列说法错误的是:A. 电子在原子中的运动是确定的B. 电子在原子中的运动是概率性的C. 电子的波动性与粒子性是不可分割的D. 电子的波动性与粒子性是相互独立的答案:A二、填空题(每题2分,共20分)1. 光的波长、频率和速度之间的关系是:波长= __________ × 频率。

长春工业大学物理答案光的量子性18-19

长春工业大学物理答案光的量子性18-19

练习十八 光的量子性(一)1.将星球近似看作绝对黑体,利用维恩位移定律可测量星球的表面温度,设测得北极星的m =0.25nm ,则北极星的表面温度为K 71016.1⨯,由该定律可知,当绝对黑体的温度升高时,最大单色辐出度对应的波长将向波长减小的反向移动。

K T b T m 731016.110898.2⨯=→⨯==-λ解:2.绝对黑体的辐射出射度与温度的关系是: )1067.5(84)(-⨯==σσT M t B ,设空腔小孔的面积为4cm 2,每分钟外辐射540J 的能量,则空腔的温度T=793.7K 。

K T T M t B 7.7931046054044)(=→=⨯⨯=-σ解:3.(3)下面的表述中,正确的是:(1)普朗克的能量子假说解释了光电效应的现象;(2)爱因斯坦的光量子假说解释了黑体辐射现象;(3)爱因斯坦的光量子假说解释了光电效应现象;(4)普朗克的能量子假说解释了黑体辐射的现象。

* * 普朗克的能量子假说从理论上解释了黑体辐射的半经验公式(黑体辐射的基本规律)4.(3)在光电效应中,饱和光电流的大小取决于:(1)入射光的波长;(2)光电管两极间的电势差;(3)入射光的强度;)(0νν>(4)金属的电子逸出功。

5.从金属铝中逸出一个电子需要4.2ev 的能量。

今有波长=2000埃的紫外线照射铝表面。

求:(1)光电子的初动能;(2)遏止电势差;(3)铝的红限波长。

埃解:295410954.210015.1)3(0.221)2(10211.321)1(10939.910728.62.4A 70150********=⨯==⨯===→=⨯=-=⨯===⨯==----m c Hz hA V U mv eu J A h mv J hc h JeV νλννλνε6.人眼可觉察的最小光强度约为1.0⨯10-10wm -2。

在这一光强下,每秒钟有多少个光子进入人眼。

设光的波长为5600埃,人眼瞳孔的面积是10*10-5m 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习三刚体的定轴转动(一)1.一个转动的轮子由于轴承摩擦力矩的作用,其转动角速度渐渐变慢,第一秒末的角速度是起始角速度ω0的0.8倍。

若摩擦力矩不变,第二秒末角速度为(用ω0表示);该轮子在静止之前共转了转。

2.一个可视为质点的小球和两根长均为l的细棒刚性连接成如图3-2所示的形状,假定小球和细棒的质量均为m,那么,该装置绕过O点的OZ轴转动的转动惯量为。

3.(1)两个匀质圆盘A、B的密度分别为ρA和ρB,且ρA>ρB。

质量和厚度相同。

两圆盘的旋转轴均通过盘心并垂直于盘面,则它们的转动惯量的关系是:(1)I A<I B;(2)I A=I B;(3)I A>I B;(4)不能判断。

分析:m相等,ρA>ρB,V A小,厚度相等,R A小,J=1/2mR2,所以J A小4.(3)一力矩M作用于飞轮上,飞轮的角加速度为β1,如撤去这一力矩,飞轮的角加速度为-β2,则该飞轮的转动惯量为:5.(3)如图,A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮筋拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度(1)B A V V =; (2)B A V V <;(3)B A V V >; (4)无法判断。

6.(4)一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。

系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为 :(1) 1rad/s ; (2) 2rad/s ;(3)2/3rad/s ; (4)4/3rad/s 。

解:角动量守恒7. 如图3-7所示,物体1和2的质量分别为1m 与2m ,滑轮的转动惯量为J ,半径为r 。

(1)如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的张力1T 和2T (设绳子与滑轮间无相对滑动,滑轮与转轴无摩擦);(2)如物体2与桌面间为光滑接触,求系统的加速度a 及绳中的张力1T 和2T 。

图3-7Jr m r m Jg m gr m m gr m m T Jr m r m Jg m gr m m gr m m T J r m r m gr m gr m a J r m r m gr m gr m ++++=++++=++-=++-=22212221221222211221221122212221222121,μμμμμαJr m r m gr m m T J r m r m Jg m gr m m T Jr m r m gr m a ++=+++=++=22212212222112211222121,0)2(时:=当μ8.一长为2l ,质量为3m 的细棒的两端粘有质量分别为2m 和m 的物体(如图3-8所示),此杆可绕中心O 轴在铅直平面内转动。

先使其在水平位置,然后静止释放。

求:(1)此刚体的转动惯量;(2)水平位置时的杆的角加速度;(3)通过铅直位置时杆的角速度。

(1)此刚体的转动惯量;解: 222242)2)(3(121mL mL mL L m J =++= (2)水平位置时的杆的角加速度; 解:M=J α, M=2mgL-mgL L g 4=α (3)通过铅直位置时杆的角速度。

解:机械能守恒:0+0=mgL-2mgL+1/2J ω2L g 2/=ω练习四 刚体的定轴转动(二)1.用一条皮带将两个轮子A 和B 连接起来,轮与皮带间无相对滑动,B 轮的半径是A 轮半径的3倍。

(1)如果两轮具有相同的角动量,则A 、B 两轮转动惯量的比值为 ;(2)如果两轮具有相同的转动动能,则A 、B 两轮转动惯量的比值为 。

2.某滑冰者转动的角速度原为ω0,转动惯量为I 0,当他收拢双臂后,转动惯量减少了1/4。

这时他转动的角速度为 ;他若不收拢双臂,而被另一个滑冰者作用,角速度变为02ωω=,则另一滑冰者对他施加力矩所作的功A 为 。

解:3.银河系有一可视为球体的天体,由于引力凝聚,体积不断收缩。

设它经过一万年体积收缩了1%,而质量保持不变。

则它的自转周期将 3 ;其转动动能将 1 。

(1)增大; (2)不变; (3)减小。

4.(3)一子弹水平射入一木棒后一同上摆。

在上摆的过程中,以子弹和木棒为系统,则总角动量、总动量及总机械能是否守恒?结论是:(1)三量均不守恒; (2)三量均守恒;(3)只有总机械能守恒;(4)只有总动量不守恒。

5.(4)如图4-2,一轻绳跨过两个质量均为m,半径均为R的匀质圆盘状定滑轮。

绳的两端分别系着质量分别为m和2m的重物。

不计滑轮转轴的摩擦。

将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力为:(1)mg;(2)3mg/2;(3)2mg;(4)11mg/8。

6.一质量为m,长为l的均匀细棒,放在水平桌面上,可绕杆的一端转动,如图6-5所示,初始时刻杆的角速度为ω0。

设杆与桌面的摩擦系数为μ,求:(1)杆所受的摩擦力矩;(2)当杆转过90︒时,摩擦力矩所作的功和杆的转动角速度ω。

解:⎰-==2/04πμπθmgl d M A f L g J J A 23212120202πμωωωω-=∴-=7.设质量为M 长为l 的均匀直棒,可绕垂直于杆的上端的水平轴无摩擦地转动。

它原来静止在平衡位置上,现有一质量m =M/3的弹性小球水平飞来,正好碰在杆的下端。

相碰后,使杆从平衡位置摆动到最大位置θmax =60︒处,如图4-7所示。

求:(1)设为弹性碰撞,试计算小球初速度v 0的值; 解:碰撞前后,E k 守恒: 2222203/12/12/12/1mLML J J mv mv ==+=ω 碰撞前后,L 守恒:ωJ mvL L mv +=0棒上升,E 守恒: 2,0,2)60cos 1(212102gL v v L g L mg J o ===-=ωω三式联立,解得:(2)碰撞过程中小球受到多大的冲量。

解: gL mv mv I 2210-=-=练习五刚体的定轴转动(三)1.如图5-1所示,均匀细棒长为l,质量为M,下端无摩擦地铰在水平面上的O点。

当杆受到微扰从竖直位置倒至水平面上时,顶端A点的速度为:。

2.如图5-2所示,半径为R,质量为m的匀质圆盘可绕水平固定轴转动。

现以一轻绳绕在轮边缘,绳的下端挂一质量为m的物体,圆盘从静止开始转动后,它转过的角度和时间的关系为。

3.(1)长为L的均匀细杆OM绕水平O轴在竖直面内自由转动,今使细杆OM从水平位置开始自由下摆,在细杆摆动到铅直位置的过程中,其角速度ω,角加速度β如何变化?(1)ω增大,β减小;(2)ω减小,β减小;(3)ω增大,β增大;(4)ω减小,β增大。

↓===↑=+-=JmgL L mg M J JmgL J L mg L mg 2sin ,sin 2cos ,21)cos 1(222θβθβθωωθ守恒:在下降过程中,机械能4(3)人造地球卫星绕地球作椭圆运动,地球在椭圆的一个焦点上,卫星的动量P ,角动量L 及卫星与地球所组成的系统的机械能E 是否守恒?(1)P 不守恒,L 不守恒,E 不守恒;(2)P 守恒,L 不守恒,E 不守恒;(3)P 不守恒,L 守恒,E 守恒;(4)P 守恒,L 守恒,E 守恒;(5)P 不守恒,L 守恒,E 不守恒;分析:万有引力是保守力,机械能守恒;是有心力,角动量守恒万有引力是卫星所受的外力,不为0,所以动量不守恒5.(3)如图5-5所示,A 、B 为两个相同绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A,B 两滑轮的角加速度分别为A β和B β,不计滑轮轴的摩擦,则有(1)A β=B β; (2) A β>B β ;(3)A β<B β; (4)开始A β=B β以后A β<B β。

图5-5 BA A AB AB MR J MgRR a J MgR J TR J FR B MaT Mg M A βββββββ<+======-所以:滑轮:2::,6.如图5-6所示,B 的质量m 2足够大,使其能在重力作用下运动,设A 的质量为m 1与斜面间的摩擦系数为μ,轴承摩擦不计,绳不可伸长,质量为M 的滑轮可视为均匀圆盘,求物体B 由静止下落的高度h 时的速度。

A :A A A a m mg mg T =--θθμsin cosB :B a m T g m 222=-轮:αJ R T R T =-12R a a B A α== ah v ah v v 22202==-7.如图5-7所示,把细杆OM 由水平位置静止释放,杆摆至铅直位置时刚好与静止在光滑水平桌面上质量为m 的小球相碰,设杆的质量与小球的质量相同,碰撞又是弹性的,求碰撞后小球的速度。

L g ml J J mgl 331,212122=→==ωω 碰撞前后:(1)L 守恒:mvL J J+='ωω(2)E 守恒: 22221'2121mv J J +=ωω (1)(2)联立消去 gL v 3'=得ω。

相关文档
最新文档