11稳恒电流和稳恒磁场习题解答.doc

合集下载

11稳恒电流和稳恒磁场习题解答讲解

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

11 稳恒磁场11-0601

11 稳恒磁场11-0601

0 I B (cos 1 cos 2 ) 4a
0 I 无限长载流直导线 1 0 2 B 2a 0 I 半无限长载流直导线 1 2 2 B 4a B
直导线延长线上
B?
0 Idl sin dB 2 4 r
I
B0
运动电荷产生的磁场
0 qv r B 3 4 r
若q 0, B与v r 同向

若q 0, B与v r 反向
r
B
r

q
B

q

v
v
练 习
求圆心O点的 B 如图,
I
I
B
O R
O
R
0 I
4R
B
电流密度和电流强度的关系 dI jdS j cos dS j dS
dI j n dS
I
S
j dS
穿过某截面的电流强度等于电流密度矢量穿 过该截面的通量。 电流强度是电流密度的通量。
dI dS dS
二、稳恒电场
dq S j dS dt
方向:规定为正电荷运动方向。
电流密度
当通过任一截面的电量不均匀时,用电流强度 来描述就不够用了,有必要引入一个描述空间不同 点电流的大小的物理量。
dI j n dS I
dS dI
I
导体中某点的电流密度,数值上等于通过该点 与场强方向垂直的单位截面积的电流强度。
方向:该点场强的方向。
3.写出电流元产生的磁感应强度——根据毕奥-萨伐尔 定律; 4.计算磁感应强度的分布——叠加原理; 5.一般说来,需要将磁感应强度的矢量积分变为标量积

第十一章稳恒电流的磁场(一)作业解答

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ = 0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4小为πR 2c Wb。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2πr 2BB. πr 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 = 21B 2 D .B 1 = B 2 /4( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

【物理】物理稳恒电流练习题及答案含解析

【物理】物理稳恒电流练习题及答案含解析

由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为
R R总-RL 20Ω 5Ω 15Ω
5.在如图所示的电路中,电源电动势 E=3V,内阻 r=0.5Ω,定值电阻 R1 =9Ω,R2=5.5Ω,电键 S 断 开.
①求流过电阻 R1 的电流; ②求电阻 R1 消耗的电功率; ③将 S 闭合时,流过电阻 R1 的电流大小如何变化? 【答案】(1)0.2A;(2)0.36W;(3)变大
① 求导线中的电流 I;
②为了更精细地描述电流的分布情况,引入了电流面密度 j,电流面密度被定义为单位面积
的电流强度,求电流面密度 j 的表达式;
③经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电
子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用
后,液体均以恒定速率 v0 沿 x 轴正方向流动。忽略液体流动时与管道间的流动阻力。
(1)开关 S 断开时,求 M、N 两导板间电压U0 ,并比较 M、N 导体板的电势高低;
(2)开关 S 闭合后,求: a. 通过电阻 R 的电流 I 及 M、N 两导体板间电压U ; b. 左右管道口之间的压强差 p 。
I(m A)
0.00 0.00 0.00 0.06 0.50 1.00 2.00 3.00 4.00 5.50
a)根据以上数据,电压表是并联在M与
之间的(填“O”或“P”)
b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)
【答案】(1) a
(2) a) P
b)
【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,
2 2
A=1.5

习题十一 稳恒磁场中安培环路定律

习题十一   稳恒磁场中安培环路定律

学号 姓名习题十一 稳恒磁场中安培环路定律要求:1、掌握磁感应线的概念和磁通量的物理意义;理解磁场中的高斯定理,能计算非均匀磁场中某回路所包围曲面上的磁通量。

2、理解安培环路定律的物理意义,掌握用安培环路定律计算某些具有对称性载流导体产生的磁场分布。

一、选择题1、内外半径分别为1R 和2R 的空心无限长圆柱形导体,通有电流I ,且在导体的横截面上均匀分布,则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系,定性分析如图( )2、一截面是边长为a 2的正方形的无限长柱体的四条棱上都分别有相同大小的四个线电流I ,方向如图,则在柱体中心轴线处的磁感应强度大小为( )A 、aI u B π02= B 、a I u B π220= C 、0=B D 、a I u B π0=3、在无限长载流直导线附近有一球面,当球面向长直导线靠近时,球面上各点的磁感应强度B 和球面的磁通量Φ为( )A 、φ增大,B 也增大B 、φ不变,B 也不变C 、φ增大,B 不变D 、φ不变,B 增大4、如图,两无限长平行放置的直导线A 、B 上分别载有电流 I 1和I 2,电流方向相反,L 为绕导线B 的闭合回路,c B 为环路上C 点的磁感应强度,当导线A 向左平行于导线B 远离时( )A 、cB 减小,⎰⋅Ll d B 减小 B 、c B 不变,⎰⋅L l d B 不变 C 、cB 不变,⎰⋅L l d B 减小D c B 减小,⎰⋅L l d B 不变 12121212A B C D5、三个电流强度不同的电流I 1、I 2和I 3均穿过闭合环路L 所包围的面,当三个电流中的任意两个在环路内的位置互换,环路不变,则安培环路定律的表达式中( )A 、B 变化,∑i I 不变B 、B 变化,∑i I 变化C 、B 不变,∑i I 变化D 、B 不变,∑i I 不变二、填空题1、一端长为a 的直导线中载有电流I ,在该导线的垂直平分面上,有一个以导线为中心、以a 为半径的圆形环路L ,则对该环路而言,⎰⋅L l d B= 。

大学物理习题课-稳恒电流的稳恒磁场-2011.6.10

大学物理习题课-稳恒电流的稳恒磁场-2011.6.10

1 5
r r 向上, M垂直 B, 向上,
一根无限长的直圆柱形铜导线, 例5. 一根无限长的直圆柱形铜导线,外包一层相对磁导率为 µr的圆筒形磁介质,导线半径为 R1,磁介质的外半径为 R2。 的圆筒形磁介质, 导线内有电流通过, 磁介质内、 导线内有电流通过 , 求 : 磁介质内 、 外的磁场强度和磁感应 强度的分布
大学物理习题课
恒定电流的稳恒磁场

电流 电流密度 电动势
电流强度 电流密度
v v j = qnv
(S )
∆q dq I = lim = ∆t →0 ∆ t dt
v r 对任意曲面S: 对任意曲面 : I = ∫∫ j ⋅ dS
r I 是 j 的通量
v v dqin 电流的连续性方程 ∫∫S j ⋅ dS = − dt v v 电流稳恒条件 ∫∫ j ⋅ dS = 0
I
v × B 1
p -e 3r
用补偿法求p处的磁感应强度: 用补偿法求 处的磁感应强度: 处的磁感应强度
v v 根据 ∫ B⋅ dl = µ0 ∑Ii
L
v v
v • B2
δ
o`
v
得: B = 1
µ0δ r
6
B2 =
µ0δr
88
41µ0δr ∴B = B − B2 = 1 264
v v v v v fm = qv× B = −ev× B
计算得 方向: B = 5.0×10−16 (T) 方向:垂直于纸面向里
例2:空气中有一半径为 的“无限长”直圆柱金属导体,竖直 :空气中有一半径为r的 无限长”直圆柱金属导体, 的圆柱空洞, 线oo`为中心轴线 ,在圆柱体内挖一个直径为 r 的圆柱空洞, 为中心轴线 空洞侧面与oo`相切,在未挖洞部分通以均匀分布的电流I,方 空洞侧面与 相切,在未挖洞部分通以均匀分布的电流 , 相切 向沿oo`向下,如图所示。在距轴线 处有一电子 电量为-e) 处有一电子( 向沿 向下,如图所示。在距轴线3r处有一电子(电量为 ) 向下 o 沿平行于oo`轴方向 在中心轴线oo` 轴方向, 沿平行于 轴方向,在中心轴线 r/2

第11章 稳恒磁场

第11章 稳恒磁场

z
D
无限长载流长直导线的磁场 无限长载流长直导线的磁场. 载流长直导线的磁场
θ2
v B
B=
4 π r0
(cosθ 1 − cosθ 2 )
B=
I
o
µ0 I
2 π r0
θ1 → 0 θ2 → π
x
C
θ1
P y
无限长载流长直导线的磁场
B=
µ0I
2πr
I B
I
X
B
电流与磁感应 电流与磁感应强度成右螺旋关系 半无限长载流长直导线的磁场
=
I
2π R
v B
o
l
R
v v ∫ B ⋅ dl =
l
∫ 2πR
µ0 I
v dl
dl
v v µ0 I ∫l B ⋅ d l = 2 π R ∫l d l v v 设闭合回路 l 为圆形 ∫l B ⋅ dl = µ0 I 回路( 成右螺旋) 回路( l 与 I 成右螺旋)
I
o
v B
R
若回路绕向为顺时针时, 若回路绕向为顺时针时,则
z
带电粒子在磁场中沿其他方向运动时 F 垂直于 v 与特定直线所组成的平面 与特定直线所组成的平面. 当带电粒子在磁场中垂直于此特定直线运动 时受力最大. 时受力最大
F = Fmax = F⊥
Fmax ∝ qv
Fmax q , v 无关 qv 大小与
磁感应 的定义: 磁感应强度 B 的定义:当 正电荷垂直于 特定直线运动 时,受力 Fmax 将 Fmax ×v 方向 的方向. 定义为该点的 B 的方向
I I I
I S S N I N
磁通量 磁场的高斯定理
v ∆S B

11稳恒电流和稳恒磁场习题解答

11稳恒电流和稳恒磁场习题解答

1第十一章 稳恒电流和稳恒磁场一 选择题1. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是 ( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )2. 图中六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大 ( )A. Ⅰ区域B. Ⅱ区域C .Ⅲ区域D .Ⅳ区域解:本题选(B )3. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 ( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )4. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有 ( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πRIJ =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=选择题1图Ⅰ Ⅱ Ⅲ Ⅳ 选择题2图选择题3图2 所以选(D )5. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则 ( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C ) 6. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是 ( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bq m R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )7. 如图,一矩形样品放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为 ( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )8. 长直电流I 1与圆形电流I 2共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 ( )选择题6图 c dba BO • B× × × × × × Ea bc 选择题5图 选择题7图3A. 绕I 1旋转B. 向左运动C. 向右运动D. 向上运动解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C ) 二 填空题1. 两段不同金属导体电阻率之比为ρ1 : ρ2=1:2,横截面积之比为S 1 : S 2=1:4,将它们串联在一起后两端加上电压U ,则各段导体内电流之比I 1 : I 2 = ,电流密度之比J 1 : J 2 = 。

第十一章 稳恒磁场

第十一章 稳恒磁场

B d l 0
l
多电流情况
I1
I2
I3
B B1 B2 B3 B d l 0 ( I 2 I 3 )
l
l
以上结果对任意形状 的闭合回路(伸向无限远 的电流)均成立.
n B dl 0 Ii i 1
安培环路定理
的正负。
二、定理应用 1、螺线管内的磁场
解:对称性分析,选回路
(1)长直密绕螺线管内磁场
L.
M N +++ + + + ++++++ L O P
B
B d l B d l B d l B d l B d l
2
dB
0 Id l
r R x
2 2
2
B
0 IR
2
2 2 3
(x R )2 2
I
o
R
x
*
B
x
B
0 IR
2
2 2 3
(x R )2 2
N 0 IR
2 2 2 3
讨 论
1)若线圈有 N 匝
B
2)x 0 B 的方向不变( I 和 B 成右螺旋关系)
3)x
(x R )2 2
l MN NO OP PM
B MN 0nMNI
B 0 nI
(2)环形螺线管
解 1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
l B d l 2π RB 0 NI 0 NI B 2π R
令 当

大学物理《稳恒电流的磁场》习题答案

大学物理《稳恒电流的磁场》习题答案

第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

第十一章 恒定电流的磁场(二)作业答案

第十一章 恒定电流的磁场(二)作业答案

一、 选择题【 C 】1.(基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4.【答】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为321,,B B B ,相邻导线相距为a ,则()()0203011123110301022231227,2224222II F I l B B I l a a a I I F I l B B I l a a aμμμπππμμμπππ⎛⎫=+=+= ⎪⋅⎝⎭⎛⎫=-=-= ⎪⎝⎭式中121231, 1, I 1A, I 2A, I 3A l m l m =====,得 8/7/21=F F .【 D 】2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) Rr I I 22210πμ. (B)Rr I I 22210μ. (C)rR I I 22210πμ. (D) 0.【答】大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内2RI B 101μ=; 小圆电流的磁矩为方向垂直纸面朝内,,222r I p m π=所以,小圆电流受到的磁力矩的大小为2211sin 00m m M p B p B =⨯=︒=[ B ]3.(自测提高2)如图所示,一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C)正比于B ,反比于v . (D) 反比于B ,反比于v .【答】 电子在磁场中做匀速率圆周运动,运动平面的法向平行于磁感应强度方向,因此,磁通量为2R B πΦ=,其中半径R 可由式2v evB m R =求得:mv R eB =,所以222mv m v B eB eB ππ⎛⎫Φ== ⎪⎝⎭.F 1F 2F 31 A2 A3 A ⅠⅡⅢOrR I 1 I 2[ B ]4、(自测提高4)一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A)p eBD 1cos-=α.(B)p eBD 1sin -=α. (C)epBD 1sin -=α. (D) ep BD 1cos -=α.【答】电子在磁场中的轨迹为一段圆弧,如图。

大学物理习题答案稳恒电流的磁场

大学物理习题答案稳恒电流的磁场

第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。

解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。

解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。

)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。

R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。

已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。

解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。

稳恒电流的磁场习题详解

稳恒电流的磁场习题详解

r习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B 的方向与x 轴的夹角为[ ](A )30˚; (B )60˚; (C )120˚; (D )210˚。

答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。

2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。

设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。

答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。

3.关于稳恒电流磁场的磁场强度H ,下列几种说法中正确的是 [ ] (A )H 仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。

(C )若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L为边缘的任意曲面的H 通量均相等。

答案:C解:若闭合曲线上各点H 均为零,则沿着闭合曲线H环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。

4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B 的大小为 []图2I 1I(A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。

稳恒磁场练习题及答案

稳恒磁场练习题及答案

稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。

问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。

5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。

(B) 回路L 内可能有电流,且代数和不为零。

(C) 回路L 内一定无电流。

(D) 回路L 内可能有电流,但代数和为零。

6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。

(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。

(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。

(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。

稳恒磁场(答案)

稳恒磁场(答案)

1稳 恒 磁 场 习 题 课 (2008.3.13)说明:数学表达式中字母为黑体者表示矢量Ⅰ 教学基本要求 电磁学1.掌握磁感应强度的概念。

理解毕奥· 萨伐尔定律,能计算一些简单问题中的磁感应强度。

2.理解稳恒磁场的规律:磁场高斯定理和安培环路定理。

理解用安培环路定理计算磁感应强度的条件和方法。

3.理解安培定律和洛伦兹力公式。

了解电偶极矩和磁矩的概念能计算电偶极子在均匀电场中,简单几何形状载流导体和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。

能分析点电荷在均匀电场和均匀磁场中的受力和运动。

4.了解介质的极化、磁化现象及其微观解释。

了解铁磁质的特性。

了解各向同性介质中D 和E 、H 和B 之间的关系和区别。

了解介质中的安培环路定理。

Ⅱ 内容提要一.磁感强度B 的定义用试验线圈(P m )在磁场中受磁力矩定义: 大小 B=M max /p m ,方向 试验线圈稳定平衡时p m 的方向.二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度d B =[μ0 /( 4π)]I d l ×r /r 32.运动点电荷q 激发磁场的磁感强度B =[μ0 /( 4π)]q v ×r /r 3三.磁场的高斯定理 1.磁感线(略);2.磁通量 Φm =⎰⋅Sd S B3.高斯定理0d =⋅⎰SS B稳恒磁场是无源场.四.安培环路定理 真空中 ⎰∑=⋅li I 0 d μl B介质中⎰∑=⋅liI0d l H稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩 P m :1.定义 p m =I ⎰S d S2.磁偶极子激发的磁场:延长线上 B=[μ0/(4π)](2 p m /r 3) 中垂线上 B=[μ0/(4π)](-p m /r 3) 3. 载流线圈在均匀磁场中受力矩M= p m ×B六.洛伦兹力1.表达式 F m = q v ×B (狭义)F = q (E +v ×B ) (广义) 2.带电粒子在均匀磁场中运动: 回旋半径 R =mv sin α / (qB )回旋周期T=2πm /(qB)回旋频率ν= qB /(2πm)螺距d=2π mv cosα/(qB)3.霍耳效应:(1)磁场与电流方向不变的情况下正载流子与负载流子受磁场力方向相同;(2)霍耳电压U H=R H IB/d(3)霍耳系数R H=1/(nq)七.安培力1. 表达式d F m=I d l×B;2. 安培力的功W= I(Φm2-Φm1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 稳恒电流和稳恒磁场一 选择题1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( )A. J 1=J 2,E 1=E 2B. J 1>J 2,E 1=E 2C. J 1=J 2,E 1<E 2D. J 1=J 2,E 1>E 2 解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由⎰⎰⋅=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2所以选(D )2. 如图所示的电路中,R L 为可变电阻,当R L 为何值时R L 将有最大功率消耗:( )A. 18ΩB. 6ΩC. 4ΩD. 12Ω 解:LL R R R +=1212ab , LL R R R R U 3122006ab ab ab +=+⋅=∴ε 22ab 31240000)R (R R U P L L L L +==,求0d d =LL R P ,可得当Ω=4L R 时将有最大功率消耗。

所以选(C )3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( ) A.l I μπ420 B. l I μπ20 C . lI μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由 )cos (cos π4210θθμ-=dI B ,可得 l I l I B BC π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里L 选择题2图 选择题3图ll CD π8)24π400合磁感应强度 lI B B B CD BC π420μ=+= 所以选(A )4. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上解:本题选(A )5. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个 解:本题选(B )6. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量 解:本题选(B )7. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 选择题4图 Ⅰ Ⅱ Ⅲ Ⅳ选择题5图 选择题6图的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ= r <R ,I r B e ⋅=⋅0π2μ, rI B e π20μ= 所以选(D )8. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( ) A. E a <E b =E c B. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )9. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od 解:根据B F ⨯=v q ,从图示位置出发,带负电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bq m R v =,22k 22q B m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )10. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向选择题9图 c ba B O • B × × × × × × Ea bc 选择题8图B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向解:本题选(C )11. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

(μ0=4π×10-7N/A 2)解:两根导线在a 点产生的磁感应强度大小相等,方向相同rI rI r I B B π8)22()122(π4)cos (cos π40021021μμθθμ+=+=-== 5701107.12.01010)22(π4)22(2--⨯=⋅⋅+=+==r I B B μ T 2 图中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感应强度B 的值为 。

解:圆心处的磁感应强度是由半圆弧产生的,根据毕奥—萨伐尔定律 ⎰⨯=30d 4r I r l B πμ a I a a I B 4 4020μππμ== 3 磁感应强度为B =a i +b j +c k (T),则通过一半径为R ,开口向Z 正方向的半球壳表面的磁通量的大小为 Wb 。

I 1 选择题11图 填空题2图解:在Z 方向上的磁感应强度B Z = c ,则在半球壳表面上的磁通量Φm = B Z S=πR 2c Wb4. 同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则:(1)在r <R 1处磁感应强度大小为 。

(2)在r >R 3处磁感应强度大小为 。

解:内筒的电流密度21πR I j =,由安培环路定理20 π π2r j r B μ=⋅ 当r <R 1时,21001π2r 2π πR Irrj B μμ== 当r >R 3时,内外电流强度之和为零,所以B 2 =05. 将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向抽去一宽度为h (h <<R )的无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i (如图),则管轴线上磁感应强度的大小是 。

解:轴线上磁感应强度可看成是完整的无限长圆筒电流和狭缝处与圆筒电流密度相等但方向相反的无限长线电流产生的磁场的合成。

计算结果为Rih πμ20。

6. 一根载流导线被弯成半径为R 的1 / 4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线a b 所受磁场作用力的大小为 ,方向 。

解:a b 弧所受的安培力可等效为a b 线段所受到的安培力,由图示,则a b 线段R l 2= BIR l BI F ab 2 ==∴,方向沿y 轴正方向。

7. 感应强度B =0.02T 的均匀磁场中,有一半径为10cm 圆线圈,线圈磁矩与磁力线同向平行,回路中通有I =1A 的电流,若圆线圈绕某个直径旋转1800,使其磁矩与磁力线反向平行,设线圈转动过程中电流I 保持不变,则外力的功W = 。

解:线圈磁通量Wb 1028.6)1.0(π02.042-⨯=⋅⋅==BS Φ,外力做的功 J 1026.12)(3-⨯==---=∆-=I ΦΦΦI ΦI W填空题6图× × × × ×× 填空题4图8. 边长分别为a 、b 的N 匝矩形平面线圈中流过电流I ,将线圈置于均匀外磁场B 中,当线圈平面的正法向与外磁场方向间的夹角为1200时,此线圈所受的磁力矩的大小为 。

解:磁力矩2/3120sin 0NabIB NISB M ==⨯=B m9. 面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2:1,圆线圈在其中心处产生的磁感应强度为B 0,那么正方形线圈(边长为a )在磁感应强度为B 的均匀外磁场中所受最大的磁力矩为 。

解:设载流圆线圈与载流正方形线圈的磁矩分别为1m 、2m ,则1221=m m ,又因为它们的面积相等,所以1221=I I ,圆线圈在其中心处产生的磁感应强度B 0rI 20μ=,圆线圈的半径0102B I r μ=,21 πr S = ,22a S =,且21S S =,22010)2(πa B I =∴μ 可得π2001μaB I =,又由1221=I I ,π002μaB I =∴, B a aB B S I B m M ⋅⋅===∴2002222πμπ030μBa B =。

相关文档
最新文档