平面的基本性质

合集下载

平面的基本性质

平面的基本性质

∴过不共线的三点A,B,C有一个平面 (公理3)
∵B∈ ,C∈ ∴a (公理1)
∴过点A和直线a有一个平面
(唯一性)
又由公理3,经过不共线的三点A、B、C的平面
只有一个 ∴经过a和平点面的A基本的性质平面只有一个.
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直 线 a bC 有 且 只 有 一 个 平 面 , 使 得 a, b.
平面的基本性质
一.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的 平面形象,数学中的平面概念是现实平面加以抽 象的结果。
二.平面的特征:
观察思考
平面没有大小、厚薄和宽窄,平面在空间是 无限延伸的。
三.平面的表示方法:
平面可以用小写的希腊字母或大写的英文字 母表示,也可以用三个或三个以上字母表示。
察 思
问题2 如图,两个平面只有一个公共点,是吗? 考
?
问题3 照相机架为什么只有三只脚?自行车只用
一只撑脚?
平面的基本性质
公理一:如果一条直线上的两点在一个平面内, 那么这条直线上的所有点都在这个平面内
BAAB
B A α
l
如果直线l 上所有点都在平面α内就说直线l在平 面α内,或者说平面α经过直线l,否则,就说直 线l在平面α外 应用:
平面的基本性质
推论3.两条平行直线唯一确定一个平面。
βA
Ba b
C
数学语言表示:
直 线 a//b 有 且 只 有 一 个 平 面 , 使 得 a, b.
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三条都不在同一平 面内,有它们中的两条来确定平面,可以确定多少个平面。

平面的基本性质3

平面的基本性质3

公理1
平面的基本性质
平面的基本性质
公理1 如果一条直线上的两点在一个 平面内,那么这条直线上所有的点都在这 个平面内.

A
B
A l , B l , A , B l
公理2
平面的基本性质
平面的基本性质
公理2 如果两个平面有一个公共点, 那么它们还有其他公共点,且所有这些公 共点的集合是一条过这个公共点的直线.
(3) A1B1
(4)
A1 B1 (6)平面A1C1CA∩平面D1B1BD= oo1
_ (5) A1B1 __ , A1B1
BB1
D1 O1
C1
练习
平面的基本性质
2.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形. B (1) A , B P (2)l , m
平 面
第一课时
平面的概念
平面的基本性质
平面的基本性质
平面的特征:
(1) 平展性 (2) 无限延展性 (3) 没有厚度 平面的画法: 通常用平行四边形来表示平面。 平面的表示:
(3)
有时也可以用其他平面图形来表示
平面的基本性质
平面的表示: (1) 用希腊字母αβγ来表示,如平面α (2) 用表示多边形的各顶点字母来表示, (3)用表示多边形的对角线字母来表示Leabharlann lP
P l且P l
练习
平面的基本性质
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1B , B1C ,分别记作、、 ,试用适当的符号填 空.
(1) A1 _, (2) B1 _,
A _ D D _ A
O B

平面的基本性质

平面的基本性质

三、平面的基本性质:
公理1 : 如果一条直线的两点在一个平面内,那么这条
直线上所有点都在这个平面内
A l, B l, A , B l

A•
•B
l
想一想:这个公理有什么作用?
1.检验物体的表面是否平整 2.判断一条直线是否在一个平面内
3.判断点是否在一个平面内
P l且P l
•A
B•
•C
想一想:哪些现象可以用来说明公理3?
1、三脚的板凳才能坐稳! 2、两块合铁和一把锁才能固定门! 3、照相机的支架是三条腿!
A, B, C不共线 A, B, C确定一平面
练习
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1B, BC1 ,分别记作、、 ,试用适当的符号填 空.
小结:
1、平面的概念及表示方法。
2、平面的基本性质(三个公理)及其作用。
作业:
预习公理的推论1、2、3
/ 博王时彩计划软件
敢咯 那 那时候别早咯 奴婢那就服侍您歇息吧 ”菊香の前半句话王爷还没什么在意 壹听到她那那后半句话 气得差点儿上去给她壹巴掌!自从他决定回怡然居之后 壹直在 搜肠刮肚地选择用啥啊样の委婉词语来与淑清告别 既别能太伤她の心 又能够安然脱身 结果还别等他想出法子来呢 那各可恶の菊香 竟然是哪壶别开提哪壶 直接就要来服侍 他歇息!真是要将他活生生气死!第壹卷 第899章 清白既然菊香已经红口白牙地提出来服侍他安歇就寝事宜 被逼到绝境之中没处躲没处藏の王爷只好硬着头皮开口道: “爷那壹遭被吵醒 也睡别着咯 打算回去看看书 您家主子还病着 爷看书会影响她养病 那 爷那就走咯 服侍您家主子好好休息 ”菊香唱咯壹晚上の独角戏 最终还是没能将 他留下 淑清本就是在病中 再见他竟是那般绝情 别禁悲从心来 壹晚上都没什么开口の她终于忍别住喊咯壹声:“爷!”然后她就再也说别出来壹句话 只是用壹双眼睛泪汪 汪地望向他 见病中の淑清如此楚楚可怜の样子 就那么走开实在是太过残忍 于是 狠别下心来の他只好又坐回床侧 替她掖咯掖被角 好言相劝道:“别哭咯 那还病着呢 又得 哭坏咯身子!就是有些风寒 没什么啥啊大碍 好好养着 按时喝药 另外 现在天凉咯 别总去院子里 有啥啊事情让菊香去做 爷要是过来 自会让秦顺儿传话 您那么去等 能等 来啥啊?还别是把身体弄坏咯?”“爷 妾身就是忍别住想去看看 都快壹各月没什么见到您咯 那心里实在是别踏实 ”“您の心思 爷自然晓得 只是……”只是啥啊呢?他别 想让淑清更伤心 没什么说出口 于是他就那么靠在床边 陪着淑清 而淑清因为本身就在病中 又喝咯药 经过壹晚上の折腾 终于体力渐渐别支 耗咯将近壹各时辰 也就渐渐地 睡咯下去 见淑清终于睡安稳咯 他才如释重负般地悄悄起身 出咯烟雨园 他犹豫咯壹下 回朗吟阁还是怡然居?回怡然居肯定是要搅咯水清の睡眠 她の睡眠壹直很差 睡眠别 好就导致精神差 所以身子才会那么赢弱 形成咯壹各恶性循环の老大难问题 可是回朗吟阁の话 他是跳进黄河也洗别清咯 他可以指天发誓 秦顺儿可以亲口作证 但是水清完 全可以别相信!她又没什么亲眼见到他在朗吟阁 她凭啥啊相信?他跟她打咯九年の交道 她有の时候极明事理 以壹各知书达礼大家闺秀の形象卓而别群 可是有些时候 她竟 然也会蛮别讲理 与壹般妇人别无两样 特别是对待他の那些诸人们の时候 在他用“燕子诗”向她真情告白时候 她竟然用“小檐日日燕飞来”嘲讽奚落他 让他陷入百口莫辩 の被动局面 虽然事后他别停地向她解释 啥啊“秋来只为壹人长” 啥啊“壹汀烟雨杏花寒” 水清统统壹概别予理会 最后将她逼急咯 竟然给他来咯壹各“息燕归檐静 飞花 落院闲” 彻底逃跑咯!任他再教上悠思上百句燕子诗 终是没什么挽回她の心 那各时候她还只是凭空想象他那些莫须有の“朝憎莺百啭、夜妒燕双栖”の罪名 就敢蛮别讲理 胡搅蛮缠 而现在 已经有咯菊香那各确凿の人证物证 他还怎么可能抵赖得掉?第壹卷 第900章 温暖 在打扰水清睡眠和证明自己清白那壹对矛盾问题の反复权衡之下 他终 于选择咯回怡然居 他怕她又从他の掌心逃跑咯 以前她の每壹次逃跑 都是他姑息纵容の结果 也是担心将她逼得太紧咯 原本他在水清心目中の形象就别佳 若是追她追得太紧 再在她印象中留下壹各无耻好色之徒の恶名 更是要弄巧成拙 导致两各人关系更加恶化 无可奈何之下 每壹次他都眼睁睁地看着她从他の掌心中溜走 任由她绝决地离去 却是 壹丁点儿都别敢对她用强 当然 除咯在香山 那壹次 他是真真地被她气着咯 第壹次对她动用咯武力 而现在 当他品尝到如此甜美の爱情之后 再也别想将风筝の线放得太长 他怕自己手中の那根线 禁别住狂风暴雨の袭击而折断 徒留追悔莫及 虽然只是短短の十三天 却让他有壹种前二十多年都白活咯の感觉 从前 诸人对他而言只是诸人 而现在 他既将水清当作自己の诸人 更将

4.1.2平面的基本性质

4.1.2平面的基本性质
并指出由顶点和棱所确定的平面.
3. 根据平面的基本性质和推论证明平行四边形是平面图形(填空).
已知:四边形 是一个平行四边形.
求证:、、、 四条边共面.
证明:因为 //,所以 和 确定平面,如图所示.
∵ ∈ , ∈ , ∈ , ∈ ,
两条平行直线可以确定一个平面.
如图(3)所示,//,存在唯一的平面,使得 ⊆ , ⊆ .
将一块薄的硬纸板平放到桌面上,可视作硬纸板和桌面所在的平面重合,如图
所示.抬起硬纸板的一端,让另一端紧贴桌面,则硬纸板和桌面所在台面有一条公
共直线.继续抬起硬纸板,将纸板的一角支在桌面上,则支点就是硬纸板和桌面所
如图所示, ∈ , ∈ ,存在唯一的直线,使得 ∈ , ⋂ = .
温馨提示
画两个平面相交时,一定要画出它们的交线,
平面被遮挡部分用虚线表示或者不画.
例3 判断下列说法是否正确.
(1)经过三个点有且只有一个平面;
(2)如果直线与平面有三个公共点,那么 ⊆ ;
(3)用三角板的一个顶点与桌面接触,只有一个公共点,
例4 在正方体 − [图()]中,找出符合下列条件的平面.
(3)经过直线和的平面;

(3)经过直线和 的平面是平面 ,如图()所示;
例4 在正方体 − [图()]中,找出符合下列条件的平面.
(4)经过直线和的平面;
(1)经过点、、的平面;

(1)经过点 、、 的平面是平面 ,如图(2)所示;
例4 在正方体 − [图(1)]中,找出符合下列条件的平面.
(2)经过直线和点的平面;

(2)经过直线 和点 平面是平面 ,如图(3)所示;
第四章 立体几何

平面的基本性质

平面的基本性质

三、平面的基本性质: 平面的基本性质:
公理1:如果一条直线的两点在一个平面内 那么这条直线上 公理 如果一条直线的两点在一个平面内,那么这条直线上 如果一条直线的两点在一个平面内 的所有点都在这个平面内. 的所有点都在这个平面内 这时我们说直线在平面内或平面经过直线. 注 : ①这时我们说直线在平面内或平面经过直线 ②符号表示:若A∈l, B∈l,A∈α, B∈α, 则 l ⊂ α . 符号表示 若 ∈ ∈ ∈ ∈ 是借用集合的符号,点 不在直线 不在直线l上 直线 直线l不 ③∈, ⊂ 是借用集合的符号 点A不在直线 上,直线 不 内记作什么? 在平面α内记作什么 A∉l l⊄α ∉ ⊄ 作用: 判断直线在平面内的依据 直线在平面内的依据. ④作用 判断直线在平面内的依据
α
A B
公理2:如果两个平面有一个公共点 那么它们还有其它公 公理 如果两个平面有一个公共点,那么它们还有其它公 如果两个平面有一个公共点 共点,这些公共点的集合是一条直线 这些公共点的集合是一条直线. 共点 这些公共点的集合是一条直线 对于不重合的两个平面,只要它们有公共点 只要它们有公共点,它们就是相 注: ①对于不重合的两个平面 只要它们有公共点 它们就是相 交的位置关系,交集是一条直线 且交线有且只有一条.) α 交集是一条直线.(且交线有且只有一条 交的位置关系 交集是一条直线 且交线有且只有一条 符号表示:若 ∈ ②符号表示 若P∈α, P∈ β ,则 α ∩ β =l且P∈l . ∈ 且 ∈ A 作用:判断两个平面相交的依据 找两个平面的交线, 判断两个平面相交的依据,找两个平面的交线 ③作用 判断两个平面相交的依据 找两个平面的交线, 证明点共线或线共点的依据。 证明点共线或线共点的依据。 公理3:经过不在同一条直线上的三点有且只有一个平面 经过不在同一条直线上的三点有且只有一个平面. 公理 经过不在同一条直线上的三点有且只有一个平面 注: ①过一点、两点或一直线上的三点都可以有无数个平面, 过一点、两点或一直线上的三点都可以有无数个平面 过不在同一直线上的四点不一定有平面. 过不在同一直线上的四点不一定有平面 ②“有 是说明图形存在,即存在性 只有一个” 即存在性;“ ②“有”是说明图形存在 即存在性 “只有一个”说明图 形唯一,即唯一性 本定理强调的是存在和唯一两方面. 即唯一性;本定理强调的是存在和唯一两方面 形唯一 即唯一性 本定理强调的是存在和唯一两方面 符合某一条件的图形既然存在且只有一个,说明图形 ③符合某一条件的图形既然存在且只有一个 说明图形 是确定的,因此 有且只有一个” 因此“ 确定”是同义词; 是确定的 因此“有且只有一个”和“确定”是同义词 过不共线三点A、 、 的平面又可记为 平面ABC”; 的平面又可记为“ ④过不共线三点 、B、C的平面又可记为“平面 ” 作用:确定平面的依据 证明两个平面重合的依据. 确定平面的依据.证明两个平面重合的依据 ⑤作用 确定平面的依据 证明两个平面重合的依据

三、平面的基本性质

三、平面的基本性质

[解答] ∵E∈AB,H∈AD, ∴E∈平面 ABD,H∈平面 ABD, ∴EH⊂平面 ABD. ∵EH∩FG=O,∴O∈平面 ABD, 同理可证 O∈平面 BCD, ∴O∈平面 ABD∩平面 BCD,即 O∈BD, 所以 B、D、O 三点共线.
第44讲 │ 要点探究
[点评] 证明点共线的依据是公理 3, 其方 法是找出这些点所在的两个平面, 说明各个点 都是这两个平面的公共点, 则这些点必在这两 个平面的交线上;另外,证明三线共点的依据 也是公理 3,可证明其中两直线的交点在第三 条直线上, 把问题归结为证明点在直线上的问 题, 而第三条直线是经过这两条直线的两平面 的交线, 两个平面的公共点必在这两个平面的 交线上.下面变式题就是三线共点的问题:
[解答] 方法一: 由公理 2, 不共 线的三点 D1、E、F 确定平面 α, 由图可知 D1E 与 DA 共面(公理 2 的推论),且延长线交于点 G, 从而 G∈α(公理 1),同理 D1F 与 DC 延长线的交点 H∈α,
第44讲 │ 要点探究
∵G∈平面 AC,H∈平面 AC, ∴GH⊂平面 AC, 又 B∈平面 AC,则 G、B、H 共面, ∵E 为 AA1 中点,AE∥DD1, ∴AG=AD=AB,∠ABG=45° , 同理∠CBH=45° , ∴∠ABG+∠ABC+∠CBH=180° , ∴G、B、H 三点共线, 又 G∈α,H∈α,即 GH⊂α(公理 1), ∴B∈α,即点 D1、E、F、B 四点共面于平面 α.
第44讲 │ 要点探究
(4)正确.因为 A、C1、B1 不共线,∴A、C1、 B1 三点确定一个平面 α, 又 AB1C1D 为平行四边形,AC1、B1D 相交于 O2 点,而 O2∈α,B1∈α, ∴B1O2⊂α,而 D∈B1O2,∴D∈α; (5)正确.若 l 与 m 相交,则交点是两平面的 公共点,而直线 CD 为两平面的交线,所以交点一 定在直线 CD 上.

平面的基本性质(3课时)

平面的基本性质(3课时)

(3)相交两平面:
β B α α A
β B A
α β a A 图2 α a β B
四.用数学符号来表示点、线、面之间的位置关系: 用数学符号来表示点、 面之间的位置关系: (1)点与直线的位置关系: (1)点与直线的位置关系: 点与直线的位置关系 记为: 点A在直线a上: 记为:A∈a 在直线a 记为: 点B不在直线a上: 记为:B∈a 不在直线a (2)点与平面的位置关系: (2)点与平面的位置关系: 点与平面的位置关系 记为: 点A在平面α内: 记为:A∈α 在平面α 记为: 点B不在平面α上: 记为:B∈ α 不在平面α
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
将一把直尺置于桌面上, 将一把直尺置于桌面上,通过是否漏光 就能检查桌面是否平整. 就能检查桌面是否平整.
三条直线相交于一点, 三条直线相交于一点,用其中的两条确定 可以确定3个 平面,最多可以确定 平面,最多可以确定 个。
4条直线相交于一点时: 条直线相交于一点时: 条直线相交于一点时
)、4条直线全共面时 (1)、 条直线全共面时 )、 )、有 条直线共面时 (2)、有3条直线共面时 )、 )、每 条直线都确定 (c)、每2条直线都确定 )、 一平面时
A 反证法 D B C
填空题: 填空题
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 四条直线相交于一点呢?_____________ ?_____________。 四条直线相交于一点呢?_____________。

平面的基本性质

平面的基本性质

4.对于四面体ABCD,给出下列四个命题 ①若AB=AC,BD=CD,则BC⊥AD. ②若AB=CD,AC=BD,则BC⊥AD. ③若AB⊥AC,BD⊥CD,则BC⊥AD. ④若AB⊥CD,BD=AC,则BC⊥AD. 其中真命题的序号是__①___④___.定位置 关系的一种较好方法,它的一般步骤是:
平面的基本性质 两条直线的位置关系
知识梳理
一、平面的基本性质
1.公理1:A∈l,B∈l,A∈α,B∈α=>l α
2.公理2:A∈α,A∈β => α∩β=l且A∈l
3.公理3:A、B、C不共线=> A、B、C确定α 4.推论1:Al => A、l 确定α 5.推论2:a∩b=A => a、b确定α 6.推论3:a∥b => a、b确定α
若CD=2AB=2,EF⊥AB,则EF与CD所成的角等于_3_0_°_
3.设a、b是异面直线,则下列四个命题中:
①过a至少有一个平面平行于b; ②过a至少有一个平面垂直于b;
③至少有一条直线与a、b都垂直; ④至少有一个平面分别与a、b
正确的序号是_______①__③__④________
5.空间四点A,B,C,D每两点的距离都为a,动点P,Q PQ 2 a
(2)归谬——由反设及原命题的条件,经过严密的推理,导出矛盾;
【解题回顾】利用两平面交线的惟一性,证明诸点在两
、 平面(的2交)线成上是角证明:空间设诸点共a线的常b用是方法异. 面直线,经过空间任一点O,分别引
直线 a/a /,b/b /,则直线a、b所成的锐角(或直角)叫异面 【解题回顾】据此可思考,若有n条直线互相平行,且都与另一直线相交,欲证这n+1条直线共面该如何进行.

平面的基本性质及三大公理ppt课件

平面的基本性质及三大公理ppt课件
直线与平面的关系:l ,l
如果要把一根木条固定在墙 面上,至少需要几个钉子?
文 公理1:如果一条直线上的
字 两个点在平面内,那么这条
语 言
直线上所有的点都在这个 图形语言
平面内.

α AB

Al, B l, A, B
直AB
语 言
关键词: 两作点用, :用所有来证明或
证明: AB , AC
B,C BC
你骑车放学回家了,到家时如何才 能把自行车停稳?
B
A
C
公理2经过不在同一直线上的 三点有且只有一个平面.
B
α 。A
C
表示为:
A、B、C不共线 A、B、C确定一个平面 .
推论1:过直线和直线外一点,有且只有 一个平面.
推论2:过两条相交直线,有且只有一 个平面 .
例题
一、平面的概念
平面和点、直线一样,它是构成空间图形的基 本要素之一,是一个只描述而不定义的原始概念.
(1)数学中所说的平面在空间是无限伸展的(直 线是无限延伸的)
(2)平时接触到的平面实例都只是平面的一部分
1.平面的基本概念:
几何里的平面的特征:
1.平 2.无限延展 3.不计厚薄
(不是凹凸不平) (没有边界)
(没有质量)
二、平面的画法
直线是无限延伸的,通常我们画出直线的一部 分来表示直线,同样地,我们也可以画出平面的一 部分来表示平面.
通常用平行四边形来画平面 1、一个平面在不同的摆放状态下的画法
当 平 面 水 平 放 置 的 时,候 通 常 把 平 行 四 边 形 的 锐 角 画 成4 5
2、两个平面在不同的位置关系下的画法

《平面的基本性质》课件

《平面的基本性质》课件

平面解析几何在实际问题中的应用案例
物理学中的应用
在物理学中,许多概念和公式可以通过平面解析几何来描述和解 释,例如力学、电磁学和光学中的许多概念。
工程学中的应用
在工程学中,平面解析几何被广泛应用于机械设计、建筑设计、航 空航天等领域。
计算机图形学中的应用
在计算机图形学中,平面解析几何是生成和处理二维图形的基础, 例如在游戏开发、动画制作和计算机视觉等领域的应用。
THANKS FOR WATCHING
感谢您的观看
平面与几何体的关系
总结词
平面是几何体的重要组成部分,它可以作为几何体的边界或 表面。
详细描述
在几何学中,许多常见的几何体都是由平面构成的。例如, 长方体的每个面都是一个平面,球体的表面也是一个平面。 此外,平面还可以用来定义其他几何体的形状和大小,例如 通过平面的交线来定义三维空间的形状。
CHAPTER 02
平面上的直线的方程
两点式方程
通过平面上两点的坐标,可以求出直 线的方程。
点斜式方程
已知直线上的一个点和直线的斜率, 可以求出直线的方程。
平面上的点与直线的位置关系
点在直线上
如果一个点的坐标满足直线的方程,则该点在直线上。
点在直线外
如果一个点的坐标不满足直线的方程,则该点在直线外。
CHAPTER 04
与线性代数的联系
线性代数提供了研究平面几何对象 (如向量、矩阵和线性变换)的工 具。
平面解析几何的发展历程与未来展望
发展历程
从早期的欧几里得几何到文艺复兴时 期的笛卡尔几何,再到现代的解析几 何,平面解析几何经历了漫长的发展 历程。
未来展望
随着数学和其他学科的发展,平面解 析几何将继续发展,与其他数学分支 的交叉将更加深入,新的研究方法和 视角也将不断涌现。

《平面的基本性质》公开课课件

《平面的基本性质》公开课课件
平面的基本性质
复习回顾
公 理 1 如果一条直线上的两点在一个平面内, 那么这条直线上所有的点都在这个平面 内.
Al, B l, A, B l
公理2 如果两个平面有一个公共点,那么它们还 有其他公共点,且所有这些公共点的集合是一 条过这个公共点的直线。
公理3 经过不在同一条直线上的三点,有 且只有一个平面
五、【小结】
1.公理3的三个推论: 推论1 经过一条直线和这条直线外的一点,有且 只有一个平面 推论2 经过两条相交直线,有且只有一个平面 推论3 经过两条平行直线,有且只有一个平面 2.公理3及其三个推论的作用是确定平面 3.证明若干个点、线共面的方法. (Байду номын сангаас证其中某些点、线确定一个平面,再证剩余点、 线落在此平面内)
AB α.(公理1)同理BC α,AC α,所以AB,BC,
CA三直线共面.
证共面问题,可先由公理3(或推论)证某些元素确定一个平面,再证其余元素 都在此平面内;或者指出给定的元素中的某些元素在一个平面内,再证两个平面 重合.
怎样的直线a我们就说它在平面外?
推论3 经过两条平行直线,有且只有一个平面
推论1 经过一条直线和这条直线外的一点,有 且只有一个平面 推论2 经过两条相交直线,有且只有一个平面 推论3 经过两条平行直线,有且只有一个平面
例题讲解
例1 直线AB、BC、CA两两相交,交点分别为A、B、C, 判断这三条直线是否共面,并说明理由。(如图)
所以经过点A和直线a有且只有一个平面
例题讲解
解法二:因为A在直线BC外,所以过点A和直线BC确定
平面α.(推论1),因为A∈α,B∈BC,所以B∈α.故AB α,同 理AC α,所以AB,AC,BC共面.

平面的基本性质23页PPT

平面的基本性质23页PPT
平面的基本性质
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
3.2 点、线、面之间的位置关系
§3.2.1 平面的基本性质
图片欣赏
平面性质
平面的表示 平面的确定
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
2.
及直线a外一点D.
3. 求证:直线AD、BD、CD共面
例2、如图,在长方体中,点P为棱BB1的 中点,画出由A1,C1,P三点所确定的平 面α与长方体表面的交线。
D1
C1
A1
B1
DCΒιβλιοθήκη PAB不共线的三点确定一个平面 直线和直线外一点确定一个平面 两条相交直线确定一个平面 两条平行直线确定一个平面
两个平面相交的画法。
根据下列符号表示的语句,说出有 关点、线、面的关系, 并画出图形.
(1)A,B
(2)l,m
(3)l
(4 )P l,P ,Q l,Q
公理3
经过不在同一条直线上的 三点有且只有一个平面
•A
B•
•C
想一想:哪些现象可以用来说明公理3?
1、三脚的板凳才能坐稳! 2、两块合铁和一把锁才能固定门! 3、照相机的支架是三条腿!
平面;平面的画法;平面的表示; 公理1 (判定直线在平面内); 公理2(判定两个平面相交); 公理3(三点确定一个平面)

平面的基本性质共点共线共面

平面的基本性质共点共线共面

4,6或7 ,8 三个平面呢?_________________ 。
看看答案吧
3条直线相交于一点时:
(1)、3条直线共面时 (2)、每2条直线确定一平面时
已知:直线a、b、c、d、两两相交,且不共点 求证:a 、 b 、 c 、 d在同一平面内
分析:四条直线两两相交且不共点,可能有两种: 一是有三条直线共点; 二是没有三条直线共点, 故证明要分两种情况.
(1)已知:d∩a=P,d∩b=Q.d∩c=R,a、b、 c相交于点O. 求证:a、b、c、d共面. 证明:∵d∩a=P, ∴过d、a确定一个平面α(推论2). 同理过d、b和d、c各确定一个平面β、γ. ∵O∈a,O∈b,O∈c, ∴O∈α,O∈β,O∈γ. ∴平面α、β、γ都经过直线d和d外一点O. ∴α、β、γ重合. ∴a、b、c、d共面. 注:本题的方法是“同一法”.
平面的基本性质— 共点共线共面
知识回顾
公理1 如果一条直线上的两点在一个平面内,那么 这条直线上所有的点都在这个平面内 公理2 如果两个平面有一个公共点,那么它们还有其 他公共点,且所有这些公共点的集合是一条过这个公 共点的直线。 公理3 经过不在同一条直线上的三点,有且只有一 个平面 推论1 经过一条直线和这条直线外的一点,有且只有 一个平面 推论2 经过两条相交直线,有且只有一个平面 推论3 经过两条平行直线,有且只有一个平面
P P 平面ABC
同理Q、R也为公共点 所以P、Q、R共线
P
P 平面ABC
R

Q
3.已知:如图,D,E分别是△ABC的边AC,BC上的点, 平面 经过D,E 两点 (1)求直线AB 与平面 的交点 P A (2)求证:D,E,P三点共线.

1.2.1平面的基本性质与推论

1.2.1平面的基本性质与推论
1.2.1平面的基本性质与推论 平面的基本性质与推论
中国人民大学附属中学
一.平面的基本性质: 平面的基本性质: 1.公理1: .公理 : ①文字语言:如果一条直线上的两点在 文字语言: 一个平面内, 一个平面内,那么这条直线上的所有点 都在这个平面内 ; ②图形语言: 图形语言: ③符号语言:A∈l;B∈l,A∈α,B∈α 符号语言: ∈ ; ∈ , ∈ , ∈
⇒ AB ⊂ α.
练习: 练习:
(2) l ⊂ α, A∈l ⇒ )
A∈α (1) ) ⇒ AB ⊂α 。 B∈α
A∈α

公理1的作用有两个:(1)作为判断和证 公理 的作用有两个:( )作为判断和证 的作用有两个:( 明直线是否在平面内的依据, 明直线是否在平面内的依据,即只需要看 的依据 直线上是否有两个点在平面内就可以了; 直线上是否有两个点在平面内就可以了;
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
2.公理2: .公理 : 文字语言:经过不在同一条直线 不在同一条直线上的三 ①文字语言:经过不在同一条直线上的三 有且只有一个平面, 点,有且只有一个平面,也可以说成不共 线的三点确定一个平面。 确定一个平面 线的三点确定一个平面。 ②图形语言: 图形语言: 三点不共线, ③符号语言:A、B、C三点不共线,有且 符号语言: 、 、 三点不共线 只有一个平面α,使得A∈ , ∈ , 只有一个平面 ,使得 ∈α,B∈α, C∈α. ∈
(2)推论 : )推论3: 经过两条平行直线, 文字语言 :经过两条平行直线,有且只有一 经过两条平行直线 个平面. 个平面 图形语言: 图形语言: a,b是两条直线 是两条直线 符号语言: 符号语言: a//b a,b共面于平面 ,且α是惟一的 . , 共面于平面 共面于平面α, 是惟一的

平面、平面的基本性质及应用

平面、平面的基本性质及应用

平面、平面的基本性质及应用一、平面的基本性质回顾:包括三个公理、三个推论、其中公理3,推论1,推论2,推论3分别提供了构造平面的四种:(1)选不共线的三点(2)选一条直线与直线外一点(3)选两条相交直线(4)选两条平行直线二、证明共面的两种方法:1、构造一个平面,证相关元素在这个平面内;2、构造两个平面,证能确定平面的元素同在这两个平面内(同一法)。

例1.已知a//b, A∈a, B∈b, C∈b.求证:a,b及直线AB,AC共面。

思路(1):由a//b可确定平面α,再证ABα,ACα;思路(2):由a//b可确定平面α,由直线AB,AC可确定平面β。

因为α,β都经过不共线的三点A、B、C,所以α,β重合。

思路(3):在思路(2)中的平面β,还可以由不共线的A,B,C三点来构造,或者由点A与直线b来构造。

另外,同学们在书写证明过程的时候,一定要把公理及推论的题设交待清楚,建议同学们书写时注明理由,如下所示:写法(一):证明:∵a//b(已知)∴a,b确定一个平面α(推论3)∵A∈a, b∈b, c∈b(已知)∴A∈α,B∈α,C∈α∴直线ABα,直线ACα(公理1)∴a,b,AB,AC共面。

写法(二):证明:∵a//b(知)∵a,b确定一个平面α(推3)∴A∈α,B∈b, C∈b(已知)∴a经过A,B,C三点,∵AB∩AC=A ∴直线AB,AC确定一个平面β(推论2)∴β经过A,B,C三点,∵A∈a,B∈b, C∈b, a//b(已知)∴A,B,C不共线∴α与β重合(公理3)∴a, b,AB,AC共面。

关于同一法证题的思路,请同学们再看一道例题。

例2.如果三条互相平行的直线和同一条直线相交,求证:这四条直线共面。

分析:这是一个文字命题,要求画图,写出已知,求证,然后进行证明。

另外,在写已知,求证时,要尽量忠实原文的意思。

已知:a//b//c,a∩d=A,b∩d=B,c∩d=C求证:a,b,c,d共面。

平面的基本性质共点共线共面

平面的基本性质共点共线共面

“共点”、“共线”、 “共面” 问题 1、理论依据:
(1)公理1: 判断或证明直线是否在平面内 确定两个平面的交线, (2)公理2: 判定两平面相交 (“点共线”,“线共 点”) (3)公理3, 推论 1、2、3: 确定平面 证点、线共面的依据, 也是作辅助面的依据 2、反证法
点共面、线共面、三点共线、三线共点 问题的一般方法.
例、两个平面两两相交,有三条交线,若其中两
条相交于一点,证明第三条交线也过这一点.
证法:先证两条交线交于一点,再证第三条直线也过改点
已知:如图1-26,α∩β=a,β∩γ=b,α∩γ=c,b∩c =p. 求证:p∈a. 证明:∵b∩c=p, ∴p∈b. ∵β∩γ=b, ∴p∈β. 同理,p∈α. 又∵α∩β=a, ∴个。
2个平面分空间有两种情况:
(1)两平面没有公共点时
(2)两平面有公共点时
两个平面把空间分成3或4个部分。
3个平面 个平面把空间分成4,6,7或8个部分。
( 1)
( 2)
( 3)
( 4)
( 5)
求证:直线AB和CD既不相交也不平行.
A
反证法
D B C
小结
1、要证“点共面” 、“线共面”可 先由部分点、直线确定一平面,在证 其余点、直线也在此平面内, 即纳入法 2、反证法的应用的意识
1.空间四点A、B、C、D共面但不共线,则下列 结论成立的是( ) A.四点中必有三点共线. B.四点中有三点不共线. C.AB、BC、CD、DA四条直线中总有两条 平行. D.直线AB与CD必相交.
例2、如图:在四面体ABCD中,E,F分别
是AB,BC的中点,G,H分别在CD,AD上,且 DG:DC=DH:DA=1:m(m>2) 求证:直线EH与FG,BD相交于一点

26 平面的基本性质

26 平面的基本性质

§5.1 平面基本性质与推论NO.26 【基础知识梳理】1. 平面的性质及推论⑴判断直线在平面的依据公理1:如果一条直线上的_____点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线.用符号表示为:________________________.⑵确定平面的条件公理2:经过______________________的三点,有且只有一个平面.也可以简单地说成,_____的三点确定一个平面. 用符号表示为:________________________.推论1:经过一条直线和直线____一点,有且只有一个平面. 用符号表示为:___________.推论2:经过两条_______直线,有且只有一个平面. 用符号表示为:___________.推论3:经过两条_______直线,有且只有一个平面. 用符号表示为:___________.⑶判断两个平面有交线及交线位置的依据公理 3. 如果不重合的两个平面有一个公共点,那么它们_____________________过这个点的公共直线. 用符号表示为:______________________________.2. 点、线、面之间关系的符号表示:点A在直线a上,记作________________,点A不在直线a上,记作:______________;点A在平面α内,记作________________, 点A不在α内,记作________________;直线l在平面α内,记作________________, 直线l不在α内,记作________________.【基础知识检测】1. 若点M在直线b上,b在平面β内,则M、b、β之间的关系可表示为()A. M∈b∈βB. M∈b⊆βC. M⊆b⊆βD. M⊆b∈β2. 下列命题:⑴空间不同的三点确定一个平面;⑵有三个公共点的两个平面必重合;⑶空间两两相交的三条直线确定一个平面;⑷三角形是平面图形;⑸平行四边形、梯形都是平面图形;⑹垂直于同一直线的两直线平行;⑺一条直线和两条平行线中的一条相交,也必和另一条相交;⑻两组对边相等的四边形是平行四边形.其中正确的命题是_______.3. 直线AB,AD⊆α,直线CB,CD⊆β,E∈BC,F∈AB,G∈CD,H∈DA,若直线EG⋂直线FH=M,则点M必在直线__________上.【典型例题探究】题型1. (点线共面问题)两两相交且不共点的三条直线必共面.变式训练:空间不共点且两两相交的四条直线在同一平面内.题型2. (三点共线、三线共点问题)已知△ABC 在平面α外,它的三边所在直线分别交α于P 、Q 、R ,求证:P 、Q 、R 三点共线.变式训练:已知在空间四边形ABCD 中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是BC 、CD 上的点,且32GD CG CB CF ==,求证:三条直线EF 、GH 、AC 交于一点.题型3 (平面基本性质的应用)如图正方体的棱长为4,M 、N 分别是A 1B 1和CC 1的中点. 画出过点D 、M 、N 的平面与平面BB 1C 1C 及平面AA 1B 1B 的两条交线.变式训练:正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面的基本性质一、知识梳理 一)平面1.特征:①无限延展 ②平的(没有厚度) ,平面是抽象出来的,只能描述,如平静的湖面,不能定义.一个平面把空间分成两部分,一条直线把平面分成两部分.2.表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如:平面α,平面AC 等.3.画法:通常画平行四边形来表示平面(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长,如图1(1).(2)直线与平面相交,如图1(2)、(3),:(3)两个相交平面:画两个相交平面时,先定位,后交线,邻边依次添,若一个平面的一部分被另 一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2).4.点、线、面的基本位置关系如下表所示:a βαB AβBAαβBAααβa图 2A(1)aαa α⊂直线a 在平面α内. aαa α=∅ 直线a 与平面α无公共点. aAαa A α=直线a 与平面α交于点A .l αβ=平面α、β相交于直线l .点可看成元素,直线和平面可看成集合,符号“∈”只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言.例1、将下列符号语言转化为图形语言:(1)A α∈,B β∈,A l ∈,B l ∈; (2)a α⊂,b β⊂,//a c ,b c p =,c αβ=.说明:画图的顺序:先画大件(平面),再画小件(点、线). 例2、将下列文字语言转化为符号语言: (1)点A 在平面α内,但不在平面β内; (2)直线a 经过平面α外一点M ;(3)直线l 在平面α内,又在平面β内.(即平面α和β相交于直线l .)例3、在平面α内有,,A O B 三点,在平面β内有,,B O C 三点,试画出它们的图形.二)三条公理人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.公理1如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内.应用: ①判定直线在平面内;②判定点在平面内.模式:a A A aαα⊂⎧⇒∈⎨∈⎩.BA α公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.应用:①确定两相交平面的交线位置;②判定点在直线上.指出:今后所说的两个平面(或两条直线),如无特殊说明,均指不同的平面(直线).公理3经过不在同一条直线上的三点,有且只有一个平面.应用:①确定平面;②证明两个平面重合.实例:(1)门:两个合页,一把锁;(2)摄像机的三角支架;(3)自行车的撑脚.例4、判断下列命题是否正确。

1.不共线的三点确定一个平面。

(√)2.有三个公共点的两个平面重合。

(√)3.三角形一定是平面图形。

(√)4.平行四边形一定是平面图形。

(√)5.四边形一定是平面图形。

(×)6.不共线的四点确定一个平面。

(×)例5、求证:三角形是平面图形.已知:三角形ABC求证:三角形ABC是平面图形例6、如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.CB A例7、点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P .(这样的四边形ABC D 就叫做空间四边形)求证:P 在直线BD 上.三)公理2的三条推论推论1经过一条直线和直线外的一点有且只有一个平面.已知:直线l ,点A 是直线l 外一点. 求证:过点A 和直线l 有且只有一个平面.推论2经过两条相交直线有且只有一个平面. 已知:直线P b a = .求证:过直线a 和直线b 有且只有一个平面.推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂. 推论3经过两条平行直线有且只有一个平面. 已知:直线//a b .求证:过直线a 和直线b 有且只有一个平面.例8、两两相交且不过同一个点的三条直线必在同一平面内.已知:直线,,AB BC CA 两两相交,交点分别为,,A B C . 求证:直线,,AB BC CA 共面.GH A BC D EPαC BA例9、在正方体1111ABCD A B C D -中,①1AA 与1CC 是否在同一平面内?②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线.二、例题分析1.判断下列命题的真假,真的打“√”,假的打“×” (1)可画一个平面,使它的长为4cm ,宽为2cm .( )(2)一条直线把它所在的平面分成两部分,一个平面把空间分成两部分.( ) (3)一个平面的面积为20cm 2.( )(4)经过面内任意两点的直线,若直线上各点都在这个面内,那么这个面是平面.( ) 2.请将以下四图中,看得见的部分用实线描出.(4)(3)(2)(1)3.如图所示,用符号表示以下各概念: ①点A 、B 在直线a 上 ;②直线a 在平面α内 ;点C 在平面α内 ; ③点O 不在平面α内 ;直线b 不在平面α内 .4.①几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图所示),问至少要几根木棍,才可能使桌面稳定? ②如图所示,两个平面α、β,若相交于一点,则会发生什么现象.5.下面是一些命题的叙述语(A 、B 表示点,a 表示直线,α、β表示平面) A .∵αα∈∈B A ,,∴α∈AB .B .∵βα∈∈a a ,,∴a =βα .C .∵α⊂∈a a A ,,∴A α∈.D .∵α⊂∉a a A ,,∴α∉A . 其中命题和叙述方法都正确的是( ) 6.下列推断中,错误的是( )1CA .ααα⊂⇒∈∈∈∈lB l B A l A ,,,. B .AB B B A A =⇒∈∈∈∈βαβαβα ,,,.C .αα∉⇒∈⊄A l A l ,.D .βα∈∈C B A C B A ,,,,,,且A 、B 、C 不共线βα,⇒重合. 7.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.8.判断下列命题的真假,真的打“√”,假的打“×” (1)空间三点可以确定一个平面( ) (2)两条直线可以确定一个平面( ) (3)两条相交直线可以确定一个平面( ) (4)一条直线和一个点可以确定一个平面( ) (5)三条平行直线可以确定三个平面( ) (6)两两相交的三条直线确定一个平面( )(7)两个平面若有不同的三个公共点,则两个平面重合( ) (8)若四点不共面,那么每三个点一定不共线( )9.看图填空 (1)AC ∩BD =(2)平面AB 1∩平面A 1C 1= (3)平面A 1C 1CA ∩平面AC = (4)平面A 1C 1CA ∩平面D 1B 1BD =(5)平面A 1C 1∩平面AB 1∩平面B 1C = (6)A 1B 1∩B 1B ∩B 1C 1= 10.下列图形中不一定是平面图形的是( )(A )三角形 (B )菱形(C )梯形(D )四边相等的四边形11.空间四条直线,其中每两条都相交,最多可以确定平面的个数是( ) (A )一个(B )四个(C )六个(D )八个12.空间四点中,无三点共线是四点共面的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要 13.若a ⊂α,b ⊂β,α∩β=c ,a ∩b =M ,则( )(A )M ∈c(B )M ∉c(C )M ∈α (D )M ∈β14.求证:一个平面和不在这个平面内的一条直线最多只有一个公共点.A 1三、随堂练习1、下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为________.2、若点M在直线b上,b在平面β内,则M、b、β之间的关系用符号可记作____________.3、已知平面α与平面β、γ都相交,则这三个平面可能的交线有________条.4、已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是__________①A∈a,A∈β,B∈a,B∈β⇒a⊂β;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A;④A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合.5、空间中可以确定一个平面的条件是________.(填序号)①两条直线;②一点和一直线;③一个三角形;④三个点.6、空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有______个.7、下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.8、如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.9、空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明三条直线必相交于一点.10、如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面;(3)CE、D1F、DA三线共点.。

相关文档
最新文档