第51届乌克兰数学奥林匹克(2011)

合集下载

走进数学奥林匹克学点奥林匹克数学

走进数学奥林匹克学点奥林匹克数学

题目结构
• • •
• • • • • • • •
一试70分 选择6题,填空4题(每题7分)代数几何数论组合(一般选填压轴) 归纳知识点:实数化简;三角形的五心等方面是考察重点。但是其涵盖 知识体系相对单一,有时候,选择题、填空题还是要用技巧性搞的;举特殊 值;(08年的二次根式一题) 二试70分 第一大题一元二次方程和二次函数的互相转化、根的分布、整数根问题 (冲刺奖项的必对大题) 第二大题几何综合题 (冲刺一等奖的必对大题) 考察点05、06三线共点、梅涅劳斯、赛瓦、09几何计算(四点共圆)、 07,10相似三角形. 几何方面应该多下功夫,争取能够拿下 第三大题二试最后一题25分以数论为基础和其他结合,思路清楚的话简 单5分能拿下来.

1、实数
• • • • • • • 十进制整数及表示方法。整除性,被2、3、4、5、8 、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。 因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。
竞赛题型
• 全国初中数学联赛每年4月举行,分为一试和二试。 成绩公布的时间各省市不尽相同,北京市公布时间大约在 五月底至六月。 • 第一试着重基础知识和基本技能,题型为选择题6题 、填空题4题,共70分。第二试着重分析问题和解决问题 的能力,题型为三道解答题,内容分为代数题、几何题、 几何代数综合题或杂题,共70分,两试合计共140分。

含字母系数的一元一次不等式的解法,一元一次不等 式的解法。 • 含绝对值的一元一次不等式。 • 简单的一次不定方程。 • 列方程(组)解应用题。
5、函数
• • y=|ax+b|,y=|ax2+bx+c|及y=ax2+bx+c的图像和性质。 二次函数在给定区间上的最值。简单分式函数的最值 ,含字母系数的二次函数。

高中学科竞赛简介

高中学科竞赛简介

题两部分,满分120分。其中填空题8道,0分。 加试(二试)考试时间为9:40-12:10,共150分钟。试题为四道解
答题,前两道每题40分,后两道每题50分,满分180分。试题内容涵盖平
面几何、代数、数论、组合数学等。 根据最新消息,2011年数学联赛的试题规则与2010年相同。
道题,每天三道,每个得分点三分,每题21分;第8天:阅卷(学生参观
考察),主试委员会根据分数确定一、二、三等奖获奖名单;前20至30 名选手进入国家集训队;第9天:闭幕式。 国家集训队3、4月份集训,通过考试选出6人进入国家队,国家队的 考试由平时测验和最后考试两部分组成;平时测验成绩和最后考试成绩 各占一半。六月份进行为期3周的集训,7月份参加IMO,过程同CMO。 中国数学奥林匹克(CMO):省一和国家一二三等奖有保送高校资格。 省二有自主招生资格,通过自主招生后自动保送。
中国西部数学奥林匹克概述
简介 中国西部数学奥林匹克(Chinese Western Mathematical Olympiad,缩 写为CWMO),是为位于中国西部省份(包括江西)的中学生举办的数学 竞赛,由中国数学奥林匹克委员会举办,一般定于每年11月份举行。目的 是为了鼓励西部地区中学生学习数学的兴趣。自从2001年举办第一届竞赛
东道主。按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出
邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出 邀请。 1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些 虽然未得金、银、铜牌,但至少有一道题得满分的选手。这一措施,大大 调动了各参赛国及参赛选手的积极性。
三、国际数学奥林匹克(IMO)
(2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超

初中数学竞赛专题-第1章梅涅劳斯定理及应用

初中数学竞赛专题-第1章梅涅劳斯定理及应用

第一章涅劳斯定理及应用【基础知识】梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若A ',B ',C '三点共线,则1BA CB AC A B B A C B'''⋅⋅='''.①证明 如图11-,过A 作直线AD C A ''∥交BC 的延长线于D ,则 CB CA B A A D ''='',AC DA C B A B''='',故 1BA CB AC BA CA DA A C B A C B A C A D A B''''''⋅⋅=⋅⋅=''''''. 注 此定理的证明还有如下正弦定理证法及面积证法.正弦定理证法 设BC A α''=∠,CB A β''=∠,B A B γ''=∠,在BA C ''△中,有sin sin BA C B αγ'=',同理,sin sin CB CA γβ'=',sin sin AC AB βα'=',此三式相乘即证. 面积证法 由A C B A C C S BA A C S '''''='△△,CB C CA B CB C CA B C CA B AC A AB B AC A AB AC A S S S S S CB B A S S S S S ''''''''''''''''''''+===='+△△△△△△△△△△,AC A C BA S AC C B S '''''='△△,此三式相乘即证.梅涅劳斯定理的逆定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若 1BA CB AC A C B A C B'''⋅⋅=''',② 则A ',B ',C '三点共线.证明 设直线A B ''交AB 于1C ,则由梅涅劳斯定理,得到111AC BA CB A C B A C A ''⋅⋅=''. 由题设,有1BA CB AC A C B A C B'''⋅⋅=''',即有11AC AC C B C B '='. 又由合比定理,知1AC AC AB AB'=,故有1AC AC '=,从而1C 与C '重合,即A ',B ',C '三点共线. 有时,也把上述两个定理合写为:设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '三点共线的充要条件是 1BA CB AC A C B A C B'''⋅⋅='''. 上述①与②式是针对ABC △而言的,如图11-(整个图中有4个三角形),对于C BA ''△、B CA ''△、AC B ''△也有下述形式的充要条件:1C A BC A B AB CA B C '''⋅⋅=''';1B A CB A C AC BA C B '''⋅⋅=''';1AB C A B CBC A B CA'''⋅⋅='''.③ 第一角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '共线的充分必要条件是 sin sin sin 1sin sin sin BAA ACC CBB A AC C CB B BA'''⋅⋅='''∠∠∠∠∠∠.④ CA′B'C '图1-2A证明 如图12-,可得1sin 21sin 2ABA AA C AB AA BAA S BA A C S AA AC A AC ''''⋅⋅'=='''⋅⋅△△∠∠ sin sin AB BAA AC A AC'⋅='⋅∠∠.同理,sin sin CB BC CBB B A AB B BA ''⋅=''⋅∠∠,sin sin AC AC ACC C B BC C CB''⋅=''⋅∠∠. 以上三式相乘,运用梅涅劳斯定理及其逆定理,知结论成立.第二角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线上的点,点O 不在ABC △三边所在直线上,则A ',B ',C '三点共线的充要条件是 sin sin sin 1sin sin sin BOA COB AOC A OC B OA C OB'''⋅⋅='''∠∠∠∠∠∠.⑤ A′OCBB'C 'A 图1-3证明 如图13-,由BOA A OC S BA S A C'''='△△,有 sin sin BOA OC BA A OC OB A C''=⋅''∠∠. 同理,sin sin COB OA CB B OA OC B A ''=⋅''∠∠,sin sin AOC OB AC C OB OA C B''=⋅''∠∠.于是sin sin sin sin sin sin BOA COB AOC BA CB AC A OC B OA C OB A C B A C B''''''⋅⋅=⋅⋅''''''∠∠∠∠∠∠. 故由梅涅劳斯定理知A ',B ',C '共线1BA CB AC A C B A C B'''⇔⋅⋅='''.从而定理获证.注 (1)对于④、⑤式也有类似③式(整个图中有4个三角形)的结论.(2)于在上述各定理中,若采用有向线段或有向角,则①、②、③、④、⑤式中的右端均为1-,③、④、⑤式中的角也可以按①或②式中的对应线段记忆.特别要注意的是三边所在直线上的点为一点或者三点在边的延长线上. 【典型例题与基本方法】1.恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例 1 如图14-,在四边形ABCD 中,ABD △,BCD △,△ABC 的面积比是3∶4∶1,点M ,N 分别在AC ,CD 上,满足AM ∶AC CN =∶CD ,并且B ,M ,N 共线.求证:M 与N 分别是AC 和CD 的中点. (1983年全国高中联赛题) EDCBM NA图1-4证明 设AM CNr AC CD==(01r <<),AC 交BD 于E .341ABD BCD ABC S S S =△△△∶∶∶∶,∴17BE BD =,37AE AC =. 37371771AM AE r EM AM AE r AC AC AM MC AC AM r r AC----====----. 又因B ,M ,N 三点共线,可视BMN 为△CDE 的截线,故由梅涅劳斯定理,得1CN DB EM ND BE MC ⋅⋅=,即77311177r r r r-⋅⋅=--. 化简整理,得 2610r r --=,解得12r =,13r =-(舍去).故M 与N 分别是AC 和CD 的中点.例2 如图1-5,在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC =∠∠.(1999年全国高中联赛题)G 'B'GFEDCBA图1-5证明 记BAC CAD θ==∠∠,GAC α=∠,EAC β=∠,直线GFD 与△BCE 相截,由梅涅劳斯定理,有1ABG AEF AED ABF S S BG CD EF GC DE FB S S =⋅⋅=⋅△△△△ sin()sin sin sin sin()sin AB AC AE AC AE AB θαθβαθβθ⋅-⋅⋅=⋅⋅⋅⋅-⋅sin()sin sin sin()θαβαθβ-⋅=⋅-.故 sin()sin sin()sin θαβθβα-⋅=-⋅.即 sin cos sin cos sin sin sin cos sin cos sin sin θαβθαβθβαθβα⋅⋅-⋅⋅=⋅⋅-⋅⋅,亦即 sin cos sin sin sin cos sin()0πk θαβθαβαβαβ⋅⋅=⋅⋅⇔-=⇔-=,且k 只可能为0,故GAC ∠ EAC =∠.例 3 设E 、F 分别为四边形ABCD 的边BC 、CD 上的点,BF 与DE 交于点P .若BAE FAD =∠∠,则BAP CAD =∠∠.证明 如图1-6,只需证得当AF 关于BAD ∠的等角线交BE 于P 时,B 、P 、F 共线即可.FED CBAP图1-6事实上,B 、P 、F 分别为△CDE 三边所在直线上的三点,且A 不在其三边所在直线上. 又FAD EAB =∠∠,DAP BAC =∠∠,PAE CAF =∠∠, 由第二角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin EAB CAF DAPBAC FAD PAE⋅⋅=∠∠∠∠∠∠.故B 、P 、F 三点共线.注 当AC 平分BAD ∠时,即为1999年全国高中联赛题.2.梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法例2另证 如图1-5,设B ,G 关于AC 的对称点分别为B ',G ',易知A ,D ,B '三点共线,连FB ',FG ',只须证明A ,E ,G '三点共线.设EFB α'=∠,DFE BFG B FG β''===∠∠∠,AFD GFC G FC γ'===∠∠∠,则*sin sin sin()1sin()sin sin FDAFG B FEC FB A FG C FED S S S DA B G CE FD FB FC AB G C ED S S S FB FC FD γββγαβγαγβ'''''''⋅⋅⋅+-⋅⋅=⋅⋅=⋅⋅='''⋅+-⋅⋅△△△△△△. 对△CB D ',应用梅涅劳斯定理的逆定理,知A ,E ,G '三点共线.故GAC EAC =∠∠.注 在图1-5中,*式也可为sin(180)βγ︒--,若B '在AD 的延长上,则*式为sin()βγα++.例 4 如图1-7,1O 与2O 和△ABC 的三边所在的3条直线都相切,E ,F ,G ,H 为切点,直线EG 与FH 交于点P .求证:PA BC ⊥. (1996年全国高中联赛题)CP (P')图1-7证法1 过A 作AD BC ⊥于D ,延长DA 交直线HF 于点P '.对△ABD 及截线FHP '应用梅涅劳斯定理,有1AH BF DP HB FD P A'⋅⋅='.由BF BH =,有1AH DP FD P A '⋅='.显然1O ,A ,2O 三点共线,连1O E ,1O G ,2O F ,2O H ,则由12O E AD O F ∥∥,有△1AGO ∽△2AHO ,从而 12AO DE AG DF AO AH ==,即AH AGFD ED=. 又CE CG =,则1AH DP DP AG DP AG CEFD P A P A ED P A GC ED'''=⋅=⋅=⋅⋅'''. 对△ADC ,应用梅涅劳斯定理的逆定理,知P ',G ,E 三点共线,即P '为直线EG 与FH 的交点.故点P '与点P 重合,从而PA BC ⊥.证法 2 延长PA 交BC 于D ,直线PHF 与△ABD 的三边延长线都相交,直线PGE 与△ADC 的三边延长线都相交,分别应用(迭用)梅涅劳斯定理,有 1AH BF DP HB FD PA ⋅⋅=,1DP AG CEPA GC ED ⋅⋅=. 上述两式相除,则有AH BF AG CEHB FD GC ED⋅=⋅. 而HB BF =,CE GC =,于是AH AG FD ED =,即AG DEAH DF=. 连1O G ,OE ,1O A ,2O A ,2O H ,2O F ,而1O ,A ,2O 共线,则OG GC ⊥,2O H BH ⊥,且△1O AG ∽△2O AH ,从而12O A AG DEO A AH DF==,于是1AD O E ∥.故AD EF ⊥,即PA BC ⊥. 【解题思维策略分析】梅涅劳斯定理是三角形几何学中的一颗明珠,它蕴含着深刻的数学美,因而它在求解某些平面几何问题,特别是某些平面几何竞赛题中有着重要的应用. 1.寻求线段倍分的一座桥梁例5 已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线交AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P .证明:△MPQ ∽△ABC .(1991年第3届亚太地区竞赛题)证明 如图1-8,延长BG 交AC 于N ,则N 为AC 的中点.由XY BC ∥,知2AX AG XB GM ==,而12NC CA =. YXGMN PQCB A图1-8对△ABN 及截线XQC ,应用梅涅劳斯定理,有1212AX BQ NC BQ XB QN CA QN ⋅⋅=⋅⋅=,故BQ QN =. 从而MQ AC ∥,且1124MQ CN AC ==.同理,MP AB ∥,且14MP AB =. 由此可知,PMQ ∠与BAC ∠的两边分别平行且方向相反,从而PMQ BAC =∠∠,且MP MQAB AC=,故MPQ ABC △∽△.例 6 △ABC 是一个等腰三角形,AB AC =,M 是BC 的中点;O 是AM 的延长线上的一点,使得OB AB ⊥;Q 是线段BC 上不同于B 和C 的任意一点,E 在直线AB 上,F 在直线AC 上,使得E ,Q ,F 是不同的和共线的,求证:(Ⅰ)若OQ EF ⊥,则QE QF =; (Ⅱ)若QE QF =,则OQ EF ⊥. (1994年第35届IMO 试题)证明 (1)如图1-9,连OE ,OF ,DC .由OQ EF ⊥,易证O ,E ,B ,Q 四点共圆,O ,C ,F ,Q 四点共圆.则 OEQ OBQ OCQ OFQ ===∠∠∠∠,因此OE OF =.故QE QF =.QCBAEFOM 图1-9(Ⅱ)由AB AC =,EQ QF =,对△AEF 及截线BQC 运用梅涅劳斯定理,有1AB EQ EC FCBE QF CA BE=⋅⋅=,即BE CF =.于是可证Rt Rt OBE OCF △≌△,得OE OF =,故OQ EF ⊥.例7 在凸四边形ABCD 的边AB 和BC 上取点E 和F ,使线段DE 和DF 把对角线AC 三等分,已知14ADE CDF ABCD S S S ==△△,求证:ABCD 是平行四边形.(1990年第16届全俄竞赛题) 证明 如图1-10,设DE ,DF 分别交AC 于P ,Q ,两对角线交于M .要证ABCD 是平行四边形,若证得AM MC =(或PM MQ =),且BM M D =即可.QFE DCB AP M 图1-10由ADE CDF S S =△△,ADP CDQ S S =△△(等底等高),知AEP CFQ S S =△△,而APCQ ,故有EF AC ∥,从而有BE BFEA FC=. 对△BAM 及截线EPD ,△BCM 及截线FQD ,分别应用梅涅劳斯定理,有 1BE APMDEA PM DB ⋅⋅=,① 1BF CQMD FC QMDB⋅⋅=.②由①,②两式相除得AP CQPM QM=. 而AP CQ =,故PM MQ =,即有AM MC =.此时,又有12ABD CBD ABCD S S S ==△△.又由14ADE ABCD S S =△,知BE EA =,于是①式可写为12111BE AP MD MDEA PM DB DB⋅⋅=⋅⋅=,即有2DB M D =,亦即BM M D =. 故ABCD 为平行四边形.2.导出线段比例式的重要途径例8 在△ABC 中,1AA 为BC 边上的中线,2AA 为BAC ∠的平分线,且交BC 于2A ,K 为1AA 上的点,使2KA AC ∥.证明2AA KC ⊥.(1997年第58届莫斯科竞赛题)证明 如图1-11,延长CK 交AB 于D ,只须证AD AC =.KA 2A 1DCBA图1-11由2AA 平分BAC ∠,有22BA AB AC A C=. ①由2KA AC ∥,有1122A K A A KA A C=. 注意到12BC AC =,对△1ABA 及截线DKC 运用梅涅劳斯定理,得 1121212A K A A AD BC AD DB CA KA DB A C =⋅⋅=⋅⋅.故1222=A A BD DA A C,由合比定理,有 1221211212222A A A C A A A C A A BA BD DA DA A C A C A C ++++===,即为 22BA AB AD A C=. ②由①,②式有AB ABAC AD=,故AC AD =. 例9 给定锐角△ABC ,在BC 边上取点1A ,2A (2A 位于1A 与C 之间),在CA 边上取点1B ,2B (2B 位于1B 与A 之间),在AB 边上取点1C ,2C (2C 位于1C 与B 之间),使得122112AA A AA A BB B ===∠∠∠ 211221BB B CC C CC C ==∠∠∠,直线1AA ,1BB 与1CC 可构成一个三角形,直线2AA ,2BB 与2CC 可构成另一个三角形.证明:这两个三角形的六个顶点共圆. (1995年第36届1MO 预选题) 证明 如图1-12,设题中所述两个三角形分别为△UVW 与△XYZ .C 1C 2B 2B 1A 2A 1UWVXYZ CBA图1-12由已知条件,有△1AC C ∽△2AB B ,△2BA A ∽△1BC C ,21CB B CA A △∽△,得 12AC ACAB AB=, 21BA AB BC BC =,21CB BC CA AC =,此三式相乘得1222111AC BA CB AB BC CA ⋅⋅=. ①对△1AA B 及截线1CUC ,△2AA C 及截线2BXB ,分别应用梅涅劳斯定理,得 11111A C BC AU UA CB C A ⋅⋅=, ② 22221A X AB CB XA B C BA ⋅⋅=, ③ ①,②,③三式相乘化简,得12AU AXUA XA =.故UX BC ∥. 同理,WX CA ∥.故1212AUX AA A BB B BWX ===∠∠∠∠.从而点X 在△UVW 的外接圆上.同理,可证得Y ,Z 也在△UVW 的外接圆上.证毕.例10 如图1-13,以△ABC 的底边BC 为直径作半圆,分别与边AB ,AC 交于点D 和E ,分别过点D ,E 作BC 的垂线,垂足依次为F ,G ,线段DG 和EF 交于点M .求证:AM BC ⊥.(IMO -37中国国家队选拔赛题)H MG FEDCA图1-13证法1 设直线AM 与BC 交于H ,连BE ,CD ,则知90BEC BDC ==︒∠∠,直线FME 与△AHC 相截,直线GMD 与△ABH 相截,迭用梅涅劳斯定理,有1AM HF CE MH FC EA ⋅⋅=,1AM HG BDMH GB DA⋅⋅=. 两式相除,得 FH CF AE BDHG CE BG AD⋅⋅=⋅⋅.在Rt △DBC 与Rt △EBC 中,有2CD BC FC =⋅,2BE BC BG =⋅,即22CF CD BG BE =.将其代入①式,得 22FH CD AE BDHG BE CE AD⋅⋅=⋅⋅. 又由△ABE ∽△ACD ,有CD ADBE AE=. 将其代入②式,得 DBC EBC S FH CD BD DF DMHG BE CE S EG MG ⋅====⋅△△,从而,M H DF ∥. 而DF BE ⊥,则MH BC ⊥,故AM BC ⊥.证法 2 作高AH ,连BE ,CD ,则90BDC BEC =⋅=∠∠,于是,sin DF BD B =⋅=∠ cos sin BC B B ⋅⋅∠∠,cos sin EG BC C C =⋅⋅∠∠.∴cos sin cos cos sin cos GM EG C C AB CMD FD B B AC B⋅===⋅⋅∠∠∠∠∠∠. 又cos BH AB B =⋅∠,cos HG AE C =⋅∠,∴ cos cos cos cos BH AB B AC B HG AE C AD C ⋅⋅==⋅⋅∠∠∠∠,即BH GM AB HG MD AD ⋅=,故1BH GM DAHG MD AB ⋅==. 对△BGD 应用梅涅劳斯定理的逆定理,知H ,M ,A 三点共线.由AH BC ⊥,知 AM BC ⊥.例11 如图1-14,设点I ,H 分别为锐角△ABC 的内心和垂心,点1B ,1C 分别为边AC ,AB 的中点.已知射线1B I 交边AB 于点2B (2B B ≠),射线1C I 交AC 的延长线于点2C ,22B C 与BC 相交于K ,1A 为△BHC 的外心.试证:A ,I ,1A 三点共线的充分必要条件是△2BKB 和△2CKC 的面积相等.(CMO -2003试题)EB 2A 1B 1C 1C 2KFHOI DCBA图1-14分析 首先证A ,I ,1A 三点共线60BAC ⇔=︒∠.设O 为△ABC 的外心,连BO ,CO ,则2BOC BAC =∠∠.又180BHC BAC =︒-∠∠,因此,60BAC =︒∠ B ⇔,H ,O ,C 四点共圆 1A ⇔在△ABC 的外接圆O 上AI ⇔与1AA 重合A ⇔,I ,1A 三点共线.其次,再证2260BKB CKC S S BAC =⇔=︒△△∠.并在三角函数式中,用A 、B 、C 分别表示三内角. 证法 1 设△ABC 的外接圆半径为R ,CI 的延长线交AB 于D ,对△ACD 及截线12C IC ,应用梅涅劳斯定理,有12121AC CC DI C D IC C A⋅⋅=. ①注意到 112AC AB ABC D AD AC AC BC ⋅=-=-+ 22sin sin ()sin (sin sin )222()sin sin cos2C B AR AB AC BC C B A RA B AC BC B A-⋅⋅--⋅===-++,则 11sinsin22cos cos 22C B AC D C A BAC -⋅=-⋅. 而sin cos sin 22sin sin sin 22C A B B IC AC ADC C C DI AD ACD ⎛⎫-+ ⎪⎝⎭====∠∠,由①式,有2121sin 2cos2B A CC CD IC C C A DI AC -=⋅=.从而 22222sincos 22cos2A BAC CC AC C AC C A⋅-==. ②又对△ACD 及截线12B IB ,应用梅涅劳斯定理,有21211AB CB DI B D IC B A⋅⋅=. 注意到11CB B A =,有22sin2cos 2C B D DI A B AB IC ==-,2222cos sin 2sin sin2222cos cos22A B C A BAB B D AD A B A B AB AB --⋅-===--,即2cos cos cossin 222sin sin 2sin sin 2sin sin 2sin sin 222222A B A B A B AC B AB AD AB AB A B A B A B AC BC B A ---=⋅=⋅⋅=⋅⋅=++⋅⋅⋅cos22cos sin22B ABC A ⋅⋅.从而 22sincos 22cos2A C ABB AB ⋅=. ③由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意②,③24sin 12A⇔=,且A 为锐角60BAC ⇔=︒∠.证法2 如图1-14,设直线AI 交BC 于F ,直线12B B 交CB 的延长线于E .对ACF △及截线1B IE ,应用梅涅劳斯定理,有111AB CF FIB C EF IA⋅⋅=. ④又由11AB B C =及角平分线性质,即有FI CF BF BCIA CA BA AB AC===+. 令BC a =,AC b =,AB c =,则FI aIA b c=+. 由④式,有CE b c EF a +=,即EF EF aCF CE EF b c a==-+-. 而abCF b c =+,则2()()a b EF b c a b c =+-+.又ac BF b c =+,()a a c BE EF BFbc a -=-=+-(由题设知a c >). 从而 ()()EF abBE b c a c =+-. 对ABF △及截线2IB E ,应用梅涅劳斯定理,有221BB AI FE IF EB B A⋅⋅=. 将⑤式代入上式,得22BB IF BE a c B A AI EF b -=⋅=,∴ 2222AB B B AB a b cAB AB b++-==. ⑥同理2AC a c bAC c+-=. 由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意⑥,⑦1a b c a c bb c+-+-⇔⋅=⇔22260a b c bc BAC =+-⇔=︒∠.注 例11还有其他证法,可参见笔者另文《关于2003年中国数学奥林匹克第一题》(《中等数学》2003年第6期).例12 如图1-15,凸四边形ABCD 的一组对边BA 与CD 的延长线交于M ,且AD BC ∥,过M 作截线交另一组对边所在直线于H ,L ,交对角线所在直线于H ',L '.求工业化:1111MH ML MH ML +=+''. H 'L'LDCAMOH图1-15证法1 如图1-15,对ML D '△及直线BLC 由梅涅劳斯定理得 1ML L B DCLL BD CM'⋅⋅='. 对DL H '△及直线BAM 由梅涅劳斯定理得 1L M HA DBMH AD BL '⋅⋅='. 对MHD △及直线CH A '由梅涅劳斯定理得1HH MC DAH M CD AH'⋅⋅='. 由①⨯②⨯③得1ML L M HH LL MH H M''⋅⋅='', 所以HH LL MH H M ML L M ''=''⋅⋅,所以H M MH ML ML MH H M ML L M''--=''⋅⋅,故1111MH ML MH HL+=+''. 证法2 设AD 与BC 的延长线相交于O .△BML 和△CML 均被直线AO 所截,迭用梅涅劳斯定理,有 BA HL OB AM MH LO =⋅,① CD HL OCDM MH LO =⋅,② 由①LC ⋅+②BL ⋅,得 BA CD HL OB LC OC BLLC BL AM DM MH LO⋅+⋅⋅+⋅=⋅.③ 注意到 OB LC OC BL BC LO ⋅+⋅=⋅(直线上的托勒密定理),则③式变为BA CDLC BL AM DM⋅+⋅= HLDC MH⋅.④ 又由BD 截△LCM 和AC 截△LBM ,迭用梅涅劳斯定理,有LL DC BC BL L M MD '⋅=⋅',LH ABBC LC H M AM '⋅=⋅'. 将此结果代入④式整理,即得欲证结论.注 当AD BC ∥,④式显然成立,故仍有结论成立.此题是二次曲线蝴蝶定理的推论. 3.论证点共直线的重要方法例13 如图1-16,△ABC 的内切圆分别切三边BC ,CA ,AB 于点D ,E ,F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX ,XB 分别相切于点Y ,Z .证明:EFZY 是圆内接四边形. (1995年第36届IMO 预选题) PXYZ FE D CB A图1-16证明 由切线长定理,知CE CD CY ==,Z BF BD B ==,AF AE =,XZ XY =.设BC 的延长线与FE 的延长线交于P ,对△ABC 及截线FEP ,应用梅涅劳斯定理,有1AF BP CE AF BP CEFB PC EA EA PC FB=⋅⋅=⋅⋅XZ BP CY XZ BP CYYX PC ZB ZB PC YX=⋅⋅=⋅⋅. 对△XBC 应用梅涅劳斯定理的逆定理,知Z ,Y ,P 三点共线,故由切割线定理有2PE PF PD ⋅=,2PY PZ PD ⋅=.以而PE PF PY PZ ⋅=⋅,即EFZY 是圆内接四边形.例14 如图1-17,△ABC 中,A ∠内的旁切圆切A ∠的两边于1A 和2A ,直线12A A 与BC 交于3A ;类似地定义1B ,2B ,3B 和1C ,2C ,3C .求证:3A ,3B ,3C 三点共线.A 3图1-17证明 由切线长定理,知12AA AA =,12BB BB =,12CC CC =.对△ABC 与直线123C C C ,123A A A ,123B B B 分别应用梅涅劳斯定理,有332123213111AC AC BC CC BC C B C C C A C B C A =⋅⋅=⋅⋅,233213213111BA BA CA AA CA A C A A A B A C A B =⋅⋅=⋅⋅,332123213111CB CB AB BB AB B A B B B C B A B C=⋅⋅=⋅=. 上述三式相乘,有333111111333222222AC BA CB AC A B B C AC A B B CC B A C B A BC CA AB CA AB BC ⋅⋅=⋅⋅=⋅⋅. 设3O 切AB 于K ,2O 切AC 于L ,则由12BB BB =,可得21221()2BC BK B C KB ==-.同理11211()2B C CL B C LC ==-.又由两内公切线长相等,即21KB LC =,故21BC B C =.同理,21CA AC =,21AB A B =. 从而3333331AC BA CB C B A C B A⋅⋅=,故对△ABC 用梅涅劳斯的逆定理,知3A ,3B ,3C 三点共直线. 例15 如图1-18,设△ABC 的三边BC ,CA ,AB 所在的直线上的点D ,E ,F 共线,并且直线AD ,BE ,CF 关于A ∠,B ∠,C ∠平分线的对称直线AD ',BE ',CF '分别与BC ,CA ,AB 所在直线交于D ',E ',F ',则D ',E ',F '也共线.D 'F'E'F EDC BA图1-18证明 对ABC ∠及截线FED 应用第一角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin BAD CBE ACFDAC EBA FCB ⋅⋅=∠∠∠∠∠∠.由题设知,CAD BAD '=∠∠,D AB DAC '=∠∠,BCF ACF '=∠∠,F CA FCB '=∠∠,ABE CBE '=∠∠,E BC EBA '=∠∠,从而有sin sin sin 1sin sin sin CAD ABE BCF D AB E BC F CA '''⋅⋅='''∠∠∠∠∠∠,即sin sin sin 1sin sin sin BAD CBE ACF D AC E BA F CB'''⋅⋅='''∠∠∠∠∠∠.故由第一角元形式的梅涅劳斯定理,知D ',E ',F '共线.例16 在筝形ABCD 中,AB AD =,BC CD =.过BD 上的一点P 作一条直线分别交AD 、BC 于E 、F ,再过点P 作一条直线分别交AB 、CD 于G 、H .设GF 与EH 分别与BD 交于I 、J ,求证:PI PJPB PD=. 证明 如图1-19,过B 作AD 的平行线交直线EF 于E ',再过B 作CD 的平行线交直线GH 于H ',则 E BP EDP PBG '==∠∠∠,HBP H D P PBF '==∠∠∠. H 'E'PDCBAHF EG 图1-19进而H BG H BP GBP PBF PBE E BF ''''=-=-=∠∠∠∠∠∠.所以 sin sin sin sin sin sin 1sin sin sin sin sin sin PBH GBI FBE FBP GBP FBE H BG IBF E BP E BF PBF PBG'''⋅⋅=⋅⋅='''∠∠∠∠∠∠∠∠∠∠∠∠.又H '、I 、E '分别为△PGF 三边所在直线上的点,且点B 不在△PGF 三边所在的直线上.由第二角元形式的梅涅劳斯定理的逆定理知H '、I 、E '共线.于是,由PBE PDE '△∽△,PH B PHD '△∽△.有E H EH ''∥.因此,PI PE PB PJ PE PD '==.故PI PJ PB PD=. 注 当PB PD =,P 为BD 中点时,即为1989年12月冬令营选拔赛试题.例17 如图1-20,四边形ABCD 内接于圆,其边AB ,DC 的延长线交于点P ,AD 和BC 的延长线交于点Q ,过Q 作该圆的两条切线,切点分别为E ,F .求证:P ,E ,F 三点共线.(1997年CMO 试题)Q图1-20证明 设圆心为O ,连QO 交EF 于L ,连LD ,LA ,OD ,OA ,则由切割线定理和射影定理,有2QD QA QE QL QO ⋅==⋅,从而D ,L ,O ,A 四点共圆,即有QLD DAO ODA OLA ===∠∠∠∠,亦即OL 为△LAD 的内角ALD ∠的外角平分线. 又EF OQ ⊥,则EL 平分ALD ∠.设EF 分别交AD ,BC 于M ,N ,于是DM DL DQMA AL AQ==. 同理,CN CQBN BQ=. 于是,DM AM AM DM AD DQ AQ AQ DQ DQ AQ +===++,CN BN BCCQ BQ BQ CQ==+, 所以,211MQ DQ DQ DA AQ DM DM AD AD +=+=+=,2QN BQCN BC=. 直线PBA 与△QCD 的三边延长线相交,由梅涅劳斯定理,有1CP DA QB CP DM QNPD AQ BC PD MQ CN=⋅⋅=⋅⋅. 对△QCD 应用梅涅劳斯定理的逆定理,知P ,M ,N 三点共线.所以P ,E ,F 三点共线.注 此例的其他证法,可参见第二章例9,第九章例15等.例18 已知△ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P 、Q ,若直线FE 与BC 交于圆外一点R .证明P 、Q 、R 三点共线.(2011年香港奥林匹克题)证明 如图1-21,由切线长定理有AE AF =.对△ABC 及截线EFR 应用梅涅劳斯定理,有1AF BR CEFB RC EA⋅⋅=,RFEDCBAPQ S 图1-21即有BR EA FB FBRC CE AF CE=⋅=. 设BE 与CF 交于点S ,由△EFC ∽△QEC ,△FEB PFB ∽△,△SEQ ∽△SFP ,有CQ CE EQ EF =,FP FE PB FB =,SP FPSQ EQ =. 又对△SBC 及所在边上的点R 、P 、Q ,有SP BR CQ SP CQ BR FP CQ FB FP CQ FB PB RC QS SQ PB RC EQ PB CE PB QE CE⋅⋅=⋅⋅=⋅⋅=⋅⋅ 1FE CE FBFB EF CE=⋅⋅=. 于是,由梅涅劳斯定理的逆定理,知P 、Q 、R 三点共线. 4.注意与其他著名定理配合运用例19 在Rt △ABC 中,已知90A =︒∠,B C >∠∠,D 是△ABC 处接圆的圆心,直线A l 、B l 分别切O 于点A 、B ,BC 与直线A l 、AC 与直线B l 分别交于点S 、D ,AB 与DS 交于点E ,CE 与直线A l 交于点T ,又设P 是直线A l 上的点,且使得A EP l ⊥,Q (不同于点C )是CP 与O 的交点,R 是QT 与O 的交点,令BR 与直线A l 交于点U . 证明:22SU SP SA TU TP TA ⋅=⋅.(2005年韩国奥林匹克题)证明 如图1-22,设BA 的延长线与O (过C 点)的切线交于点E '.由帕斯卡定理知S 、D 、E '三点共线,从而点E '与E 重合.图1-22由切割线窄弹知 2TA TR TQ =⋅,2SA SB SC =⋅.所以,22SA SB SC TA TR TQ⋅=⋅. ①设TQ 与CB 交于点X ,对△XTS 及截线RBU ,截线QCP 分别应用梅涅劳斯定理,有 1XP TU SBRT US BX⋅⋅=,=1XQ TP SC QT PS CX ⋅⋅. ②注意相交弦定理,有XP XQ XB XC ⋅=⋅.③由①、②、③,得 22SU SP XP SB XQ SC SB SC SA TU TP RT BX QT CX TR TQ TA ⋅=⋅⋅⋅=⋅=. 例20 在梯形ABCD 中,已知BC 、AD 分别为上、下底,F 为腰CD 上一点,AF 与BD 交于点E ,G 为边AB 上一点,满足EG AD ∥,CG 与BD 交于点H ,FH 与AB 交于点I .证明:CI 、FG 、AD 三线共点. (2011年乌克兰奥林匹克题) 证明 如图1-23,设直线AB 与DC 、AF 与DG 分别交于点S 、T .SD图1-23先证S 、H 、T 三点共线.由EG AD BC ∥∥,知△ATP ETG ∽△,△GHE CHB ∽△,△ASD ∽△BSC .有,,AT AD EH GE BC BSTE EG HB CB AD AS ===. 上述三式相乘,有 1AT EH BS AD GE CBTE HB SA EG CB AD⋅⋅=⋅⋅=. 对△AES 应用梅涅劳斯定理的逆定理,知T 、H 、S 三点共线.考虑△AFI 和△DGC ,注意到直线IF 与CG ,FA 与GD 、AI 与DC 分别交于点H 、T 、S ,于是由戴沙格定理,知CI 、FG 、AD 三线共点. 【模拟实战】习题A 1.在△ABC 中,点D 在BC 上,13BD DC =,E ,G 分别在AB ,AD 上,23AE EB =,12AG GD =,EG 交AC 于点F ,求AFFC. 2.在ABCD 中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 相交于H ,求AH ∶HG ∶GF .3.P 是△ABC 内一点,引线段APD ,BPE 和CPF ,使D 在BC 上,E 在AC 上,F 在AB 上.已知6AP =,9BP =,6PD =,3PE =,20CF =,求△ABC 的面积.(第7届A IM E 题)4.设凸四边形ABCD 的对角线AC 和交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点,求证:OPF OEP =∠∠.(1996年全国初中联赛题)5.已知D ,F 分别是△ABC 的边AB ,AC 上的点,且23AD DB CF FA ==∶∶∶,连DF 交BC 边的延长线于点E ,求EF FD ∶.6.设D 为等腰Rt △ABC (90C =︒∠)的直角边BC 的中点,E 在AB 上,且21AE EB =∶∶,求证:CE AD ⊥.7.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC 的面积之比.8.E ,F ,G ,H 分别为四边形ABCD 的四条边AB ,BC ,CD ,DA 上的点,若EH ,BD ,FG 三直线共点,则EF ,AC ,HG 三直线共点或平行.9.设X ,Y ,Z 分别是△ABC 的边CB ,CA 和BA 延长线上的点,又XA ,YB 和ZC 分别是△ABC 外接圆的切线.证明:X ,Y ,Z 三点共线. (1989年新加坡竞赛题) 10.求证:三角形两角的平分线与第三角的外角平分线各与对边所在直线的交点共线.11.已知直径为AB 的圆和圆上一点X ,设A t ,B t 和X t 分别是这个圆在A ,B ,X 处的切线.设Z 是直线AX 与B t 的交点,Y 是直线BX 与A t 的交点,证明:YZ ,X t ,AB 三直线共点.(第6届加拿大竞赛题)12.P 是ABCD 中任一点,过P 作AD 的平行线分别交AB ,CD 于E ,F ,又过P 作AB 的平行线,分别交AD ,BC 于G ,H .求证:AH ,CE ,DP 三线共点.13.在△ABC 中,1AA 为中线,2AA 为角平分线,K 为1AA 上的点,使2KA AC ∥.证明:2AA KC ⊥. (第58届莫斯科奥林匹克题)14.直线l 交直线OX ,OY 分别于A ,B ,点C 与D 是线段AB 两侧的直线l 上两点,且CA DB =.过C 的直线CKL 交OX 于K ,交OY 于L ;过D 的直线交OX 于M ,交OY 于N .连结ML 和KN ,交直线l 分别于E ,F .求证:AE BF =.15.设四边形ABCD 外切于一圆,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的切点,若直线HE 与DB 相交于点M ,则M ,F ,G 三点共线.16.设P 为△ABC 的内点,过点P 的直线l ,m ,n 分别垂直于AP ,BP ,CP ,若l 交BC 于Q ,m 交AC 于R ,n 交AB 于S ,证明:Q ,R ,S 共线.(IMO -28预选题) 17.已知△ABC 的BC 与它的内切圆相切于点F .证明:该圆的圆心O 在BC 与AF 的两个中点M ,N的连线上.18.已知凸四边形ABCD 内接于O ,对角线AC ,BD 相交于点Q ,过Q 分别作直线AB ,BC ,CD ,DA 的垂线,垂足分别是E ,F ,G ,H .求证:EH ,BD ,FG 三直线共点或互相平行.19.设ABCD 为圆外切四边形,又AB ,BC ,CD ,DA 与该圆的切点为E ,F ,G ,H .求证:AC ,BD ,EG ,FH 共点.习题B1.P 是ABCD 内一点,MN ,EF 分别过P ,MN AD ∥且分别与AB ,CD 交于点M ,N ,EF AB ∥且分别与DA ,BC 交于点E ,F .求证:ME ,FN ,BD 三线共点.2.在△OAB 中,AOB ∠为锐角,从AB 上任一点M 作MP OA ⊥于P ,MQ OB ⊥于Q ,点H 是△OPQ 的垂心,求当点M 在线段AB 上移动时,点H 的轨迹. (IMO -7试题)3.在正△ABC 的边BC ,CA ,AB 上有内分点D ,E ,F 将边分成3∶(3)(6)n n ->,线段AD ,BE ,CF 相交所成的△PQR (BE 交AD 于P ,交FC 于Q )是△ABC 的面积的449时,求n 的值. (1992年日本奥林匹克预选题)4.在△ABC 中,90A =︒∠,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F .若BE ∶2ED AC =∶DC ,则ADB FDC =∠∠.5.已知点E ,1D ,2D 在△ABC (AB AC >)的边BC 上,12BAD CAD =∠∠,11EF AD ∥交AB 于1F ,又与CA 的延长线交于1C ,22EF AD ∥交AB 于2F ,又与CA 的延长线交于2G .求证:212212BF BF BE CE CG CG ⋅=⋅. (《数学通报》问题1353题)6.圆外切四边形ABCD 中,AB ,BC ,CD ,DA 边上的切点分别为P ,Q ,R ,S .AD 与BC 的延长线交于点E ,AB 与DC 延长线相交于点F .求证:(Ⅰ)AC ,BD ,PR ,QS 四线共点;(Ⅱ)AC ,EF ,PQ ,RS 四线共点;(Ⅲ)BD ,EF ,PS ,QR 四线共点(假定BD EF ≠). 7.若凸四边形的对角线AC 与BD 互相垂直,且相交于E ,过E 点分别作边AB ,BC ,CD ,DA 的垂线,垂足依次为P ,Q ,R ,S ,并分别交CD ,DA ,AB ,BC 边于P ',Q ',R ',S ',再顺次连接P Q '',Q R ''.R S '',S P '',则R S P Q AC ''''∥∥;R Q P S BD ''''∥∥.(IMO -22试题的推广)8.面积为1的△ABC 的边AB ,AC 上分别有点D ,E ,线段BE ,CD 相交于点P .点D ,E 分别在AB ,AC 上移动,但满足四边形BCED 的面枳是△PBC 面积的两倍这一条件,求△PDE 面积的最大值. (1992年日本奥林匹克题)9.ABCD 是边长为2的正方形,E 为AB 的中点,F 是BC 的中点,AF 和DE 相交于I ,BD 和AF 相交于H .求四边形BEIH 的面积.10.P 是凸四边形ABCD 所在平面上一点,APB ∠,BPC ∠,CPD ∠,DPA ∠的平分线分别交AB ,BC ,CD ,DA 于点K ,L ,M ,N .(Ⅰ)寻找一点P ,使KLMN 是平行四边形;(Ⅱ)求所有这样的P 点的轨迹. (1995年世界城市际联赛题)11.△ABC 中,AB AC >,AD 为内角平分线,点E 在△ABC 的内部,且EC AD ⊥,ED AC ∥,求证:射线AE 平分BC 边.(《数学教学》问题536题) 12.设△123A A A 为非等腰三角形,内心为I ,i C (1i =,2,3)为过I 与1i i A A +和2i i A A +相切的小圆(增加的下标作模3同余),i B (1i =,2,3)为圆1i C +和2i C +的另一交点,证明:△11A B I ,△22A B I ,△33A B I 的外心共线.(IMO -38预选题)第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得2BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OEOM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。

国际数学奥林匹克试题分类解析数论

国际数学奥林匹克试题分类解析数论

国际数学奥林匹克试题分类解析数论A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】 1963年成都市赛高二二试题 3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≥1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则 a=198;若n=16,则 a=55;若n=25,则 a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】 1976年纽约数学竞赛题 7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题 5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≤r<a+b),q2+r=1977,所以q2≤1977,从而q≤44.若q≤43,则r=1977-q2≥1977-432=128.即(a+b)≤88,与(a+b)>r≥128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≥|b-22|,则1009≥(a-22)2≥504,从而45≤a≤53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n 取最小值,这里n>m≥1.【题说】第二十届(1978年)国际数学奥林匹克题 1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m×989m≡0(mod 8),m≥3又1978n-m≡1(mod 125)而 1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1·1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4×25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006 求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】 1980年卢森堡等五国国际数学竞赛题 6.本题由荷兰提供.于是 x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2·3=6,于是u=10,v=16A2-007 确定m2+n2的最大值,这里 m和 n是整数,满足 m,n∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题 3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得 n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008 求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题 1.【解】不妨设x≤y≤z.显然w≥z+1,因此(z+1)!≤w!=x!+y!+z!≤3·z!从而z≤2.通过计算知x=y=z=2,w=3是原方程的唯一解.A1-010 前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)数学邀请赛题 10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50×12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011 使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)数学邀请赛题 5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n最大值是890.A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】 1987年匈牙利数学奥林匹克题 1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≥ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013 设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)数学邀请赛题 7.【解】显然,a、b、c都是形如2m·5n的数.设a=2m1·5n1,b=2m2·5n2,c=2m3·5n3.由[a,b]=1000=23·53,知max(m1,m2)=3,max(n1,n2)=3.同理,max (m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7×10=70种,即三元组共有70个.A2-014 设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2·10-3+3n·10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题 1.【解】 144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016 当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题 1.【解】1989≤10n/x<1990所以10n/1990<x≤10n/1989即10n·0.000502512…<x≤10n·0.000502765…所以n=7,这时x=5026与5027是解.A2-017 设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】 1990年第1轮选拔赛题 9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因 2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100- n,2n+1+2(100- n))=(100-n,201)≤201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为 75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)数学邀请赛题5.【解】为保证 n是75的倍数而又尽可能地小,可设n=2α·3β·5γ,其中α≥0,β≥1,γ≥2,并且(α+1)(β+1)(γ+1)=75由75=52·3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24·34·52,n/75=432.A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】 1.例如x=1,y=8即满足要求.2.假设988≤x<y≤1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≥y>3x+1≥3×998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020 求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】 1991年中国数学奥林匹克题 5.【解】题给条件等价于,对一切k∈N,k2+n/k2≥1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≥0即(k2-1991/2)2+n-19912/4≥0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≥1991×322-324=1024×967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992×322-324=1024×968故n为满足1024×967≤n≤1024×967+1023的一切整数.A2-021 设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】 n=1,易知所求和S1=2.n≥2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≥1)位数字是1的数的个数.因为其中n个0的位置只可从2n -2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022 在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)数学邀请赛题6.7或 8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a=9而b≠9或c≠9.则当n和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023 定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4×1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.A2-024 数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】 1992年数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025 求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】 1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题 3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2×9)=S(3×9)=…=S(92)=9,故9满足要求.10k≤n<10k+1又9 10k,故10k+1≤n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≥10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≤l≤k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是 k+1位数,所以 n=99…9=10k+1-1.另一方面,当 n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≥1).A2-026 求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】 1992年友谊杯国际数学竞赛十、十一年级题 2.【解】当m=1时,23m+1=9,故k≤2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】 1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3×1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028 试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≤b≤c≤d.无论a为b,c,d哪两个数的乘积,均有a≥bc,类似地,d≤bc.从而,bc≤a≤b≤c≤d≤bc,即a=b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.A2-029 对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f (19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030 对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)数学邀请赛题 4.【解】 [long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2×1+4×2+8×3+16×4+32×5+64×6+128×7=1538.A2-031 对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p(1)+p(2)+p(3)+…+p(999),则S的最大素因子是多少?【题说】第十二届(1994年)数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如25可写成 025),所有这样的正整数各位数字乘积的和是(0·0·0+0·0·1+0·0·2+…+9·9·8+9·9·9)-0·0·0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33·5·7·103最大的素因子是103.A2-032 求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs 及p2+qr都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2, s=a+2q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被 3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033 求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q +2,p=r-2,其中q、r为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】 n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn-1,n)=1,所以mn-1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≥n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≥2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n+1),m=n=2.若m>n,则由于2(mn-1)≥n2+mn+n-2≥n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.【题说】第十三届(1995年)数学邀请赛题7.【解】由已知得即所以A2-036 一个正整数不是42的正整数倍与合数之和.这个数最大是多少?【题说】第十三届(1995年)数学邀请赛题10.【解】设这数为42n+p,其中n为非负整数,p为小于42的素数或1.由于2×42+1,42+2,42+3,42×5+5,42+7,2×42+11,42+13,4×42+17,3×42+19,42+23,3×42+29,2×42+31,4×42+37,2×42+41,都是合数,所以在n≥5时,42n+p都可表成42的正整数倍与合数之和,只有42×5+5例外.因此,所求的数就是42×5+5=215.A2-038 求所有正整数x、y,使得x+y2+z3=xyz,这里z是x、y的最大公约数.【题说】第三十六届(1995年)IMO预选题.【解】由原方程及y2、z3、xyz均被z2整除得出z2|x.设x=az2,y=bz,则原方程化为a+b2+z=abz2 (1)由b2、abz2被b整除得b|(a+z).于是b≤a+z.a+z+b2=abz2=(a+z)b+(a+z)b+b((z2-2)a-2z)≥a+z+b2+b((z2-2)a-2z)(2)(2)中不等式的等号只在b=1并且b=a+z时成立,而这种情况不可能出现(a +z>1),所以(2)是严格的不等式.这表明(z2-2)a-2Z<0 (3)从而z≤2(否则(3)的左边≥z2-2-2z≥z-2>0).在z=2时,2a-2z<0,即a=1,代入(1)得b=1或3,从而x=4,y=2或6.在z=1时,(1)成为a+b2+1=ab (4)从而(a-b)(b-1)=b+1=(b-1)+2这表明(b-1)|2,b=2或3.代入(4)得a=5.于是x=5,y=2或3.因此本题共有四组解:(x,y)=(4,2),(4,6),(5,2),(5,3).A2-039 设 m、n∈N,(m,n)=1.求(5m+7m,5n+7n).其中(m,n)表示 m、n的最大公约数.【题说】 1996年数学奥林匹克题 2.【解】记H(m,n)=(5m+7m,5n+7n).则H(0,1)=(2,12)=2H(1,1)=(12,12)=12因H(m,n)=H(n,m),故可设n≥m.当n≥2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5m7m(5n-2m+7n-2m))=(5m+7m,5m7m(5n-2m+7n-2m))=(5m+7m,5n-2m+7n-2m)当m≤n<2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5n-m7n-m(52m-n+72m-n))=(5m+7m,52m-n+72m-n)记则(1)H(m′,n′)=H(m,n);(2)m′+n′≡m+n(mod 2);(3)(m′,n′)=(m,n).当(m,n)=1时,反复进行上面的操作,最后必有(m′,n′)=(1,0)或(m′,n′)=(1,1).从而有A2-040 求下列方程的正整数解:(a,b)+[a,b]+a+b=ab其中a≥b,[a,b]、(a,b)分别表示a与b的最小公倍数与最大公因数.【题说】 1996年数学奥林匹克预选赛题 7.【解】记(a,b)=d,a=da′,b=db′,则[a,b]=da′b′.题设条件变为1+a′+b′+a′b′=da′b′ (*)所以故1<d≤4.当d=4时,a′=b′=1,从而a=b=4;当d=3时,(*)等价于(2a′-1)(2b′-1)=3由a′≥b′得a′=2,b′-1.故a=6,b=3.当d=2时,(*)等价于(a′-1)(b′-1)=2由a′≥b′得a′=3,b′=2.从而a=6,b=4.综上所述,所求的正整数解有4,4;6,4;6,3.A2-041 一个幻方中,每一行,每一列及每一对角线上的三个数之和有相同的值.图示一个幻方中的四个数,求x.【题说】第十四届(1996年)数学邀请赛题1.【解】幻方中两条对角线的和与第二列的和都为同一值s,这3s也是第一行的和加上第二行的和,再加上中央一数的3倍.所以中央的左下角的数为19+96-1=114.因此x=3×105-19-96=200A2-042 对整数1,2,3,…,10的每一个排列a1,a2,…,a10,作和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|数.求p+q.【题说】第十四届(1996年)数学邀请赛题12.【解】差|a i-a j|有如下的45种:这45种的和为1×9+2×8+3×7+4×6+5×5+6×4+7×3+8×2+9×1=165.每一种出现的次数相同,而在和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|中有5种,所以A2-043 设正整数a、b使15a+16b和16a-15b都是正整数的平方.求这两个平方数中较小的数能够取到的最小值.【题说】第三十七届(1996年)国际数学奥林匹克题4.本题由俄罗斯提供.【解】 15a+16b=r2,16a-15b=s2于是16r2-15s2=162b+152b=481b (1)所以 16r2-15s2是481=13×37的倍数.由于0,±1,±2,±3,±4,±5,±6的平方为0,±1,±3,±4(mod 13),所以15≡2(mod 13)不是任一数的平方.因此,16r2≡15s2(mod 13)时,必有13|s.同样,由于0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,±15,±16,±17,±18的平方为 0,±1,±3,±4,±9,±12,±16(mod 37),所以必有 37|s.于是481|s.由(1),481|r.在r=s=481时,b=(16-15)×481=481,a=(16+15)×481=31×481,满足15a+16b=r2,16a-15b=s2.所以所说最小值为481.A2-044 设自然数n为十进制中的10位数.从左边数起第1位上的数恰是n的数字中0的个数,第2位上的数恰是n的数字中1的个数,一般地,第k+1位上的数恰是n的数字中k的个数(0≤k≤9).求一切这样的数n.【题说】 1997年数学奥林匹克预选赛题 7.【解】设n的左数第k+1位上的数字为n k(0≤k≤9),则数字k出现的次数为n k.因为n是10位数,所以n0+n1+n2+…+n9=10 (1)又数字k若在左数第n j+1位上出现,则数字j在n中出现k次.n k个k意味着有数字j1,j2,…,j nk,共出现k nk次.于是,又有n i+2n2+…+9n9=10 (2)由(2)显然n5,n6,n7,n8,n9,至多一个非零,且n6,n7,n8,n9均≤1.若 n5=n6=n7=n8=n9=0 (3)则n0≥5.于是n中至少有一个数字≥5,与(3)矛盾.所以n5,n6,n7,n8,n9中有一个非零,其余四个为0.从而n1+2n2+3n3+4n4≤5 (4)(4)表明n1,n2,n3,n4中至少有两个为0,从而n中0的个数不少于6,即n0≥6.于是n6,n7,n8,n9中有一个为1,n5=0.若n9=1,则n0=9,n1≥1,这显然不可能.若n8=1,则n0=8,n1≥1,但无论n1>1或n1=1均不合要求.若n7=1,则n0=7,n1=1或2,前者显然不合要求.后者导致n2≥1,n0+n1+n2+n7>10也不合要求.若n6=1,则n0=6,n1=2或3.n1=2时,n2=1,数6210001000满足要求.n1=3时,n3>0,n0+n1+n3+n6>10,不合要求.综上所述,满足条件的10位数n只有6210001000.A2-045 求所有的整数对(a,b),其中a≥1,b≥1,且满足等式a b2=b a.【题说】第三十八届(1997年)国际数学奥林匹克题5.本题由捷克提供.【解】显然当a、b中有一个等于1时,(a,b)=(1,1).以下设a,b≥2.设t=b2/a,则由题中等式得到b=a t,at=a2t,从而t=a2t-1.如果2t-1≥1,则t =a2t-1≥(1+1)2t-1≥1+(2t-1)=2t>t,矛盾.所以2t-1<1.于是我们有0<t<1.记K=1/t,则K=a/b2>1为有理数,由a=b k可知K=b K-2 (1)如果K≤2,则K=b K-2≤1,与前面所证K>1矛盾,因此K>2.设K=p/q,p,q∈N,p、q互质,则p>2q.于是由(1)q=1,即K为一个大于2的自然数.当b=2时,由(2)式得到K=2K-2,所以K≥4.又因为等号当且仅当K=4时成立,所以得到a=b K=24=16.当b≥3时,=b K-2≥(1+2)K-2≥1+2(K-2)=2K-3.从而得到K≤3.这意味着K=3,于是得到b=3,a=b K=33=27.综上所述,满足题目等式的所有正整数对为(a,b)=(1,1),(16,2),(27,3).75=3×5^2显然N必含有质因数3、5,且质因数5的个数至少为2。

2011年国际数学奥林匹克中国国家集训队协作体旁听生成绩

2011年国际数学奥林匹克中国国家集训队协作体旁听生成绩
第 2 页,共 7 页
总分 名次 47 47 46 46 45 44 44 44 44 43 42 42 42 42 42 42 41 41 41 40 40 40 39 39 38 38 38 38 37 30 30 32 32 34 35 35 35 35 39 40 40 40 40 40 40 46 46 46 49 49 49 52 52 54 54 54 54 58
性别 学校 年级 1 2 3 4 5 6 1 2 3 4 5 6 1 2 1 0 0 0 0 1 3 0 7 0 5 6 男 清华大学附属中学 0 0 0 7 0 1 1 0 0 7 0 1 14 男 河北省衡水中学 6 1 0 7 0 1 2 2 0 1 1 1 0 男 东北师范大学附属中学 6 0 0 7 0 1 4 0 0 5 7 0 0 女 武汉二中 6 0 0 7 0 1 2 1 0 7 0 7 0 男 武钢三中 男 华中师范大学第一附属中学 高一 7 0 0 7 0 0 1 1 1 0 0 1 0 2 0 0 1 0 1 1 1 0 3 0 1 0 男 长沙市长郡中学 男 清华大学附属中学 0 0 1 7 0 0 2 0 0 7 0 1 0 7 0 0 6 0 1 2 1 0 7 0 1 6 男 河北省衡水中学 7 0 0 7 0 1 2 0 0 7 0 1 0 男 郑州市外国语学校 男 辽宁省实验中学 高二 0 0 0 7 0 0 1 0 0 6 0 1 0 7 0 0 7 0 1 0 1 0 7 1 0 6 男 哈尔滨师范大学附属中学 1 0 0 7 0 0 0 2 0 7 0 1 0 男 成都七中 男 深圳中学 高一 7 0 0 4 0 0 2 1 0 7 4 1 0 0 0 0 6 0 0 2 2 1 1 2 1 0 男 江西师范大学附属中学 7 0 0 7 2 1 5 2 0 0 0 3 0 男 湖南长沙市雅礼中学 1 2 0 0 0 1 4 1 0 1 0 1 2 男 湖南长沙市雅礼中学 7 0 0 7 0 0 0 0 0 7 2 0 6 男 湖南师范大学附属中学 7 0 0 1 0 0 2 0 1 1 0 0 0 男 湖南师范大学附属中学 0 0 0 7 2 1 1 2 1 1 0 1 0 男 东北师范大学附属中学 7 1 0 7 1 1 2 1 0 0 7 1 0 男 长沙市长郡中学 0 0 0 7 0 1 2 0 0 0 0 1 0 男 唐山一中 男 江西南昌二中 高二 0 0 0 7 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 0 1 6 女 长沙市长郡中学 男 重庆南开中学 高二 0 1 0 1 0 0 3 0 1 7 0 0 6 0 0 0 7 0 0 2 1 0 1 0 0 14 男 湖南师范大学附属中学 男 深圳耀华实验学校 0 0 0 7 0 1 2 0 0 7 7 1 0 5 1 0 7 0 1 0 男 江苏启东中学 0 0 1 0 4 1 0 1 1 2 6 1 0 男 青岛二中

2018年世界各地数学竞赛试题汇集(PDF版)

2018年世界各地数学竞赛试题汇集(PDF版)

目 录2018年亚太地区数学奥林匹克 (1)2018年波罗的海地区数学奥林匹克 (2)2018年第10届Benelux数学奥林匹克 (5)2018年巴尔干地区数学奥林匹克 (6)2018年巴尔干地区初中数学奥林匹克 (7)2018年高加索地区数学奥林匹克 (8)2018年中美洲及加勒比地区数学奥林匹克 (10)2018年Cono Sur数学奥林匹克 (11)2018年捷克-波兰-斯洛伐克联合数学竞赛 (12)2018年捷克和斯洛伐克数学奥林匹克 (13)2018年多瑙河地区数学奥林匹克 (14)2018年欧洲女子数学奥林匹克 (16)2018年欧洲数学杯奥林匹克 (18)2018年拉丁美洲数学奥林匹克 (20)2018年国际大都市数学竞赛(IOM) (21)2018年第2届IMO复仇赛 (22)2018年第5届伊朗几何奥林匹克 (23)2018年第17届基辅数学节竞赛 (27)2018年地中海地区数学竞赛 (29)2018年中欧数学奥林匹克 (30)2018年北欧数学奥林匹克 (32)2018年泛非数学奥林匹克 (33)2018年罗马尼亚大师杯数学奥林匹克 (35)2018年第14届Sharygin几何奥林匹克 (36)2018年丝绸之路数学奥林匹克 (42)2018年Tuymaada国际数学奥林匹克 (43)2018年乌克兰几何奥林匹克 (45)2018年第14届Zhautykov国际数学奥林匹克 (47)2018年ARML数学竞赛 (48)2018年美国数学邀请赛(AIME) I (57)2018年美国数学邀请赛(AIME) II (60)2018年美国数学奥林匹克 (63)2018年美国初中数学奥林匹克 (64)2018年美国IMO代表队选拔考试 (65)2018年美国TSTST (67)2018年美国第20届ELMO (69)2018年第20届美国旧金山湾区数学奥林匹克 (71)2017-2018年度USAMTS (74)2018年美国女子数学奖学金竞赛(决赛) (79)2017-2018年度威斯康星数学、科学与工程学人才选拔 (80)2018年奥地利数学奥林匹克 (84)2018年澳大利亚、英国IMO国家队联合训练考试 (87)2018年波黑数学奥林匹克(地区级) (88)2018年波黑EGMO代表队选拔考试 (90)2018年波黑JBMO代表队选拔考试 (91)2018年巴西数学奥林匹克 (92)2018年巴西数学奥林匹克复仇赛 (94)2017/2018英国数学竞赛 (95)2018年保加利亚数学奥林匹克 (97)2018年保加利亚JBMO代表队选拔考试 (98)2018年加拿大数学奥林匹克 (99)2018年塞浦路斯IMO代表队选拔考试 (100)2018年塞浦路斯JBMO代表队选拔考试 (102)2018年丹麦数学奥林匹克(第二轮) (105)2018年德国数学奥林匹克(12年级决赛) (106)2018年希腊数学奥林匹克 (107)2018年香港数学奥林匹克 (109)2018年香港IMO代表队选拔考试 (110)2018年匈牙利库尔沙克数学竞赛 (112)2018年印度全国数学奥林匹克 (113)2018年印度IMO代表队选拔考试 (114)2018年伊朗数学奥林匹克 (117)2018年伊朗IMO代表队选拔考试 (120)2018年爱尔兰数学奥林匹克 (123)2018年意大利数学奥林匹克 (125)2018年哈萨克斯坦数学奥林匹克(11年级决赛) (126)2018韩国数学奥林匹克 (127)2018年韩国数学冬令营训练题 (130)2018年科索沃IMO培训考试 (131)2018年马其顿数学奥林匹克 (132)2018年墨西哥数学奥林匹克 (133)2018年摩尔多瓦EGMO代表队选拔考试 (135)2018年摩尔多瓦IMO代表队选拔赛 (136)2018年摩尔多瓦JBMO代表队选拔考试 (138)2018年摩洛哥IMO代表队选拔考试 (139)2017-2018年度挪威数学奥林匹克(决赛) (140)2017-2018年度波兰数学奥林匹克 (141)2017-2018年度波兰初中数学奥林匹克 (145)2018年罗马尼亚数学奥林匹克 (147)2018年罗马尼亚IMO代表队选拔考试 (149)2018年罗马尼亚JBMO代表队选拔考试 (150)2018年全俄数学奥林匹克 (154)2018年圣彼得堡数学奥林匹克 (158)2018年塞尔维亚数学奥林匹克 (161)2018年塞尔维亚JBMO代表队选拔考试 (162)2018年斯洛文尼亚IMO代表队选拔考试 (163)2018年南非数学奥林匹克 (164)2018年西班牙数学奥林匹克 (165)2018年塔吉克斯坦IMO代表队选拔考试 (166)2018年土耳其数学奥林匹克 (168)2018年乌克兰数学奥林匹克 (169)2018年越南数学奥林匹克 (171)2018年越南IMO代表队选拔考试 (173)2018年国际大学生数学竞赛(IMC) (175)2018年V ojtěch Jarník国际大学生数学竞赛 (177)2018年Putnam数学竞赛 (179)2018年哈佛大学-麻省理工学院数学竞赛春季赛 (181)2018年哈佛大学-麻省理工学院数学邀请赛 (189)2018年哈佛大学-麻省理工学院数学竞赛冬季赛 (190)2018年Berkeley数学竞赛 (197)2018年卡内基梅隆大学数学竞赛 (213)2018年普林斯顿大学数学竞赛 (226)2018年斯坦福大学数学竞赛 (237)2018年哈维穆德学院数学竞赛 (254)2018年MMATHS数学竞赛 (259)2018年Duke大学数学竞赛 (264)2018年亚太地区数学奥林匹克试题比赛时间: 2018年3月13日1. 设H 为△ABC 的垂心. 点M , N 分别为边AB , AC 的中点, 点H 位于四边形BMNC 的内部. △BMH 与△CNH 的外接圆相外切. 过H 作BC 的平行线, 与△BMH 与△CNH 的外接圆分别相交于点K , L (均不同于点H ). 直线MK 与NL 相交于点F . 设△MNH 的内心为J . 证明: FJ = F A .2. 对实数x , 定义函数f (x ), g (x )如下:20181...41211)(-++-+-+=x x x x x f , 20171...513111)(-++-+-+-=x x x x x g . 证明: 对任意满足0 < x < 2018的非整数的实数x , 有|f (x ) – g (x )| > 2成立.3. 我们称平面上n 个正方形的摆放方式为"三足鼎立"的, 如果它们同时满足以下三个条件:i) 所有正方形均全等.ii) 如果两个正方形有公共点P , 则P 同时为这两个正方形的顶点.iii) 每一个正方形都恰好与其他三个正方形有公共点.求在2018 ≤ n ≤ 3018范围内, 有多少个整数n , 使得存在n 个正方形为"三足鼎立"的.4. 一束光线从正△ABC 的顶点A 出发, 在三角形内部遵循光反射定律(即入射角等于出射角)不断反射, 但当光线到达△ABC 的任一顶点处时, 反射停止. 求所有可能的正整数n , 使得光线在△ABC 内经过n 次反射后, 恰在顶点A 处停止.5. 求所有的整系数多项式P (x ), 使得对任意的实数s , t , 如果P (s ), P (t )均为整数, 则P (st )也是整数.2018年波罗的海地区数学奥林匹克试题1. 称一个由有限个正实数(不必互异)构成的集合为"平衡"的, 如果其中每一个数都小于其余各数之和. 求所有的整数m ≥ 3, 使得任何由m 个正实数构成的平衡集均可被划分为3个无公共元素的子集, 满足每个子集的各元素之和均小于另两个子集的各元素的总和.2. 考虑一个100 ⨯ 100的表格. 对每一个整数1 ≤ k ≤ 100, 该表格的第k 行填有按自左向右递增顺序排列的数1, 2, …, k (但不一定位于连续的格子内); 而该行其余的100 – k 个格子均填0. 证明: 该表格中存在两列, 使得其中一列的各数之和至少是另一列各数之和的19倍.3. 设正实数a , b , c , d 满足abcd = 1. 证明:110321≤+++∑cyc c b a . 4. 求所有具有下述特点的函数f : [0, ∞) → [0, ∞): 对所有的正整数n 及非负实数x 1, x 2, …, x n , 有2222122221)(...)()()...(n n x f x f x f x x x f +++=+++成立. 5. 称一个实系数多项式f (x )为"生成"的, 如果对每一个实系数多项式ϕ(x ), 均存在正整数k 及实系数多项式g 1(x ), g 2(x ), …, g k (x ), 使得ϕ(x ) = f (g 1(x )) + f (g 2(x )) + … + f (g k (x ))成立. 求所有的生成多项式.6. 设n 为正整数. 精灵Elfie 从原点(0, 0, 0)开始, 在三维空间里旅行. 每一步, 她可以瞬移至距她当前所在点距离恰为n 的任意整点. 但是, 瞬移是一件复杂的事情: Elfie 最初处于正常状态, 但是第一次瞬移后变为怪异状态, 第二次瞬移后恢复为正常状态, 以后则如此交替变化. 求所有的n , 使得对所有整点, Elfie 都能够以正常状态访问过该点.7. 一个16 ⨯ 16圆环体有512条边(如图), 将每条边染为红色或蓝色之一. 称一种染色方式为"好"的, 如果每一个顶点都是偶数条红色边的顶点. 定义一步"转换"为将任一格的四条边均改变颜色(红变蓝, 蓝变红). 问最多有多少个"好"的染色方式, 使得其中任意一个染色方式都不能够通过一系列的"转换"而变为另一个.8. 一个图具有N个顶点. 在某一顶点处有一只不可见的兔子. 一群猎人计划猎杀这只兔子. 在每一步, 每个猎人都瞄准某一个顶点同时开枪射击, 他们可以事先商量好每人瞄准哪一个顶点. 如果兔子恰在被瞄准射击的顶点之一, 则打猎活动结束. 否则, 兔子在接下来的一步中可以选择继续停留在原顶点处或跳至某个相邻顶点处. 假设已知有一种方案可以使猎人至多经N!步就可以猎杀兔子. 证明: 存在一种方案, 可以使得猎人至多经2N步就可以猎杀兔子.9. Olga和Sasha在一个无限六边形网格上玩游戏. 他们轮流选择一个空的六边形,并在其上放置一张骨牌, 由Olga先行. 恰在第2018张骨牌放置之前, 一条新规则开始起效: 从此时起, 只能在和至少两个已被放置骨牌的六边形相邻的空六边形上放置骨牌. 如果一个玩家无法继续放置骨牌, 或者放置骨牌后会出现呈菱形分布的四个相邻六边形均被放置骨牌的情况(如图所示, 但方向可以不同), 则判该玩家输. 确定是否某个玩家有获胜策略; 如果有, 赢家是谁?10. 将整数1, 2, …, n写在n张卡片上, 每张上写一个不同的数. 首先, 由玩家1取走一张卡片. 接下来, 玩家2取走写有连续正整数的两张卡片. 然后, 再由玩家1取走写有连续正整数的三张卡片. 最后, 由玩家2取走写有连续正整数的四张卡片. 求最小的n, 使得玩家2能确保完成他的两次取卡片的操作. 11. 给定一圆w及圆上依A, B, C, D顺序排列的四点, 且AD为圆w的直径. 假设AB = BC = a , CD = c , 其中a 和c 为互质正整数. 证明: 如果圆w 的直径长d 也是正整数, 则d 及2d 中必有一个完全平方数.12. 锐角△ABC 的高BB 1, CC 1相交于点H . 点B 2, C 2分别位于线段BH , CH 上, 且BB 2 = B 1H , CC 2 = C 1H . △B 2HC 2的外接圆与△ABC 的外接圆相交于点D 和E . 证明: △DEH 为直角三角形.13. 在△ABC 中, ∠A 的内角平分线与直线BC 交于点D , 与△ABC 的外接圆交于点E . 设K , L , M , N 分别为线段AB , BD , CD , AC 的中点. 点P , Q 分别为△EKL , △EMN 的外心. 证明: ∠PEQ = ∠BAC .14. 设四边形ABCD 有内切圆w . 令圆w 与AC 的交点中较靠近点A 的那个为E . 设F 为E 关于圆w 的对径点. 经点F 作圆w 的切线, 分别交直线AB , BC 于A 1, C 1, 并与直线AD , CD 分别交于A 2, C 2. 证明: A 1C 1 = A 2C 2.15. 考虑平面内相离的两个圆. 分别选取两个圆的直径A 1B 1和A 2B 2, 使得线段A 1A 2与B 1B 2相交于点C . 设A 1A 2, B 1B 2的中点分别为A , B . 证明: 不管如何选取直径A 1B 1和A 2B 2, △ABC 的垂心总位于一条直线上.16. 设p 为奇质数. 求所有的正整数n , 使得np n -2为正整数.17. 证明: 对所有满足q p >11的正整数p , q , 不等式pqq p 2111>-成立. 18. 设整数n ≥ 3满足4n + 1为质数. 证明: 4n + 1整除12-n n .19. 设无限正整数集合B 满足以下条件: 对任意的a , b ∈ B 且a > b , 有),gcd(b a b a - ∈ B . 证明: B 是由所有正整数构成的集合.20. 求所有的正整数(a , b , c ), 使得ba c a cbc b a 444)()()(+++++为整数, 且a + b + c 为质数.2018年第10届Benelux 数学奥林匹克试题比赛时间: 2018年4月28日1. a) 设x , y 为正实数. 求⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+201811201811x y x y y x y x 的最小值. b) 设x , y 为正实数. 求⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+201811201811x y x y y x y x 的最小值. 2. 在七星岛上, 共使用4种不同的硬币和3种不同的纸币, 它们的面额分别为7个不同的正整数, 且最小额纸币的面额大于4种不同硬币的面额之和. 一位游客恰好有不同面额的硬币各1枚及不同面额的纸币各1张, 但是这些钱的总额不够支付他想购买的一本关于钱币学的书. 幸运的是, 爱好数学的书店老板同意将此书按这位游客所提出的价格卖给他, 但前提是该游客可以用超过一种方式支付此价格.(游客可以用超过一种方式支付某价格, 指的是在由他的硬币与纸币构成的集合中, 存在两个不同的子集, 每个子集里钱的面额之和均等于该价格.) a) 证明: 如果每张纸币的面额均小于49, 则该游客能够购买到这本书. b) 证明: 如果最大额纸币的面额等于49, 则该游客有可能空手而归.3. 设H 为三角形ABC 的垂心, D , E , F 分别为AB , AC , AH 的中点. 点B , C 关于点F 的对称点分别为P , Q .a) 证明: 直线PE 和QD 的交点位于三角形ABC 的外接圆上.b) 证明: 直线PD 和QE 的交点位于AH 上.4. 我们称一个恰有s 个正因数1 = d 1 < d 2 < … < d s = n 的正整数n > 2为"好"的, 如果存在整数2 ≤ k ≤ s , 满足d k > 1 + d 1 + … + d k –1.如果一个整数n > 2不是"好"的, 则称之为"坏"的.a) 证明: 存在无穷多个"坏"的整数.b) 证明: 在均大于2的任意7个连续整数中, 至少有4个整数为"好"的. c) 证明: 存在无穷多个由连续7个整数构成的序列, 其中每个序列里的数都是"好"的.2018年巴尔干地区数学奥林匹克试题比赛时间: 2018年5月9日1. 凸四边形ABCD内接于圆k, 其中AB > CD, 且AB不平行于CD. 点M为对角线AC与BD的交点, 自M作AB的垂线, 与AB相交于点E.如果EM平分 CED, 证明: AB为圆k的一条直径.2. 设q为正有理数. 两只蚂蚁最初均位于平面上的同一点X处. 在第n分钟(n = 1, 2, …), 每只蚂蚁各自在北, 东, 南, 西四个方向中选择一个方向, 并沿此方向移动q n米. 经过整数个分钟后, 它们再次位于平面上的同一点处(不一定是点X), 但是在此时间段内它们的移动路径并不完全相同.求q所有可能的取值.3. Alice和Bob一起玩如下的移硬币游戏. 他们从两堆均非空的硬币开始, 首先由Alice开始, 轮流进行以下操作: 该轮玩家选择数目为偶数的一堆硬币, 将该堆的一半硬币移到另一堆里. 如果某位玩家无法进行上述操作, 则游戏结束, 并判对方获胜.求所有的正整数对(a, b), 使得如果最初两堆分别有a和b枚硬币, 则Bob有获胜策略.4. 求所有的素数对(p, q), 使得3p q–1 + 1整除11p + 17p.2018年巴尔干地区初中数学奥林匹克(JBMO)试题比赛时间: 2018年6月21日1. 求满足方程m 5 – n 5 = 16mn 的所有整数(m , n ).2. 设有n 个三位正整数同时满足以下条件:i) 每个数均不含数字0;ii) 每个数的数字和为9;iii) 任意两个数的个位数均不同;iv) 任意两个数的十位数均不同;v) 任意两个数的百位数均不同.求n 的最大可能值.3. 设k > 1为正整数, n > 2018为正奇数. 不全相等的非零有理数x 1, x 2, …, x n 满足如下关系式:11433221...x k x x k x x k x x k x x k x n n n +=+==+=+=+-. i) 求乘积n x x x ⋅⋅⋅...21(用关于k 和n 的函数表示).ii) 求最小的k , 使得存在满足所给条件的n , x 1, x 2, …, x n .4. 设A', B', C'分别为△ABC 的顶点A , B , C 关于对边的对称点. △ABB'的外接圆交△ACC'的外接圆于A 1 (A 1 ≠ A ). 类似定义点B 1和C 1. 证明: AA 1, BB 1, CC 1三线共点.2018年高加索地区数学奥林匹克试题初级组第1天(2018年3月16日)1. 设a, b, c为不全为0的实数. 证明: a + b + c = 0的充分必要条件为a2 + ab + b2 = b2 + bc + c2 = c2 + ca + a2.2. 在8 ⨯ 8国际象棋棋盘上, 放置了n > 6只马, 使得对其中任意6只马, 均存在2只马可以互相攻击. 求n的最大可能值.3. 正整数a, b, c满足条件: a b整除b c, a c整除c b. 证明: a2整除bc.4. 我们定义四边形的重心为连接对边中点的两条直线的交点. 设六边形ABCDEF内接于以O为圆心的圆Ω, 且AB = DE, BC = EF. 令X, Y, Z分别为四边形ABDE, BCEF, CDFA的重心. 证明: O为△XYZ的垂心.第2天(2017年3月17日)5. Munсhausen男爵发现了如下"定理": 对任意正整数a和b, 总存在正整数n, 使得an为完全平方数, 而bn为完全立方数. 请确定该男爵的"定理"是否正确.6. 凸四边形ABCD中, ∠BCD = 90o, E为AB的中点. 证明: 2EC≤AD + BD.7. 给定正整数n > 1. 考虑一个n⨯n棋盘. 最初棋盘上没有玻璃球, 按照以下规则逐个地往棋格里放入玻璃球: 如果一个空棋格与至少2个空棋格相邻(指有一公共边), 则该棋格内可以放入一个玻璃球. 问在此规则下, 棋盘内最多可以放入多少个玻璃球?8. 设a, b, c为一个三角形的三边长. 证明:2)()()()(2cbacaacbccbabba++≥+++++.高级组第1天(2018年3月16日)1. 给定一个四面体. 是否能够将10个连续正整数分别放置在该四面体的四个顶点及六条棱的中点上, 使得每条棱中点上的数等于该棱两端点上的数的算术平均值?2. 设I为锐角△ABC的内心. 点P, Q, R分别在边AB, BC, CA上, 满足AP = AR, BP = BQ, ∠PIQ = ∠BAC. 证明: QR⊥AC.3. 我们称2n个正整数的一个匹配(即分成n对)为"非平方"的, 如果每一对中的2个数之积均不是完全平方数. 证明: 如果存在一个"非平方"匹配, 则至少存在n!个"非平方"匹配.4. Morteza在n⨯n棋盘的每一个棋格内放置一个[0, 1] → [0, 1]的函数(即定义域为[0, 1], 值域为[0, 1]的函数). Pavel计划在棋盘每一行的左边及每一列的下边分别放置一个[0, 1] → [0, 1]的函数(共放置2n个函数), 使得棋盘的每一格均满足以下条件:如果h为该棋格内的函数, f为该棋格所在列下边的函数, g为该棋格所在行左边的函数, 则h(x) = f(g(x))对所有的x∈ [0, 1]成立.证明: Pavel总是可以实现他的计划.第2天(2018年3月17日)5. Munсhausen男爵发现了如下"定理": 对任意正整数a和b, 总存在正整数n, 使得an为完全立方数, 而bn为完全五次方数. 请确定该男爵的"定理"是否正确.6. 在坐标平面内, 两个二次多项式的图像G1, G2的交点为A, B. 设O为G1的顶点. 直线OA, OB分别与G2再次相交于点C, D. 证明: CD平行于x轴.7. 锐角△ABC中, 经过顶点A, B, C的高分别交对边于A1, B1, C1, 并分别交△ABC的外接圆于A2, B2, C2. 直线A1C1分别交△AC1C2, △CA1A2的外接圆于点P, Q (P≠C1, Q≠A1). 证明: △PQB1的外接圆与AC相切.8. 考虑一个8 ⨯8棋盘. 最初棋盘上没有玻璃球, 按照以下规则逐个地往棋格里放入玻璃球: 如果一个空棋格与至少3个空棋格相邻(指有一公共边), 则该棋格内可以放入一个玻璃球. 问在此规则下, 棋盘内最多可以放入多少个玻璃球?2018年中美洲及加勒比地区数学奥林匹克试题第1天1. 在2018张卡片上分别标记数1, 2, …, 2018, 每张卡片上标记一个数. 卡片上的数始终可见. Tito 和Pepe 一起玩游戏. 由Tito 首先开始, 他们轮流选取一张卡片, 已选过的卡片不能再选, 直到所有卡片均被选取. 然后, 每个人计算自己选取卡片上所标记数的和, 判和为偶数者获胜. 确定谁有获胜策略, 并描述该策略.2. △ABC 的外接圆为w , 外心为O . 设T 为C 关于点O 的对称点, T'为T 关于直线AB 的对称点. 直线BT'与圆w 再次相交于点R . 过O 作CT 的垂线, 交直线AC 于点L . 直线TR 与AC 相交于点N . 证明: CN = 2AL .3. 设x , y 为实数, 使得x – y , x 2 – y 2, x 3 – y 3均为素数. 证明: x – y = 3.第2天4. 求所有的3元正整数组(p , q , r ), 其中p , q 为素数, 满足215222=--p q r . 5. 设1 < n < 2018为正整数. 对i = 1, 2, …, n , 定义多项式S i (x ) = x 2 – 2018x + l i , 其中l 1, l 2, …, l n 为互不相同的正整数. 证明: 如果多项式S 1(x ) + S 2(x ) + … + S n (x )至少有一个整数根, 则l 1, l 2, …, l n 中至少有一个数不小于2018.6. 2018对夫妻参加在哈瓦那举行的一场舞会. 舞会中, 将一个圆周上2018个互异的点分别标记为0, 1, …, 2017, 每一对夫妻位于一个点上(不同夫妻位于不同的点). 对整数i ≥ 1, 令s i ≡ i (mod 2018), r i ≡ 2i (mod 2018). 舞会从第0分钟开始, 在第i 分钟, 位于点s i 的夫妻(如果存在的话)移至点r i , 而位于点r i 的夫妻(如果存在的话)则退场, 舞会由剩下的夫妻继续进行. 在20182分钟后, 舞会结束. 请确定舞会结束时还剩下多少对夫妻在场上注: 如果r i = s i , 则位于点s i 的夫妻留在原位, 不退场.2018年Cono Sur 数学奥林匹克试题第1天1. 设ABCD 为凸四边形, 点R , S 分别位于边DC , AB 上, 且满足AD = RC , BC = SA . 点P , Q , M 分别是RD , BS , CA 的中点. 设∠MPC + ∠MQA = 90o . 证明: ABCD 为圆内接四边形.2. 证明: 每一个正整数都可以表示成3, 4和7的若干幂的和, 其中同一个数不允许重复出现相同的幂次.例如: 2 = 70 + 70和22 = 32 + 32 + 41就是不允许出现的表示方式; 但是, 2= 30 + 70和22 = 32 + 30 + 41 + 40 + 71则是允许出现的表示方式.3. 考虑乘积P n = 1!⋅2!⋅3!⋅…⋅n !.i) 求所有的正整数m , 使得!2020m P 为完全平方数. ii) 证明: 存在无穷多个正整数n , 使得至少对2个正整数m ,!m P n 为完全平方数.第2天4. 对每一个正整整n ≥ 4, 考虑{1, 2, …, n }的m 个子集A 1, A 2, …, A m , 使得A 1恰含1个元素, A 2恰含2个元素, …, A m 恰含m 个元素; 且这些子集中没有一个子集是另一个子集的子集. 求m 可能取的最大值.5. 锐角△ABC 中, ∠BAC = 60o , I 为内心, O 为外心. 设H 为O 在△BOC 外接圆上的对径点. 证明: IH = BI + IC .6. 称正整数序列a 1, a 2, …, a n 为"好"的, 如果对所有的正整数n , 以下两个条件同时成立:i) n n a a a a a ...321!=.ii) a n 为某个正整数的n 次幂.求所有"好"的序列.2018年捷克-波兰-斯洛伐克联合数学竞赛试题第1天 (2018年6月25日)1. 求所有的函数f : R → R , 使得对所有的实数x , y , 成立等式:)()()()()(2y x xf x yf y f x f xy x f +++=+.2. 设△ABC 为锐角非等边三角形. 点D , E 分别在边AB , AC 上, 满足BD = CE . 设O 1, O 2分别为△ABE , △ACD 的外心. 证明: △ABC , △ADE 及△AO 1O 2的外接圆有一个异于点A 的公共点.3. 2018个玩家围桌而坐. 在游戏开始时, 我们将一摞共K 张牌任意地分发给玩家(有些玩家可能没有得到牌). 定义一轮操作如下: 如果一名玩家的左右邻居的牌数均非零, 则选他为这一轮的幸运玩家(如果有多名玩家符合条件, 则由我们任意选取一个), 让他从左右邻居那儿各拿一张牌给自己. 如果找不出这样的玩家, 则游戏结束. 求K 的最大可能值, 使得无论我们如何发牌及如何挑选幸运玩家, 该游戏总能在有限轮次后结束.第2天 (2018年6月26日)4. 设锐角△ABC 的周长为2s . 分别以A , B , C 为圆心, 作3个两两之间无公共内点的圆(不包括边界). 证明: 存在一个半径为s 的圆, 将上述三个圆同时覆盖.5. 在一个2 ⨯ 3矩形的内部, 有一个长度为36的折线(允许折线自交). 证明: 存在一条平行于矩形两边的直线, 与矩形的另两条边的内部相交, 且与折线的交点数少于10个.6. 我们称正整数n 为"奇妙"的, 如果存在正有理数a 和b , 使得bb a a n 11+++=. a) 证明: 存在无穷多个质数p , 使得p 的倍数均不是"奇妙"的.b) 证明: 存在无穷多个质数p , 使得p 的某个倍数是"奇妙"的.2018年捷克和斯洛伐克数学奥林匹克试题第1天1. 在一群人中, 存在一些两人对, 这两人相互为朋友. 对正整数k ≥ 3, 我们称该群人为"k -佳"的, 如果该群人中每k 个人(不计顺序)组成的一组人都可以围桌而坐, 使得每个人的邻座均为其朋友. 证明: 如果一群人是"6-佳"的, 则该群人必是"7-佳"的.2. 设x , y , z 为实数, 且数|2|12yz x +, |2|12zx y +, |2|12xy z +构成一非退化三角形的三边长. 求xy + yz + zx 的所有可能值.3. 三角形ABC 中, 点D 为∠A 内角平分线与边BC 的交点. 点E , F 分别是三角形ABD , ACD 的外心. 设三角形AEF 的外心位于直线BC 上. 求∠BAC 的所有可能值.第2天4. 设整数a , b , c 为某一三角形的三边长, 满足gcd(a , b , c ) = 1, 且c b a c b a -+-+222, a c b a c b -+-+222, ba cb ac -+-+222的值也均为整数. 证明: (a + b – c )(b + c – a )(c + a – b )和2(a + b – c )(b + c – a )(c + a – b )中, 至少有一个为完全平方数.5. 设ABCD 为等腰梯形, AB 为较长的底边. 令I △ABC 的内心, J 为△ACD 对应于顶点C 的旁心. 证明: IJ // AB .6. 求具有下述性质的最小正整数n : 无论用三种颜色对整数1, 2, …, n 如何染色(每个数染三种颜色之一), 从中总能够找到互异的两个数a , b , 它们染有相同的颜色, 并且|a – b |为完全平方数.2018年多瑙河地区数学奥林匹克试题比赛时间: 2018年10月27日初级组1. 求所有同时满足以下条件的正整数对(n , m ):i) n 是合数;ii) 如果d 1, d 2, …, d k (k ∈ Z +)为n 的所有真因数, 则d 1 + 1, d 2 + 1, …, d k + 1为m 的所有真因数.2. 设在△ABC 内部存在一点D , 使得∠DAC = ∠DCA = 30o , ∠DBA = 60o . E 为BC 的中点. 点F 位于线段AC 上, 且AF = 2FC . 证明: DE ⊥EF .3. 求所有具有下述性质的正整数n : 存在正整数k ≥ 2及正有理数a 1, a 2, …, a k , 使得a 1 + a 2 + … + a k = a 1a 2…a k = n 成立.4. 设M 为由全体正奇数构成的集合. 对每一个正整数n , 定义A (n )为满足元素和为n 的M 的子集的个数. 例如, A (9) = 2, 因为恰有M 的两个子集满足其元素和为9, 分别是{9}, {1, 3, 5}.a) 证明: 对每一个正整数n ≥ 2, A (n ) ≤ A (n + 1).b) 求满足A (n ) = A (n + 1)的所有正整数n ≥ 2.高级组1. 假设我们有一个由n 颗珍珠构成的项链. 在每一颗珍珠上标记一个整数, 使得所有珍珠上的数之和为n – 1. 证明: 我们可以将此项链从某处切断, 形成一根所标记整数依次为x 1, x 2, …, x n 的珍珠链, 满足11-≤∑=k x ki i 对所有k = 1, 2, …,n 成立.2. 证明: 存在无穷多组正整数(m , n )同时满足以下条件: m 整除n 2 + 1, n 整除m 2 + 1.3. 设△ABC 为非等腰锐角三角形. ∠A 的内角平分线与△ABC 的外接圆再次相交于点D . 设O 为△ABC 的外心. ∠AOB , ∠AOC 的角平分线分别与以AD 为直径的圆γ相交于点P , Q . 直线PQ 与AD 的垂直平分线相交于点R . 证明: AR // BC .4. 设n≥ 3为奇数. 将n⨯n方格纸的每一单元格都染为红色或蓝色之一. 称两个单元格为"相邻"的, 如果它们同色且至少有一个公共顶点. 称两个单元格a, b 为"连通"的, 如果存在若干个单元格c1, c2, …, c k, 满足c1 = a, c k = b, 且对每一个i = 1, 2, …, k – 1, c i与c i+1均相邻; 否则, 就称a, b为"不连通"的. (例如, 两个染色不同的单元格就是不连通的). 求最大的正整数M, 使得存在一种染色方案, 其中有M个两两不连通的单元格.2018年欧洲女子数学奥林匹克试题第1天 (2018年4月11日)1. 三角形ABC 中, CA = CB , ∠ACB = 120o , M 为AB 的中点. 设P 为三角形ABC 外接圆上一动点, Q 为线段CP 上一点, 且满足QP = 2QC . 已知经过点P 且垂直于AB 的直线与直线MQ 相交于唯一的一点N . 证明: 对点P 的所有可能位置, 点N 均位于一个固定圆上.2. 考虑集合A = ⎭⎬⎫⎩⎨⎧=+,...3,2,1:11k k . a) 证明: 每一个整数x ≥ 2均可以表示成A 中至少1个元素之积(各元素不必互异).b) 对每一个整数x ≥ 2, 设f (x )为最小的整数, 使得x 可以表示成A 中f (x )个元素之积(各元素不必互异). 证明: 存在无穷多组整数对(x , y ), 满足x ≥ 2, y ≥ 2, 且f (xy ) < f (x ) + f (y ).(如果x 1 ≠ x 2或y 1 ≠ y 2, 则认为整数对(x 1, y 1)与(x 2, y 2)是不同的.)3. 设某一届EGMO 的n 个参赛者为C 1, C 2, …, C n . 在比赛结束后, 所有参赛者在餐厅门口按照以下规则排成一个队列候餐:i) 由组委会确定各位参赛者在队列中的最初位置.ii) 每一分钟, 组委会选择一个整数i , 其中1 ≤ i ≤ n .-- 如果在参赛者C i 前面至少有i 名其他参赛者, 她将付给组委会1欧元, 并在队列中向前移动i 个位置.-- 如果在参赛者C i 前面的其他参赛者少于i 名, 则餐厅门打开, 候餐结束. a) 证明: 不管组委会如何选择, 上述候餐过程总会结束.b) 对每一个n , 求在经过精巧地选择最初位置及移动顺序下, 组委会能够得到的欧元数的最大值.第2天 (2018年4月12日)4. 定义多米诺骨牌指的是1 ⨯ 2或2 ⨯ 1的骨牌. 设n ≥ 3为整数. 在n ⨯ n 棋盘内放置若干多米诺骨牌, 使得每一个多米诺骨牌恰好覆盖两个棋格, 且多米诺骨。

部编版八年级数学下册第二十章数据的分析知识点总结归纳完整版

部编版八年级数学下册第二十章数据的分析知识点总结归纳完整版

(名师选题)部编版八年级数学下册第二十章数据的分析知识点总结归纳完整版单选题1、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.2、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个答案:D分析:如图延长E F交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.解:如图延长E F交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S=S△EBG=2S△BEF,故③正确,四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.小提示:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.4、2022年2月,第24届冬季奥林匹克运动会在北京举行.某校八年级(1)班在班会课开展了冬奥会知识小竞赛,10位同学在这个知识竞赛中的成绩统计结果如表所示,则这10位同学的平均成绩是()答案:C分析:平均数是指在一组数据中所有数据之和再除以数据的个数.根据平均数的定义列式计算即可.解:这10位同学的平均成绩是1×7+8×4+9×3+10×2=8.6,10故选:C.小提示:本题主要考查平均数,解题的关键是掌握平均数的定义.5、若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.答案:C分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数y=x+b中k=−1<0,b>0,∴一次函数的图象经过一、二、四象限,故选C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.6、小楠所在社会实践活动小组的同学们响应“垃圾分类,从我做起”的号召,主动到附近的7个社区宣传垃圾分类.她们记录的各社区参加活动的人数如图所示,那么这组数据的众数和中位数分别是()A.42,40B.42,38C.2,40D.2,38答案:A分析:根据众数和中位数的定义分别进行解答啊即可.解:在这一组数据中42是出现次数最多的,故众数是42 ;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是40,由中位数的定义可知,这组数据的中位数是40.故选:A.小提示:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个,正确理解众数及中位数的定义是解题的关键.7、如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .12B .1C .32D .√3 答案:B分析:根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出. ∵∠ACB =90°,∠A =30°,∴BC =12AB .∵BC =2,∴AB =2BC =2×2=4,∵D 是AB 的中点,∴CD =12AB=12 ×4=2.∵E ,F 分别为AC ,AD 的中点,∴EF 是△ACD 的中位线.∴EF =12CD =12 ×2=1. 故答案选B.小提示:本题考查了直角三角形的性质,三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.8、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定答案:C分析:先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.小提示:本题主要考查了利用方差进行决策,准确分析判断是解题的关键.填空题9、“双减”减负不减质,为学生的终身成长赋能,学校开展了职业生涯规划课程,深受学生喜爱.课程结束后组织了一场模拟招聘活动,招聘按照笔试成绩占60%、面试成绩占40%计算总成绩.小明笔试88分,面试92分,那么小明的总成绩为______分.答案:89.6分析:根据加权平均数的定义列式计算即可.解:根据题意,小明的总成绩为88×60%+92×40%=89.6.所以答案是:89.6.小提示:本题主要考查加权平均数.解题的关键是掌握加权平均数的定义.10、有甲,乙两组数据,如表所示,甲,乙两组数据的方差分别为s2甲,s2乙,则s2甲_________s2乙(选填“>”,“<”或“=”)分析:求出甲、乙两组数据的方差,比较大小即可.解:由表格可知甲组数据的平均数为:10+12+13+14+162=13乙组数据的平均数为:12+12+13+14+142=13∴甲组数据的方差为:15[(10−13)2+(12−13)2+(13−13)2+(14−13)2+(16−13)2]=4乙组数据的方差为:15[(12−13)2+(12−13)2+(13−13)2+(14−13)2+(14−13)2]=45∴乙组数据的方差小所以答案是:>小提示:本题考查求方差,解题的关键是根据方差公式进行求解.11、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为__________.答案:√192分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.解:连接DE,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC . ∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.解答题12、3月12日,据联合国统计,俄乌冲突已导致上千平民伤亡,250万人离开乌克兰,此外,在俄乌冲突与对俄制裁的共同作用下,全球粮食供给、芯片制造、能源价格等均受到不同程度的影响.为了呼吁世界和平,某校举行了以“同护一片蓝天·共享一份和平”为话题的征文比赛,比赛成绩分别记为70分、80分、90分、100分,现随机抽取部分参赛学生的比赛成绩进行统计,并绘制成如下统计图,根据统计图中的信息,解答下列问题:(1)此次比赛成绩的众数是______分,中位数是______分;(2)计算此次比赛成绩的平均数;(3)若参加此次征文比赛的共有100人,请你估计成绩为100分的约有多少人?答案:(1)80,80(2)此次比赛成绩的平均数是82分;(3)估计得满分的共有10名学生.分析:(1)根据众数和中位数的定义可得答案;(2)利用加权平均数的计算方法可得平均数;(3)用得满分的同学所占的百分比×总人数.(1)解:得80分的人数最多,众数为80分;把这组数据从小到大排列,最中间两个数的平均数是(80+80)÷2=80(分),则中位数是80分;所以答案是:80,80;(2)×(70×4+80×10+90×4+100×2)=82(分),解:120答:此次比赛成绩的平均数是82分;(3)解:100×2=10(名),20答:估计得满分的共有10名学生.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.13、甲、乙两位学生参加校运会射击选拔赛,两人各射击了5次,小明根据他们的成绩(单位:环)列表,并计算了甲成绩的平均数和方差(见小明的作业).甲、乙两人射击成绩统计表(2)请你从平均数和方差的角度分析,谁将被选中.答案:(1)6(环),1.6(环2);(2)乙分析:(1)首先求出平均数,再利用方差公式求出即可;(2)利用两组数据的方差比较,方差小的更加稳定,得出即可.(1)x 乙=15×(7+5+7+4+7)=6(环),s2乙=15× [(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6(环2);(2)选择乙,甲和乙平均成绩相同,乙的方差小,发挥更稳定些,故推选乙.(答案不唯一).小提示:此题主要考查了方差以及平均数求法等知识,熟练记忆方差公式是解题关键.。

历届女子数学奥林匹克试题

历届女子数学奥林匹克试题

目录2002年女子数学奥林匹克 (1)2003年女子数学奥林匹克 (3)2004年女子数学奥林匹克 (5)2005年女子数学奥林匹克 (7)2006年女子数学奥林匹克 (9)2007年女子数学奥林匹克 (11)2008年女子数学奥林匹克 (13)2009年女子数学奥林匹克 (16)2010年女子数学奥林匹克 (19)2011年女子数学奥林匹克 (21)2012年女子数学奥林匹克 (24)2002年女子数学奥林匹克1.求出所有的正整数n,使得20n+2能整除2003n+2002.2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次.(1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数.3.试求出所有的正整数k,使得对任意满足不等式k(aa+ab+ba)>5(a2+a2+b2)4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC.5.设P1,P2,⋯,P n(n≥2)是1,2,⋯,n的任意一个排列.求证:1P1+P2+1P2+P3+⋯+1P n−2+P n−1+1P n−1+P n>n−1n+2.6.求所有的正整数对(x,y),满足x y=y x−y.7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半.8.设A1,A2,⋯,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,⋯,A8在该直线上的摄影分别是P1,P2,⋯,P8.如果这8个射影两两不重合,以直线l的方向依次排列为P i1,P i2,⋯,P i8,这样,就得到了1,2,…,8的一个排列i1,i2,⋯,i8(在图1中,此排列为2,1,8,3,7,4,6,5).设这8个点对平面上所有有向直线作射影后,得到的不同排列的个数为N8=N(A1,A2,⋯88的最大值.图12003年女子数学奥林匹克1. 已知D 是△ABC 的边AB 上的任意一点,E 是边AC 上的任意一点,连结DE ,F 是线段DE 上的任意一点.设AC AA =x ,AA AA =y ,CH CA =z .证明: (1) S △ACH =(1−x )yzS △AAA ,S △AAH =x (1−y )(1−z )S △AAA ;(2) �S △ACH 3+�S △AAH 3≤�S △AAA 3.2. 某班有47个学生,所用教室有6排,每排有8个座位,用(i ,j )表示位于第i 排第j 列的座位.新学期准备调整座位,设某学生原来的座位为(i ,j ),如果调整后的座位为(m ,n ),则称该生作了移动[a ,a ]=[i −m ,j −n ],并称a +b 为该生的位置数.所有学生的位置数之和记为S .求S 的最大可能值与最小可能值之差.3. 如图1,ABCD 是圆内接四边形,AC 是圆的直径,BB ⊥AA ,AC 与BD 的交点为E ,F 在DA 的延长线上.连结BF ,G 在BA 的延长线上,使得BD ∥BB ,H 在GF 的延长线上,AC ⊥DB .证明:B 、E 、F 、H 四点共圆.图14.(1)证明:存在和为1的5个非负实数a、b、c、d、e,使得将它们任意放置在一个圆周上,总有两个相邻数的乘积不小于19;(2)证明:对于和为1的任意玩个非负实数a、b、c、d、e,总可以将它们适当放置在一个圆周上,且任意相邻两数的乘积均不大于19.5.数列{a n}定义如下:a1=2,a n+1=a n2−a n+1,n=1,2,⋯.证明:1−120032003<1a1+1a2+⋯+1a2003<1.6.给定正整数n(n≥2).求最大的实数λ,使得不等式a n2≥λ(a1+a2+⋯+a n−1)+2a n对任意满足a1<a2⋯<a n的正整数a1,a2,⋯,a n均成立.7.设△ABC的三边长分别为AB=b、BA=a、AA=a,a、b、c互不相等,AD、BE、CF分别为△ABC的三条内角平分线,且DE=DF.证明:(1)a b+c=b c+a+c a+b;(2)∠BAA>90°.8.对于任意正整数n,记n的所有正约数组成的集合为S n.证明:S n中至多有一半元素的个位数为3.2004年女子数学奥林匹克1.如果存在1,2,⋯,n的一个排列a1,a2,⋯,a n,使得k+a k(k=1,2,⋯,n)都是完全平方数,则称n为“好数”.问:在集合{11,13,15,17,19}中,哪些是“好数”,哪些不是“好数”?说明理由.(苏淳供题)2.设a、b、c为正实数.求a+3c a+2b+c+4b a+b+2c−8c a+b+3c的最小值.(李胜宏供题)3.已知钝角△ABC的外接圆半径为1.证明:存在一个斜边长为√2+1的等腰直角三角形覆盖△ABC.(冷岗松供题)4.一副三色纸牌,共有32张,其中红黄蓝每种颜色的牌各10张,编号分别是1,2,⋯,10;另有大小王牌各一张,编号均为0.从这副牌中任取若干张牌,然后按如下规则计算分值:每张编号为k的牌记为2k分.若它们的分值之和为2004,则称这些牌为一个“好牌组”.试求“好牌组”的个数.(陶平生供题)5.设u、v、w为正实数,满足条件u√vv+v√vu+v√uv≥1.试求u+v+v的最小值. (陈永高供题)6.给定锐角△ABC,点O为其外心,直线AO交边BC于点D.动点E、F分别位于边AB、AC上,使得A、E、D、F四点共圆.求证:线段EF在边BC上的投影的长度为定值.(熊斌供题)7.已知p、q为互质的正整数,n为非负整数.问:有多少个不同的整数可以表示为ii+jj的形式,其中i,j为非负整数,且i+j≤n.(李伟固供题)8.将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置多少个互不重叠的“十字形”(每个“十字形”恰好盖住棋盘上的5个小方格)?(冯祖明供题)2005年女子数学奥林匹克1.如图1,点P在△ABC的外接圆上,直线CP、AB相交于点E,直线BP、AC相交于点F,边AC的垂直平分线与边AB相交于点J,边AB的垂直平分线与边AC相交于点K.求证:AA2AH=AA⋅AA AA⋅AH.图1(叶中豪供题)2.求方程组�5�x+1x�=12�y+1y�=13(z+1z)xy+yz+zx=1,的所有实数解.(朱华伟供题)3.是否存在这样的凸多面体,它共有8个顶点、12条棱和6个面,并且其中有4个面,每两个面都有公共棱?(苏淳供题)4.求出所有的正实数a,使得存在正整数n及n个互不相交的无限整数集合A1,A2,⋯,A n满足A1∪A2∪⋯∪A n=Z,而且对于每个A i中的任意两数b>c,都有a−b≥a i.(袁汉辉供题)5.设正实数x、y满足x3+y3=x−y.求证:x2+4y2<1. (熊斌供题)6.设正整数n(n≥3).如果在平面上有n个格点P1,P2,⋯,P n满足:当�P i P j�为有理数时,存在P k,使得|P i P k|和�P j P k�均为无理数;当�P i P j�为无理数时,存在P k,使得|P i P k|和�P j P k�均为有理数,那么,称n是“好数”.(1)求最小的好数;(2)问:2005是否为好数(冯祖明供题)7.设m、n是整数,m>n≥2,S=�1,2,⋯,m�,T=�a1,a2,⋯,a n�是S的一个子集.已知T中的任两个数都不能同时整除S中的任何一个数.求证:1a1+1a2+⋯+1a n<m+n m. (张同君供题)8.给定实数a、b(a>a>0),将长为a、宽为b的矩形放入一个正方形内(包含边界).问正方形的边至少为多长?(陈永高供题)2006年女子数学奥林匹克1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f�a x�f�a y�=2f(xy),求证:f(x)为常数.(朱华伟供题)2.设凸四边形ABCD的对角线交于点O.△OAD、△OBC的外接圆交于点O、M,直线OM分别交△OAB、△OCD的外接圆于点T、S.求证:M是线段TS的中点.(叶中豪供题)3.求证:对i=1,2,3,均有无穷多个正整数n,使得n,n+2,n+28中恰有i个可表示为三个正整数的立方和.(袁汉辉供题)4.8个人参加一次聚会.(1)如果其中任何5个人中都有3个人两两认识,求证:可以从中找出4个人两两认识;(2)试问:如果其中任何6个人中都有3个人两两认识,那么是否一定可以找出4个人两两认识?(苏淳供题)5.平面上整点集S=�(a,a)�1≤a,a≤5(a、a∈Z)�,T为平面上一整点集,对S中任一点P,总存在T中不同于P的一点Q,使得线段PQ上除点P、Q外无其它的整点.问T的元素个数最少为多少?(陈永高供题)6.设集合M={1,2,⋯,19},A={a1,a2,⋯,a k}⊆M.求最小的k,使得对任意的a∈M,存在a i、a j∈A,满足a=a i或a=a i±a j(a i、a j 可以相同).(李胜宏供题)7.设x i>0(i=1,2,⋯,n),k≥1.求证:∑11+x i n i=1⋅∑x i n i=1≤∑x i k+11+x i n i=1⋅∑1x i k n i=1. (陈伟固供题)8.设p为大于3的质数,求证:存在若干个整数a1,a2,⋯,a t满足条件−p2<a1<a2<⋯<a t<p2,使得乘积p−a1|a1|⋅p−a2|a2|⋅⋯⋅p−a t|a t|是3的某个正整数次幂.(纪春岗供题)2007年女子数学奥林匹克1.设m为正整数,如果存在某个正整数n,使得m可以表示为n和n的正约数个数(包括1和自身)的商,则称m是“好数”.求证:(1)1,2,⋯,17都是好数;(2)18不是好数.(李胜宏供题)2.设△ABC是锐角三角形,点D、E、F分别在边BC、CA、AB上,线段AD、BE、CF经过△ABC的外心O.已知以下六个比值AC CA、AA AA、AH HA、AH HA、AA AA、AC CA中至少有两个是整数.求证:△ABC是等腰三角形.(冯祖明供题)3.设整数n(n>3),非负实数a1,a2,⋯,a n满足a1+a2+⋯+a n=2.求a1a22+1+a2a32+1+⋯+a n a12+1的最小值.(朱华伟供题)4.平面内n(n≥3)个点组成集合S,P是此平面内m条直线组成的集合,满足S关于P中每一条直线对称.求证:m≤n,并问等号何时成立?(边红平供题)5.设D是△ABC内的一点,满足∠BAA=∠BAA=30°,∠BBA=60°,E是边BC的中点,F是边AC的三等分点,满足AF=2FC.求证:BD⊥DB.(叶中豪供题)6.已知a、a、b≥0,a+a+b=1.求证:�a+14(a−b)2+√a+√b≤√3(李伟固供题)7.给定绝对值都不大于10的整数a、b、c,三次多项式f(x)=x3+ ax2+ax+b满足条件�f(2+√3)�<0.0001.问:2+√3是否一定是这个多项式的根?(张景中供题)8.n个棋手参加象棋比赛,每两个棋手比赛一局.规定:胜者得1分,负者得0分,平局得0.5分.如果赛后发现任何m个棋手中都有一个棋手胜了其余m-1个棋手,也有一个棋手输给了其余m-1个棋手,就称此赛况具有性质P(m).对给定的m(m≥4),求n的最小值f(m),使得对具有性质P(m)的任何赛况,都有所有n名棋手的得分各不相同.(王建伟供题)2008年女子数学奥林匹克1.(1)问能否将集合�1,2,⋯,96�表示为它的32个三元子集的并集,且每个三元子集的元素之和都相等;(2)问能否将集合�1,2,⋯,99�表示为它的33个三元子集的并集,且每个三元子集的元素之和都相等.(刘诗雄供题)2.已知式系数多项式ϕ(x)=ax3+ax2+bx+d有三个正根,且ϕ(0)<0.求证:2a3+9a2d−7aab≤0. (朱华伟供题)3.求最小常数a(a>1),使得对正方形ABCD内部任一点P,都存在△P AB、△PBC、△PCD、△PDA中的某两个三角形,其面积之比属于区间�a−1,a�.(李伟固供题)4.在凸四边形ABCD的外部分别作正△ABQ、△BCR、△CDS、△DAP,记四边形ABCD的对角线的和为x,四边形PQRS的对角线中点连线的和为y.求y x的最大值.(熊斌供题)5.如图1,已知凸四边形ABCD满足AB=BC,AD=DA,E、F分别是线段AB、AD上一点,满足B、E、F、D四点共圆,作△DPE顺向相似于△ADC,作△BQF顺向相似于△ABC.求证:A、P、Q三点共线.图1 注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.(叶中豪 供题)6. 设正数列x 1,x 2,⋯,x n ,⋯满足(8x 2−7x 1)x 17=8及x k+1x k−1−x k 2=x k−18−x k 8(x k x k−1)7(k ≥2).求正实数a ,使得当x 1>a 时,有单调性x 1>x 2>⋯>x n >⋯,当0<x 1<a 时,不具有单调性. (李胜宏 供题)7. 给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C 、G 、M 、O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C 、G 、M 、O 这4个字母,则称这个棋盘为“和谐棋盘”,问有多少种不同的和谐棋盘?(冯祖明 供题)8. 对于正整数n ,令f n =�2n √2008�+[2n √2009].求证:数列f 1,f 2,⋯中有无穷多个奇数和无穷多个偶数([x ]表示不超过实数x 的最大整数).(冯祖明 供题)B2009年女子数学奥林匹克1. 求证:方程aab =2009(a +a +b )只有有限组正整数解(a,b,c).(梁应德 供题)2. 如图1,在△ABC 中,∠BAA =90°,点E 在△ABC 的外接圆圆Γ的弧BC (不含点A )内,AE >EC .连结EC 并延长至点F ,使得∠DAA =∠AAB ,连结BF 交圆Γ于点D ,连结ED ,记△DEF 的外心为O .求证:A 、C 、O 三点共线.图1 (边红平 供题)3. 在平面直角坐标系中,设点集�P 1,P 2,⋯,P 4n+1�=�(x ,y )�x 、y 为整数,|x |≤n ,|y |≤n ,xy =0�,其中,n ∈N +.求(P 1P 2)2+(P 2P 3)2+⋯+(P 4n P 4n+1)2+(P 4n+1P 1)2的最小值.(王新茂 供题)4. 设平面上有n (n ≥4)个点V 1,V 2,⋯,V n ,任意三点不共线,某些点之间连有线段.把标号分别为1,2,⋯,n 的n 枚棋子放置在这n 个点处,每个点处恰有一枚棋子.现对这n 枚棋子进行如下操作:每B次选取若干枚棋子,将它们分别移动到与自己所在点有线段相连的另一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种连线段的方式使得无论开始时如何放置这n 枚棋子,总能经过有限次操作后,使每个标号为k (k =1,2,⋯,n )的棋子在点V k 处,则称这种连线段的方式为“和谐的”.求在所有和谐的连线段的方式中,线段数目的最小值. (付云皓 供题)5. 设实数xyz 大于或等于1.求证:(x 2−2x +2)(y 2−2y +2)(z 2−2z +2)≤(xyz )2−2xyz +2 (熊 斌 供题)6. 如图2,圆Γ1、Γ2内切于点S ,圆Γ2的弦AB 与圆Γ1切于点C ,M 是弧AB (不含点S )的中点,过点M 作MN ⊥AB ,垂足为N .记圆Γ1的半径为r .求证:AA ⋅AB =2rMN .图2 (叶中豪 供题)7. 在一个10×10的方格表中有一个有4n 个1×1的小方格组成的图形,它既可被n 个“”型的图形覆盖,也可被n 个“”或“”型(可以旋转)的图形覆盖.求正整数n的最小值.(朱华伟供题)8.设a n=n√5−�n√5�.求数列a1,a2,⋯,a2009中的最大项和最小项,其中,[x]表示不超过实数x的最大整数.(王志雄供题)2010年女子数学奥林匹克1. 给定整数n (n ≥3),设A 1,A 2,⋯,A 2n 是集合�1,2,⋯,n�的两两不同的非空子集,记A 2n+1=A 1.求∑|A i ∩A i+1||A i |⋅|A i+1|2n i=1的最大值.(梁应德 供题)2. 如图1,在△ABC 中,AB =AA ,D 是边BC 的中点,E 是在△ABC 外一点,满足AD ⊥AB ,BD =BB .过线段BE 的中点M 作直线MB ⊥BD ,交△ABD 的外接圆的劣弧AD 于点F .求证:DB ⊥BB .图1 (郑焕 供题)3. 求证:对于每个正整数n ,都存在满足下面三个条件的质数p 和整数m :(1)i ≡5(mmd 6);(2)i ∤n ;(3)n ≡m 3(mmd i ).(付云皓 供题) 4. 设实数x 1,x 2,⋯,x n 满足∑x i 2=1(n ≥2)n i=1.求证:∑(1−k ∑ix i 2n i=1)2x k 2k n k=1≤(n−1n+1)2∑x k 2k n k=1,并确定等号成立的条件.(李胜宏供题)5.已知f(x)、g(x)都是定义在R上递增的一次函数,f(x)为整数当且仅当g(x)为整数.证明:对一切x∈R,f(x)−g(x)为整数.(刘诗雄供题)6.如图2,在锐角△ABC中,AB>AA,M为边BC的中点,∠BAA的外角平分线交直线BC于点P.点K、F在直线P A上,使得MB⊥BA,MM⊥PA.求证:BC2图2(边红平供题)7.给定正整数n(n≥3).对于1,2,⋯,n的任意一个排列P=(x1,x2,⋯,x n),若i<j<k,则称x j介于x i和x k之间(如在排列(1,3,2,4)中,3介于1和4之间,4不介于1和2之间).设集合S={P1,P2,⋯,P m}的每个元素P i(1≤i≤m)中都不介于另外两个数之间.求m的最大值.(冯祖鸣供题)8.试求满足下列条件的大于5的最小奇数a:存在正整数m1、n1、m2、n2,使得a=m12+n12,a2=m22+n22,且m1−n1=m2−n2.(朱华伟供题)2011年女子数学奥林匹克1.求出所有的正整数n,使得关于x,y的方程1x+1y=1n恰有2011组满足x≤y的正整数解(x,y) .(熊斌供题)2.如图1,在四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MB⋅AB=NB⋅AB, BQ⋅BP=AQ⋅AP,求证:PQ垂直于BC.图1(郑焕供题)3.设正数a,a,b,d满足aabd=1,求证:1+1+1+1+9≥25(朱华伟供题)4.有n(n≥3)名乒乓球选手参加循环赛,每两名选手之间恰好比赛一次(比赛无平局).赛后发现,可以将这些选手排成一圈,使得对于任意三名选手A,B,C,若A,B在圈上相邻,则A,B中至少有一人战胜了C,求n的所有可能值.(付云皓供题)5.给定非负实数a,求最小实数f=f(a),使得对任意复数,Z1,Z2和实数x(0≤x≤1),若|Z1|≤a|Z1−Z2|,则|Z1−xZ2|≤f|Z1−Z2|.(李胜宏供题)6.是否存在正整数m,n,使得m20+11n是完全平方数?请予以证明.(袁汉辉供题)7.从左到右编号为B1,B2,⋯,B n的n个盒子共装有n个小球,每次可以选择一个盒子B k,进行如下操作:若k=1且B1中至少有1个小球,则可从B1中移1个小球至B2中;若k=n,且B n中至少有1个小球,则可从B n中移1个小球至B n-1中,若2≤k≤n-1且B k中至少有2个小球,则可从B k中分别移1个小球至B k-1和B k+1中,求证:无论初始时这些小球如何放置,总能经过有限次操作使得每个盒子中恰有1个小球.(王新茂供题)8. 如图2,已知⊙O 为△ABC 中BC 边上的旁切圆,点D 、E 分别在线段AB 、AC 上,使得BD ∥BA .⊙O 1为△ADE 的内切圆,O 1B 交DO 于点F ,O 1C 交EO 于点G .⊙O 切BC 于点M .⊙O 1切DE 于点N .求证:MN 平分线段FG .图2 (边红平 供题)A2012年女子数学奥林匹克1.设a1,a2,⋯,a n为非负实数,求证:11+a1+a1(1+a1)(1+a2)+⋯+ a1a2⋯a n−1(1+a1)(1+a2)⋯(1+a n)≤1.2.如图1所示,圆O1和O2外切于点T,点A、E在圆O1上,AB切圆O2于点B,ED切圆O2于点D,直线BD、AE交于点P.(1)求证:AB⋅DT=AT⋅DB;(2)求证:∠ATP+∠DTP=180°Array图13.求所有整数对(a,b),使得存在整数d>1,对任意的正整数n,都有d|a n+a n+1.4.在正十三边形的13个顶点上各摆放一枚黑子或者白子,一次操作是指将两枚棋子的位置交换.求证:无论开始时棋子是如何摆放的,总可以至多操作一次,使得各个棋子的颜色关于正十三边形的某一条对称轴是对称的.5.如图2所示,在△ABC中,I为内切圆圆心,D、E分别为AB、AC边上的切点,O为△BIC的外心,求证:∠OBB=∠ODA.图26. 某个国家有n (n ≥3)个城市,每两个城市间都有一条双向航线.这个国家有两个航空公司,每条航线由一家公司经营.一个女数学家从某个城市出发,经过至少两个其它城市,回到出发地.如果无论怎样选择出发城市和路径,都无法只乘坐一家公司的航班,求n 的最大值.7. 有一个无穷项的正整数数列a 1≤a 2≤a 3≤⋯.已知存在正整数k和r ,使得r a r =k +1,求证:存在正整数s ,使得s a s =k .8. 集合{0,1,2,⋯,2012}中有多少个元素k ,使得A 2012k 是2012的倍数.B。

历届数学奥林匹克参赛名单

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。

由罗马尼亚罗曼(Roman)教授发起。

1959年7月在罗马尼亚古都布拉索举行第一届竞赛。

我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。

我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。

2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。

入选国家队的六名学生是:(按选拔成绩排名)陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中)---------------------------------------------------------历届IMO的主办国,总分冠军及参赛国(地区)数为:年份届次东道主总分冠军参赛国家(地区)数1959 1 罗马尼亚罗马尼亚71960 2 罗马尼亚前捷克斯洛伐克51961 3 匈牙利匈牙利 61962 4 前捷克斯洛伐克匈牙利71963 5 波兰前苏联81964 6 前苏联前苏联91965 7 前东德前苏联81966 8 保加利亚前苏联91967 9 前南斯拉夫前苏联131968 10 前苏联前东德121969 11 罗马尼亚匈牙利141970 12 匈牙利匈牙利141971 13 前捷克斯洛伐克匈牙利151972 14 波兰前苏联141973 15 前苏联前苏联161974 16 前东德前苏联181975 17 保加利亚匈牙利171976 18 澳大利亚前苏联191977 19 南斯拉夫美国211978 20 罗马尼亚罗马尼亚171979 21 美国前苏联231981 22 美国美国271982 23 匈牙利前西德301983 24 法国前西德321984 25 前捷克斯洛伐克前苏联341985 26 芬兰罗马尼亚421986 27 波兰美国、前苏联371987 28 古巴罗马尼亚421988 29 澳大利亚前苏联491989 30 前西德中国501990 31 中国中国541991 32 瑞典前苏联561992 33 俄罗斯中国621993 34 土耳其中国651994 35 中国香港美国691995 36 加拿大中国731996 37 印度罗马尼亚751997 38 阿根廷中国821998 39 中华台北伊朗841999 40 罗马尼亚中国、俄罗斯812000 41 韩国中国822001 42 美国中国832002 43 英国中国842003 44 日本保加利亚822004 45 希腊中国852005 46 墨西哥中国982006 47 斯洛文尼亚中国1042007 48 越南俄罗斯932008 49 西班牙中国1032009 50 德国中国1042010 51 哈萨克斯坦中国1052011 52 荷兰中国101------------------------------------------------------------------历届国际数学奥林匹克中国参赛学生分省市、分学校统计按学校排名(TOP16)1 武汉钢铁三中 152 湖南师大附中 113 华南师范大学附中 104 北大附中 94 人大附中 96 湖北黄冈中学 86 上海中学 88 上海华东师大二附中 5 8 东北育才学校 510 华中师大一附中 410 复旦大学附中 410 深圳中学 410 东北师范大学附中 4 14 上海向明中学 314 长沙市一中 314 哈尔滨师范大学附中 3 以下略。

【精品】数学奥林匹克竞赛高中训练题集【共36份】

【精品】数学奥林匹克竞赛高中训练题集【共36份】
两个数学奥林匹克高中训练题05按从小到大顺序排列数列各项的和记为s对于给定的自然数n若能从数列中选取一些不同位置的项使得这些项之和恰等于n便称为一种选项方案和数为n的所有选项方案的种数记为数学奥林匹克高中训练题05第一试一选择题本题满分42分每小题7分1
奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................

不定方程的解法

不定方程的解法

数论的方法和技巧之一不定方程的解法一. 几种特殊的不定方程1. 二元一次不定方程c by ax =+ ,形如c by ax =+(b a Z c b a ,,,,∈不同时为零)的方程称为二元一次不定方程.有以下结论:(1)不定方程c by ax =+有整数解的充要条件是.|),(c b a(2)若,1),(=b a 设),(00y x 是方程c by ax =+的一组整数解,则此方程的一切整数解可表示为⎩⎨⎧-=+=,,00at y y bt x x .Z t ∈例l 将属于[0,1]之间分母不超过99的最简分数从小到大排列,求与7617相邻的两个数.解:设,1),(*,,=∈y x N y x 且y x 是上述排列中7617左边的数,则 .07676177617>-=-yxy y x 注意到x y 1617-为整数,所以.17617≥-x y 下面先求不定方程 17617=-x y ① 满足991≤≤y 的正整数解(x ,y).,17184Z x x y ∈++= 试算可知)9,2(),(=y x 是一个特解.所以①的全部整数解为⎩⎨⎧∈+=+=.,,769172Z t t y t x满足①的正整数解中)85,19(),(=y x 是符合991≤≤y 且y 最大的解,而此时,29985>=y 所以,与7617相邻的两个数中左边那个是⋅8519 类似可知,所求的右边那个数为⋅6715评注:对一次不定方程求解可以用辗转相除法、同余及试验等方法来寻找其特解.2. 勾股方程222z y x =+设勾股方程222z y x =+ ①的一组正整数解是(x ,y ,z),如果,),(d y x =则,|22z d 即.|z d 这样仅需在1),(=y x 时讨论,此时x ,y ,z 实际上是两两互质的.这种两两互质的勾股数(x ,y ,z),称为①的本原解或本原勾股数.定理 不定方程①满足 y z y x z x |2,0,0,0,1),(>>>= ② 的全部整数解(x ,y ,z )可表示成 ,,2,2222b a z ab y b a x +==-= ③ 其中a ,b 为满足b a b a ,,0>>一奇一偶,且(a ,b )=1的任意整数.例2 证明方程 222221y x x x n =+++ 有无穷多组整数解。

活用“不动点”解决几类数学问题

活用“不动点”解决几类数学问题

(1988,中国国家集训队选拔考试)
证明 易知,/(%) = 3x+2的不动点为
久o = - 1. 由式②知
/(100)(%) = 3100(1 +%)-1
=>/(100)(7n) = 3100(/n + l)-l.
由1 988 = 4 x7 x71与100互素,知存
在非零整数"、0,使得
3100u - 1 988。= 1 => 3100u-1 =1 988°.
[ax - 1 =0
3
综上,一・
2在数列中的应用
结论 3 若 /(%) = kx +
) ,%0
为/(%)的不动点,数列{皱}满足%i =/(«.) 5G Z+),且©h%,则数列是公 比为%的等比数列,且
= (© _第0)胪 J +%0・
结论4设
已知数列巾」满足
a” + i =/(a”)5 & Z + ), 且/(5)工如.
证明:存在一个数a,使得数列{ }恰有 2 018个不同的项(若数列某一项为0,则数 列停止在这一项).⑴
(第58届乌克兰数学奥林匹克) 【分析】由递归式,考虑函数
令/&) = %,此方程无实根JP/(x)无不 动点.
先考虑/(%)=詈.
令/(%) = %,解得% = ±i.则
4
Xn+1,+•1=£^ rt --1 +, 1• =^ (v xn-+— iz)2
/(2)(^)=/(/(^)),
若存在%0使得严(%) = %0,则称%为/(%) 的稳定点,即函数/(2)(X)的不动点称为函数 /(%)的稳定点.
结论2设函数/(乂)的不动点构成集合

2018年度国外数学竞赛试题翻译汇编

2018年度国外数学竞赛试题翻译汇编
2018 年 ARML 数学竞赛 …………………………………………… 57 2018 年美国数学邀请赛(AIME) I …………………………………… 66 2018 年美国数学邀请赛(AIME) II ………………………………… 69 2018 年美国数学奥林匹克 …………………………………………… 72 2018 年美国初中数学奥林匹克 ……………………………………… 73 2018 年美国 IMO 代表队选拔考试 ………………………………… 74 2018 年美国 TSTST …………………………………………………… 76 2018 年美国第 20 届 ELMO ………………………………………… 78 2018 年美国第 20 届 ELMO 预选题 ………………………………… 80 2018 年第 20 届美国旧金山湾区数学奥林匹克 …………………… 83 2017-2018 年度 USAMTS …………………………………………… 86 2018 年美国女子数学奖学金竞赛(决赛) …………………………… 91 2017-2018 年度威斯康星数学、科学与工程学人才选拔 ………………… 92 2018 年奥地利数学奥林匹克 ………………………………………… 96 2018 年澳大利亚数学奥林匹克 ……………………………………… 99 2018 年澳大利亚、英国 IMO 国家队联合训练考试 ………………… 89 2018 年白罗斯数学奥林匹克 ………………………………………… 101 2018 年波黑数学奥林匹克(地区级) ………………………………… 105 2018 年波黑 EGMO 代表队选拔考试 ……………………………… 107 2018 年波黑 JBMO 代表队选拔考试 ………………………………… 108 2018 年巴西数学奥林匹克 …………………………………………… 109 2018 年巴西 IMO 代表队选拔考试 ………………………………… 111

历届奥数数论竞赛题讲解精选

历届奥数数论竞赛题讲解精选

历届奥数竞赛题讲解精选1. 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.【题说】 1953年匈牙利数学奥林匹克题2.【证】设2n2=kd,k是正整数,如果 n2+d是整数 x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.试证四个连续自然数的乘积加上1的算术平方根仍为自然数.【题说】 1962年上海市赛高三决赛题 1.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.---------------------------------------------------------------------------1.已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.【题说】 1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项.【证】设此算术级数公差是 d,且其中一项 a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.2.求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).【题说】 1964年全俄数学奥林匹克十一年级题 1.【解】设 n2满足条件,令n2=100a2+b,其中 0<b<100.于是 n>10a,即n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412---------------------------------------------------------------------------1.求所有的素数p,使4p2+1和6p2+1也是素数.【题说】 1964年~1965年波兰数学奥林匹克二试题 1.【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.2.证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.【题说】第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故 n4+4m4不是素数.取 a=4·24,4·34,…就得到无限多个符合要求的 a.---------------------------------------------------------------------------1.如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?【题说】第十九届(1993年)全俄数学奥林匹克九年级一试题1.【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.2.能够表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?【题说】第十一届(1993年)美国数学邀请赛题6.【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+503.021 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.【题说】第一届(1992年)中国台北数学奥林匹克题6.【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 1800 1201 1700 1301 1600 14011999 1002 1899 1102 1799 1202 1699 1302 1599 1402 … … … … … …1901 1100 1801 1200 1701 1300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i≤20,1≤j≤10)令 Si=ai+ai+1+...+ai+9(i=1,2, (1901)则S1=15005,S2=15004.易知若i为奇数,则Si=15005;若i为偶数,则Si=15004.综上所述A=15005.---------------------------------------------------------------------------1. n为怎样的自然数时,数32n+1-22n+1-6n是合数?【题说】第二十四届(1990年)全苏数学奥林匹克十一年级题5【解】 32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当 n>l时,3n-2n>1,3n+1+2n+1>1,所以原数是合数.当 n=1时,原数是素数13.2. 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.【题说】第三十届(1989年)国际数学奥林匹克题5.本题由瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂pl,则k =pj(l、j都是正整数),但a2被p2j整除因而被pj+1整除,所以a2+k被pj整除而不被pj+1整除,于是a2+k=pj=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.---------------------------------------------------------------------------1. 求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题 1.【解】由n个数ai=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k≤n)由于n!=1·2·…· n是 k的倍数,所以m·n!+k是 k的倍数,因而为合数.对任意两个数ai与 aj(i>j),如果它们有公共的质因数p,则p也是ai-aj =(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但ai与n!互质,所以ai与aj不可能有公共质因数p,即ai、aj(i≠j)互素.令n =5,便得满足条件的一组数:121,241,361,481,601.设正整数 d不等于 2、5、13.证明在集合{2,5,13,d}中可以找到两个不同元素a、b,使得ab-1不是完全平方数.【题说】第二十七届(1986年)国际数学奥林匹克题1.本题由原联邦德国提供.【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 (1)5d-1=y2 (2)13d-1=z2 (3)其中x、y、z是正整数.由(1)式知,x是奇数,不妨设x=2n-1.代入有 2d-1=(2n-1)2即d=2n2-2n+1 (4)(4)式说明d也是奇数.于是由(2)、(3)知y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.---------------------------------------------------------------------------1.如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.【题说】第十八届(1984年)全苏数学奥林匹克八年级题 8.【证】若不同数字多于 3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.2.证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.【题说】第五届(1973年)加拿大数学奥林匹克题 3.【证】因为p是奇数,所以2是p+1的因数.因为p、p+1、p+2除以 3余数不同,p、p+2都不被 3整除,所以p+1被 3整除.于是6是p+1的因数.。

历年奥赛获奖情况排名前22学校

历年奥赛获奖情况排名前22学校

历年来在五大学科国际奥林匹克竞赛获得金牌最多的22所中学第1名:湖南师范大学附属中学(湖南师大附中)25枚金牌化学奥赛金牌数量居全国第一生物奥赛金牌数量居全国第一(与成都七中并列)数学7枚:刘炀,1993年,第34届国际数学奥林匹克竞赛金牌彭建波,1994年,第35届国际数学奥林匹克竞赛金牌余君,2001年,第42届国际数学奥林匹克竞赛金牌肖维,2002年,第43届国际数学奥林匹克竞赛金牌王伟,2003年,第44届国际数学奥林匹克竞赛金牌李先颖,2004年,第45届国际数学奥林匹克竞赛金牌龙子超,2011年,第52届国际数学奥林匹克竞赛金牌物理6枚:李翌,1992年,第23届国际物理奥林匹克竞赛金牌倪彬,1995年,第26届国际物理奥林匹克竞赛金牌杨桓,2002年,第33届国际物理奥林匹克竞赛金牌吴俊东,2010年,第41届国际物理奥林匹克竞赛金牌张涌良,2010年,第41届国际物理奥林匹克竞赛金牌易可欣,2011年,第42届国际物理奥林匹克竞赛金牌化学7枚(全国第一):周彪,1993年,第25届国际化学奥林匹克竞赛金牌黄永亮,1994年,第26届国际化学奥林匹克竞赛金牌李帅格,1994年,第26届国际化学奥林匹克竞赛金牌骆宏鹏,1995年,第27届国际化学奥林匹克竞赛金牌吕华,2002年,第34届国际化学奥林匹克竞赛金牌胡蓉蓉,2003年,第35届国际化学奥林匹克竞赛金牌(女)刘吉,2009年,第41届国际化学奥林匹克竞赛金牌生物5枚(并列全国第一):夏凡,1997年,第8届国际生物奥林匹克竞赛金牌郭婧,1998年,第9届国际生物奥林匹克竞赛金牌(女,金牌第一名)廖雅静,2001年,第12届国际生物奥林匹克竞赛金牌(女)朱军豪,2007年,第18届国际生物奥林匹克竞赛金牌谭索成,2010年,第21届国际生物奥林匹克竞赛金牌第2名:华东师范大学第二附属中学(华东师大二附中),22枚金牌。

物理奥赛金牌数量居全国第一,同时也创造了中国中学单科国际奥赛金牌数量记录数学4枚:王海栋,1995年,第36届国际数学奥林匹克竞赛金牌符文杰,2002年,第43届国际数学奥林匹克竞赛金牌刁晗生,2005年,第46届国际数学奥林匹克竞赛金牌张成,2008年,第49届国际数学奥林匹克竞赛金牌物理11枚(全国第一):王泰然,1991年,第22届国际物理奥林匹克竞赛金牌任宇翔,1991年,第22届国际物理奥林匹克竞赛金牌杨亮,1994年,第25届国际物理奥林匹克竞赛金牌谢小林,1995年,第26届国际物理奥林匹克竞赛金牌陈汇钢,1996年,第27届国际物理奥林匹克竞赛金牌肖晶,2000年,第31届国际物理奥林匹克竞赛金牌魏轶旻,2001年,第32届国际物理奥林匹克竞赛金牌顾春晖,2002年,第33届国际物理奥林匹克竞赛金牌施烨明,2004年,第35届国际物理奥林匹克竞赛金牌戴明劼,2005年,第36届国际物理奥林匹克竞赛金牌胡嘉仲,2007年,第38届国际物理奥林匹克竞赛金牌化学5枚:江琪,1991年,第23届国际化学奥林匹克竞赛金牌沈珺,1992年,第24届国际化学奥林匹克竞赛金牌(女)袁键,2004年,第36届国际化学奥林匹克竞赛金牌叶钦达,2006年,第38届国际化学奥林匹克竞赛金牌徐磊,2007年,第39届国际化学奥林匹克竞赛金牌生物1枚:徐承远,1997年,第8届国际生物奥林匹克竞赛金牌信息学1枚:李万钧,1994年,第6届国际信息学奥林匹克竞赛第3名:湖南省长沙市第一中学(长沙一中),17枚金牌数学3枚:刘志鹏,2000年,第41届国际数学奥林匹克竞赛金牌张志强,2001年,第42届国际数学奥林匹克竞赛金牌向振,2003年,第44届国际数学奥林匹克竞赛金牌物理5枚:倪征,1996年,第27届国际物理奥林匹克竞赛金牌邓志峰,1998年,第29届国际物理奥林匹克竞赛金牌刘彦,2001年,第32届国际生物奥林匹克竞赛金牌黄武杰,2005年,第36届国际物理奥林匹克竞赛金牌周权,2008年,第39届国际物理奥林匹克竞赛金牌化学6枚:汪建明,1996年,第28届国际化学奥林匹克竞赛金牌陈政,2000年,第32届国际化学奥林匹克竞赛金牌陈思远,2001年,第33届国际化学奥林匹克竞赛金牌(第一名)刘良会,2004年,第35届国际化学奥林匹克竞赛金牌蔡李超,2006年,第37届国际化学奥林匹克竞赛金牌谢嘉欣,2011年,第42届国际化学奥林匹克竞赛金牌生物3枚:宋臻涛,2000年,第11届国际生物奥林匹克竞赛金牌凌晨,2002年,第13届国际生物奥林匹克竞赛金牌彭艺,2006年,第17届国际生物奥林匹克竞赛金牌(女)第3名:华中师范大学第一附属中学(华中师大一附中),17枚金牌数学3枚:柳智宇,2006年,第47届国际数学奥林匹克竞赛金牌(满分)陈卓,2008年,第49届国际数学奥林匹克竞赛金牌(女)张敏,2010年,第51届国际数学奥林匹克竞赛金牌(女)物理6枚:宋均亮,2000年,第31届国际物理奥林匹克竞赛金牌李晗晗,2005年,第36届国际物理奥林匹克竞赛金牌余江雷,2005年,第36届国际物理奥林匹克竞赛金牌谭隆志,2008年,第39届国际物理奥林匹克竞赛金牌(第一名)向重远,2011年,第42届国际物理奥林匹克竞赛金牌李蓝青,2011年,第42届国际物理奥林匹克竞赛金牌化学6枚:汪琛,1988年,第20届国际化学奥林匹克竞赛金牌(第一名)冯伟,2000年,第32届国际化学奥林匹克竞赛金牌王峰,2002年,第34届国际化学奥林匹克竞赛金牌晏琦帆,2003年,第35届国际化学奥林匹克竞赛金牌王睿博,2009年,第41届国际化学奥林匹克竞赛金牌(第一名)周志尧,2010年,第42届国际化学奥林匹克竞赛金牌生物1枚:凌晨,1998年,第9届国际生物奥林匹克竞赛金牌信息学1枚:陈杲,1992年,第4届国际信息学奥林匹克竞赛金牌(满分)第5名:中国人民大学附属中学(人大附中),11枚金牌数学7枚:姚健钢,1994年,第35届国际数学奥林匹克竞赛金牌(满分)肖梁,2001年,第42届国际数学奥林匹克竞赛金牌(满分)杨奔,2007年,第48届国际数学奥林匹克竞赛金牌张瑞祥,2008年,第49届国际数学奥林匹克竞赛金牌林博,2009年,第50届国际数学奥林匹克竞赛金牌靳兆融,2011年,第52届国际数学奥林匹克竞赛金牌陈麟,2011年,第52届国际数学奥林匹克竞赛金牌物理3枚:郎瑞田,2004年,第35届国际物理奥林匹克竞赛金牌管紫轩,2009年,第40届国际物理奥林匹克竞赛金牌俞颐超,2010年,第41届国际物理奥林匹克竞赛金牌(理论第一、总分第一)信息学1枚范浩强,2011年,第23届国际信息学奥林匹克竞赛金牌第5名:华南师范大学附属中学(华南师大附中),11枚金牌数学7枚:袁汉辉,1993年,第34届国际数学奥林匹克竞赛金牌李鑫,1999年,第40届国际数学奥林匹克竞赛金牌李鑫,2000年,第41届国际数学奥林匹克竞赛金牌朱琪慧,2001年,第42届国际数学奥林匹克竞赛金牌方家聪,2003年,第44届国际数学奥林匹克竞赛金牌朱庆三,2004年,第45届国际数学奥林匹克竞赛金牌黄志毅,2004年,第45届国际数学奥林匹克竞赛金牌物理2枚:陈阳,2002年,第33届国际物理奥林匹克竞赛金牌林倩,2009年,第40届国际物理奥林匹克竞赛金牌(女)化学2枚:刘伟山,2002年,第34届国际化学奥林匹克竞赛金牌李修远,2008年,第40届国际化学奥林匹克竞赛金牌第5名:武钢三中,11枚金牌数学奥赛金牌数量居全国第一。

第51届IMO平几试题的另解

第51届IMO平几试题的另解

第51届IMO平几试题的另解
李耀文;韩业强
【期刊名称】《数理天地:高中版》
【年(卷),期】2011(000)001
【摘要】第51届国际数学奥林匹克(IMO)于2010年7月2日至14日在哈萨克斯坦首都阿斯塔纳举行,本文就第4题给出几种不同的解法,供赏析.
【总页数】2页(P28-28,27)
【作者】李耀文;韩业强
【作者单位】山东省枣庄市第十八中学,277200
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.一道IMO试题的另解与探究
2.一道IMO试题的另解
3.一道IMO试题的类比拓广及简解
4.第46届IMO两道试题另解
5.几何法简解一道IMO试题
因版权原因,仅展示原文概要,查看原文内容请购买。

第39届国际数学奥林匹克试题

第39届国际数学奥林匹克试题

第39届国际数学奥林匹克试题
吴建平;李学武
【期刊名称】《中等数学》
【年(卷),期】1998(000)004
【摘要】第一天 1.在凸四边形ABCD中,两对角线AC与BD互相垂直,两对边AB 与DC不平行,点P为线段AB及CD的垂直平分线的交点,且P在四边形ABCD的内部。

证明:ABCD为圆内接四边形的充分必要条件是△ABP与△CDP的面积相等。

【总页数】1页(P31-31)
【作者】吴建平;李学武
【作者单位】
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.第51届国际数学奥林匹克(IMO)竞赛试题 [J],
2.第49届国际数学奥林匹克(IMO)试题及解答 [J], 马德里
3.第49届国际数学奥林匹克(IMO)试题及解答 [J],
4.几道2016年国际数学奥林匹克试题求解之深度思考 [J], 王运良
5.第47届国际数学奥林匹克(IMO)中国代表队选拔考试试题 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档