运筹学 第二章 灵敏度分析

合集下载

《运筹学》胡运权 第4版 第二章 线性规划的对偶理论及灵敏度分析

《运筹学》胡运权 第4版 第二章  线性规划的对偶理论及灵敏度分析

b2 bm
x1, x2 , , xn 0
对 称 形 式 的
的 定 义
m W ib 1 n y 1 b 2 y 2 b m y m 对
s.t.
a11 a12 a1n
a21 a22 a2n
am1 y1 c1
am2 y2 amn ym
c2 cn
偶 问 题
y1, y2 , , ym 0
a23 x3 a33 x3
b2 b3
x1 0, x2 0, x3无 约 束
(2.4a) (2.4b) (2.4c) (2.4d)
先转换成对称形式,如下:
的 的一个变量,其每个变量对应于对偶问题 的一个约束。


m Z a c 1 x 1 x c 2 x 2 c n x n 一
对 偶
a11x1 a12x2 a1n xn (,)b1
a2
1x1
a22x2
a2n xn
(, )b2
般 线 性
问 题 的 定 义
am1x1 am2 x2 amnxn (,)bm xj 0( 0,或符号不限) j 1 ~ n
问题。

对偶问题是对原问题从另一角度进

行的描述,其最优解与原问题的最 优解有着密切的联系,在求得一个

线性规划最优解的同时也就得到对 偶线性规划的最优解,反之亦然。

对偶理论就是研究线性规划及其对 偶问题的理论,是线性规划理论的
重要内容之一。
问 题 的 导 出
例2-1
我们引用第一章中美佳公司的例子,如表1

x1, x2, , xn 0

m W ib 1 n y 1 b 2 y 2 b m y m

灵敏度分析(运筹学)

灵敏度分析(运筹学)

最优基不变,即在最终表中求得的经过变化后 的b列的所有元素要求不小于0
目标函数 m ax z 2 x1 3x2 x1 2 x2 8 4x 16 1 约束条件 : 4 x2 12 x1 , x2 0
0 x3 1 -2 1/2 -3/2 0 x4 1/4 1/2 -1/8 -1/8 0 x5 0 1 0 0 θ

(5)按照下表所列情况得出结论或继续计算的步 骤。
原问题 可行解 可行解 非可行解 非可行解 对偶问题 可行解 非可行解 可行解 非可行解 结论或继续计算的步骤 原最优基不变 用单纯形法继续迭代 用对偶单纯形法继续迭 代 引入人工变量 ,扩大原 单纯形表继续计算


资源数量变化是指资源中某系数 br 发生变化,即 br′=br+Δ br。并假设规划问题的其他系数都不变。 这样使最终表中原问题的解相应地变化为 XB′=B-1(b+Δ b) 这里 Δ b=(0,… , Δ br,0,… , 0)T 。只要 XB′≥0 , 因最终表中检验数不变,故最优基不变,但最优 解的值发生了变化,所以 XB′ 为新的最优解。新 的最优解的值可允许变化范围用以下方法确定。
(d) (e) -2
· · ·
1 0 0
0 1 0
cj - zj
XB x1 x5 cj - zj
b (f) 4
x1
x2
x3
x4
x5
(g) (h) 0
2 (i) 7
-1 1 (j)
1/2 1/2 (k)
0 1 (l)
--7--
--第2章 对偶问题--
以前讨论线性规划问题时,假定αij,bi,cj都是常数。 但实际上这些系数往往是估计值和预测值。如市场 条件一变,cj值就会变化;αij往往是因工艺条件的 改变而改变;bi是根据资源投入后的经济效果决定 的一种决策选择。显然,当线性规划问题中某一个 或几个系数发生变化后,原来已得结果一般会发生 变化。 因此,所谓灵敏度分析,是指当线性规划问题中的 参数发生变化后,引起最优解如何改变的分析。

运筹学灵敏度分析

运筹学灵敏度分析

只需由 j 0解得c j的范围。
(2) c j 是基变量x j的价格系数 这时要影响所有的检验 数
i ci (c1 ci ci cm ) B Pi , 应由所有的 i 0解得公共的c j。
1
p11-2
例1:在(煤电油例)中,其单纯形终表如下:
0 x 7 x 12 x
3 1
运筹学
2

84 20 24
0 1 0
0
0 0 1
0
1 0 0
0
- 0.32 0.4 - 0.12
- 1.36
1.16 - 0.2 0.16
- 0.52
z 428
(1)甲产品的价格在何范围内变化时,现最优解不变?
解:甲产品的价格c1是基变量的价格系数。 0.32 由 4 0 0 7 c1 12 0.4 2.8 0.4c1 1.44 0 0.12 得 c 3.4, 1.16 由 5 0 0 7 c1 12 - 0.2 1.4 0.2c1 1.92 0 0.16 得 c 2.6,
2
运筹学
例1:在(煤电油例)中,其单纯形终表如下:
0 x 7 x 12 x
3
1
2

84 20 24
0 1
0
0 0 1
1 0
0
- 3.12 1.16 0.4 - 0.2
- 0.12 0.16
z 428
0
0
0
- 1.36
- 0.52
(3)若有人愿以每度1元的价格向该厂供应25度电,是 否值得接受?
§3.4 灵敏度分析
灵敏度分析——研究系数变化对最优解的影响.

运筹(第二章对偶与灵敏度分析)(1)

运筹(第二章对偶与灵敏度分析)(1)

5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束


y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22

运筹学线性规划灵敏度分析教学案例

运筹学线性规划灵敏度分析教学案例
2020/8/1
多个资源系数同时变动分析
例如,将 1 个小时的用工时间从3车间移到2车间,对总利润 产生什么影响?
总利润增加 3650 - 3600 = 50 元, 而目标系数未变,所以最优解肯定 发生变化,
2020/8/1
百分之百法则
如果约束右端值同时变动,计算出每一变动占允许变动量的 的百分比,如果所有的百分比之和不超过100%,那么,影子 价格依然有效;否则,就无法确定。
2020/8/1
灵敏度分析的概念
LP 问题的系数有 aij、bi 、 cj,这些系数往往是估计值 或预测值。
市场条件变化, cj 值就会变化;工艺条件和技术水平改 变, aij 就变化; bi 是根据资源投入后的经济效果决定的一种 选择,市场供应条件发生变化时,亦会改变。
提出问题:
• 当 LP 问题的系数有一个或几个发生变化时,已求得的最优 解会有什么变化; • 这些系数在什么范围内变化时,LP 问题的最优解不会变化。
再改变参数
最优解变了
2020/8/1
那么,保持最优解不变的价值系数允许 变化范围?
改变最优解的临界值是什么呢?
敏感性报告
在“规划求解结果”中 选定“敏感性报告”。 得到一个工作表:
2020/8/1
敏感性报告
最优解
目标函数系数
“递减成本” --- 表示目标函数的系数必须改变多少,才能使 决策变量有正数解。 “允许的增量”和“允许的减量” --- 给出最优解不变的范围。 如门的系数范围: 0≤c1≤750;窗的系数范围:c2≥200
2020/8/1
资源数量变化的分析
考虑只有一个右段值 bi 改变:2 车间可用工时由原来的 12小 时增加到 13 小时,最优解如何变化呢?再变化呢?

运筹学习题解答(chap2)(1)(1)

运筹学习题解答(chap2)(1)(1)

第二章 对偶问题与灵敏度分析一、写出下列线性规划的对偶问题1、P89,(a)321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≤++≥++.,0,;534;332;243321321321321无约束x x x x x x x x x x x x解:原模型可化为321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≥≥++.,0,;534;3-3--2-;243321321321321321无约束x x x y y y x x x x x x x x x 于是对偶模型为321532m ax y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+-≤+-.,0,;4334;243;22321321321321无约束y y y y y y y y y y y y2、P89,(b)321365m ax x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++.0,0,;8374;35;522321321321321x x x x x x x x x x x x 无约束解:令033≥-='x x 原模型可化为321365m ax x x x Z '-+=⎪⎪⎩⎪⎪⎨⎧≥'≥≤'+≤'='+.0,0,;83-74;3--5-;52-2321321321321321x x x y y y x x x x x x x x x 无约束于是对偶模型为321835m in y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥-≥---≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束 或⎪⎪⎩⎪⎪⎨⎧≥≤++≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束二、灵敏度分析1、P92, 线性规划问题213m ax x x Z += ⎪⎩⎪⎨⎧≥≤+≤+0,1025;74212121x x x x x x最优单纯形表如下试用灵敏度分析的方法,分析:(1) 目标函数中的系数21,c c 分别在什么范围内变化,最优解不变(2) 约束条件右端常数项21,b b 分别在什么范围内变化,最优基保持不变解:(1) 1c 的分析:要使得最优解不变,则需⎪⎪⎩⎪⎪⎨⎧≤⨯-⨯+=≤⨯+⨯-=034131003513201413c c σσ 即 ⎪⎩⎪⎨⎧≤≥42511c c 所以:4251≤≤c 时可保持最优解不变。

运筹学第二章24灵敏度分析

运筹学第二章24灵敏度分析

(3)其他情况讨论: 某个产品工艺参数改变; 新品代替原产品等;
(2) N =?
舍弃中间计算过程
只考察初始表和最终表
B-1 = AB-1
2、价值系数C发生变化的情况: (1)当cj是非基变量的价值系数——它的变 化只影响 j 一个检验数。 ≤0 1 j c j CB B Pj ≥0 要进行基变换码?
j c j c j CB B Pj ≤ 0
' 1
c j ≤ CB B1 Pj c j
非基变量的价格系数变化,在原最优解 不变的条件下,确定的变化范围。
( 2 )当cj是基变量的价值系数 —— 它的变化 将影响所有非基变量的检验数. 1 N C N CB B N 当cj变化时,如能保持 0 ,则当前解仍 N 为最优解,否则可用单纯形法继续迭代求出 新的最优解。 1 C C B N 0 将cj看作待定参数,令 N N B 解这n-m个不等式,可算出保持最优解不变 时cj的变化范围 ! 基变量的系数变化,仍用c2代表x2的价值系 数(看成待定参数),原最优表格即为:
(2) 增加1个约束条件: 相当于系数阵A增加1行 首先将原最优解代入新增约束检查是 否满足?是,则说明新增约束不影响最 优解。否则再作下面的讨论:

将新增约束标准化,添加到原最优表 格中(相当于约束矩阵新增1行);


进行规格化处理 —— 用矩阵的行变换 将当前基变成单位阵; 用适当方法(通常是对偶单纯形法) 进行迭代求出新的最优解。
(1)增加1个新变量:相当于系数阵A增加1列 如开发出一种新产品,已知其有关工艺参数 (或消耗的资源量)和单位产品利润,设该种 产 品 的 产 量 为 xk , 则 ck 和 Pk 已 知 , 需 要 进 行 “是否投产”的决策。

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

13
2
y3
2 3

y1符号不限, y 2 0, y3 0
非 对 偶 形 式 旳 原对 偶 问 题
例2-4 写出下列问题旳对偶问题
max z c1x1 c2 x2 c3x3
a11x a12 x a13x3 b1
s.t.
a21x1 a31x1
a22 x2 a32 x2
a23 x3 a33 x3
出让自己旳资源?
问 题 旳 导 出
例2-1
条件:出让代价应不低于用同等数量资源由自己组织生 产活动时获取旳获利。
y1,y2,y3分别代表单位时间(h)设备A、设备B和调试工 序旳出让代价。 y1,y2,y3旳取值应满足:
6y 2
y 3
2
5y 1
2y 2
y 3
1
美佳企业用6h设备B和1h调试可 生产一件家电I,获利2元
y1, y2 , y3 0
LP1和LP2两个线性规划问题,一般称LP1为原问题, LP2为前者旳对偶问题。
max Z c1x1 c2 x2 cn xn
对 偶 问 题
s.t.
a11 a21
am1
a12 a22
am2
a1n x1 b1
a2n
x2
b2
amn xn bm
规 划 问
minW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1
a12y1
a22 y2
am2
ym
(,
)c2
题 旳 对 偶 问
a1n y1 a2n y2 amn ym (, )cn

y j 0(符号不限,或 0)i 1 ~ m

运筹学第二章第6讲

运筹学第二章第6讲
12
例题4:写出以下模型的对偶问题
max z = 3 x1 − 2 x2 − 5 x3 + 7 x4 + 8 x5 x2 − x3 + 3 x4 − 4 x5 = −6 2 x1 + 3 x2 − 3 x3 − x4 ≥ 2 − x1 + 2 x3 − 2 x4 ≤ −5 s.t. − 2 ≤ x1 ≤ 10 5 ≤ ≤ 25 x2 , ≥ 0, 为自由变量 x5 x3 x4
OR1
对偶问题(或原问题) 对偶问题(或原问题) 目标函数 MinW
约束条件数: 约束条件数:n 第i个约束条件类型为“≥” 个约束条件类型为“ ” 个约束条件类型为 个约束条件类型为“ ” 第i个约束条件类型为“≤” 个约束条件类型为 个约束条件类型为“ 第i个约束条件类型为“=” 个约束条件类型为 对偶变量数: 个 对偶变量数:m个 第i个变量 个变量≥0 个变量 个变量≤0 第i个变量 个变量 第i个变量是自由变量 个变量是自由变量
OR1
15
2 弱对偶性:极大化原问题的任一可行解的目标 弱对偶性: 函数值不大于其对偶问题任意可行解的目标函数 值。即: C X≤ Yb
证明:设原问题为maxZ=CX, AX ≤b ,X ≥0. ≥0. 证明: 原问题为maxZ=CX,
为原问题的可行解, ≤b, X 为原问题的可行解,有AX ≤b,
二.对偶线性规划的定义 对偶线性规划的定义
max Z = CX ( LP ) AX ≤ b S .T . X ≥ 0
称线性规划(DLP)为线性规划 为线性规划(LP)的对偶线性规划 称线性规划 为线性规划 的对偶线性规划
minω = yb ( DLP ) yA ≥ C S .T . y ≥ 0

运筹学课件灵敏度分析

运筹学课件灵敏度分析

运筹学教程
Cj
210
CB 基 b X1 x2 x3
0 x3 15 0
51
2 x1 5 1
10
0 x4 2 0
-4 0
Cj-Zj
0
-1 0
00 x4 x5 00 01 1 -6 0 -2
工厂的最优生产计划改为只生产产品1,每天 的生产数量5件。
解:(2)
设每天的调试可用能力为5
运筹学教程
1 b' B1b 0
x5
x4
5
24
x1, x2 , x3, x4 , x5 0
用单纯形法求解如下:
运筹学教程
Cj
210 0 0
CB 基 b X1 x2 x3 x4
x5
0 x3 15/2 0 2 x1 7/2 1 1 x2 3/2 0
01 00 10
5/4 -15/2 ¼ -1/2 -1/4 3/2
Cj-Zj
0
8
2
3 / 2 0 2
运筹学教程
将其反映到最终的单纯形表,原问题非可行解, 采用dual单纯形法
Cj
2
CB 基 b X1
0 x3 35/2 0
2 x1 11/2 1
1 x2 -1/2 0
Cj-Zj
0
10 x2 x3 01 00 10 00
00 x4 x5 5/4 -15/2 ¼ -1/2 [-1/4] 3/2 -1/4 -1/2
aij
y i
i 1
运筹学教程
(2)、检查原问题是否仍为可行解。 (3)、检查对偶问题是否仍为可行解。
原问题
可行解 可行解 非可行解 非可行解
对偶问题
可行解 非可行解 可行解 非可行解

运筹学-02对偶理论与灵敏度分析

运筹学-02对偶理论与灵敏度分析
page 9 Sep.2009
Yao Yuan School of Business Administration
Operations Research
原问题和对偶问题的对应关系
原问题(对偶问题) 对偶问题(原问题) 约束系数矩阵的转置 目标函数中的价值系数向量 约束系数矩阵 约束条件的右端向量
A b C
min W Y T b A Y C s.t. Y 0
T T
X n1,Ym1 C1n,Amn,bm1
对偶问题 约束系数矩阵的转置 目标函数中的价值系数向量 约束条件的右端向量 Min W=YTb ATY≥CT
Yao Yuan School of Business Administration
目标函数
目标函数中的价值系数向量
max Z c j x j
j 1 n
约束条件的右端向量
min W bi y i
有n个 ( j 1,..., n) m a y c 约 ij i j i 1 束 m aij y i c j 条 i 1 件 m a ij y i c j i 1
0 6 1 2
5 2 1 1
15 24 5
max Z 2 x1 x2 5 x2 15 6 x 2 x 24 1 2 s.t. x1 x2 5 x1 , x2 0
min W 15 y1 24 y 2 5 y 3 6 y 2 y3 2 s.t.5 y1 2 y 2 y 3 1 y ,y ,y 0 1 2 3
page 3 Sep.2009
min W 24 y1 26 y 2 2 y1 3 y 2 4 s.t.3 y1 2 y 2 3 y ,y 0 1 2

运筹学第二章灵敏度分析

运筹学第二章灵敏度分析

CB
-3 -5 -Z’
xB x1 X2
2.4 对偶解的经济解释
一、对偶线性规划 的解: P55
Cj xB x3 x1 x2 z b 7/2 7/2 3/2 x1 1 0 0 y4 Cj yB b y1 15/2 0 原问题变量 x2 0 0 1 0 y5 对偶问题变量 y2 y3 x3 1 0 0 0 y1 原问题变量 x4 5/4 1/4 -1/4 1/4 y2 x5 -15/2 -1/2 3/2 1/2 y3
T.G.Koopman(库普曼)和 L.V.Kamtorovich(康脱罗维奇)
二人因此而共同分享了1975年的第7届诺贝尔经 济学奖。
2.5 灵敏度分析
一、灵敏度分析的含义 是指系统或事物因周围条件变化显示出来的敏感性程度的分析。 对于线性规划问题的灵敏度分析是指参数A,b,C变化引起的 对原问题解的变化的分析。 其中:A为技术参数矩阵,b为资源向量,C为价值向量 可以用参数变化后的问题重新用单纯形法求解? 没必要,意义不大,有些问题看不出来。 把相应的变化反映到最终单纯形表中,再根据情况用相应的方 法求解。
Z 50 x1 30 x2
2.1 线性规划的对偶问题与对偶理论
假设现有乙公司准备租借用(购买)该木器厂的木工和 油漆工两种劳力的劳务,需要考虑这两种劳务以什么 样的价格租入最合算?而同时甲公司要以什么条件才 会租让?甲公司肯定会以自己利用两种劳力的劳务组 织生产所获得的利润最大为条件,设每个木工的租用 价格为y1,每个油漆工的租用价格为y2,则乙公司愿 意租用的出资为:
0 变量 0 无限制
型 约束 型 型
0 变量 0 无限制
型 约束 型 型

运筹学2对偶理论与灵敏度分析

运筹学2对偶理论与灵敏度分析

三、增加新变量的灵敏度分析
在管理中经常遇到的问题:已知一 种新产品的技术经济指标,在原有最优 生产计划的基础上,怎样最方便地决定 该产品是否值得投入生产,可在原线性 规划中引入新的变量 ; 无论增加什么样的新变量,新问题 的目标函数只能向好的方向变化。
例2.16 (续例2.14)
设企业研制了一种新产品,对三种资源的消耗系数 列向量以P6表示。试问它的价值系数c6符合什么条件, 才必须安排它的生产?设c6=3,新的最优生产计划是 什么?
1. 强制生产30件A x1 必须等于30 目 标值下降; 下降程度可用 x1 的检验数进行 计算:
cj CB 0 5 4 0 XB x3 x1 x2 x6 σ
j
5 b 25 35 10 150 x1 0 1 0 4 0
4 x2 0 0 1 2 0
0 x3 1 0 0 0 0
0 x4 2 1 -1 0 -1
0 x5 -5 -1 2 0 -3
0 x6 0 0 0 1 0
0 5 4 0
0 5 4 0
90 1 = 80 0 b 0 3
250 - 5b3 - 5 90 80 = 80 b 3 ≥0 1 1 80 2b b3 -1 2 3
2
解得40≤b3≤50,即当3∈[40,50]时,最优基B不变, 最优解为: * x3 250- 5b3 * x1 80 b 3 * = x2 80 2b 3
x4*=x5*=0, z*=5×(80-b3)+4×(-80+2b3)=80+3b3
例2.14 某企业利用三种资源生产两种产品 的最优计划问题归结为下列线性规划

运筹学第二章灵敏度分析

运筹学第二章灵敏度分析

m ax z 300 x1 500 x2
x1 4
s
.t
.
2 3
x2 x1
1 2
2 x
2
18
x 1 , x 2 0
m ax z 300 x1 500 x2 400 x3
x1 2 x3 4
s.t
.
2 3
x2 x1
x3 2x
12 2 x3
18
x1 , x2 , x3 0
改进多少,才能得到该决策变量的正数解。0表示不需再改进。
目标式系数: 指目标函数中的系数 允许增量、允许减量:表示目标函数中的系数在允许的增
量与减量范围内变化时,原问题的最优解不变。
450和1E+30的含义是什么?
2.2.2 图解法
0<=c1<=750
x2
8
7 6
5
4
3
2
可行域
1
c1=0(z=0x1+500x2) c1=300(z=300x1+500x2)
约束条件系数 a i j 变化的灵敏度分析
变量 x j 变化的灵敏度分析
约束条件数量变化的灵敏度分析
2.2 单个目标函数系数变化的灵敏度分析
只有一个系数cc j j 发生变化,即其他条件均不变,把
300 改成 500
m ax z 300 x1 500 x2
x1 4
s
.t
.
2 3
x x
2 1
规划求解得到
2.8 增加一个约束条件
增加一个约束条件,比如增加电力供应限制时, 最优解是否会发生变化?
假设生产一扇门和窗需要消耗电力分别为20kw和 10kw,工厂可供电量最多为90kw,此时应该在原 有的模型中加入新的约束条件:

运筹学讲义-灵敏度分析

运筹学讲义-灵敏度分析
k=1 −1 m
qi = ∂f ( x) ∂bi− = (CBB−1)i , 左导数 机会成本 zn+i = CBB−1P +i = (CBB−1)i n zn+i 因此 qi = − zn+i
−1 m
, 松弛变量 人工变量 剩余变量
m
机会成本的另外表达形 式 z j = CBB Pj = ∑(CBB )i aij = ∑qiaij
16
2.4.7 灵敏度分析举例 例2.4.3 某工厂生产三种产品 A, B, C,有五种生产组合方案。 ,有五种生产组合方案。
下两表给出有关数据。 产品至少110 个,求收 下两表给出有关数据。规定每天供应 A产品至少 产品至少 益最大的生产方案。 益最大的生产方案。
17
例2.4.3
为已选定各种组合方案的组数(j=1,2,…,5), x6为A产品 解:设xj为已选定各种组合方案的组数 , 产品 的剩余变量, 分别为工人工时和机器工时的松弛变量。 的剩余变量, x7,x8分别为工人工时和机器工时的松弛变量。
©管理与人文学院
1999,4 ,
忻展红
2.4 灵敏度分析
灵敏度分析又称为后优化分析
2.4 线性规划的灵敏度分析
• 线性规划是静态模型 • 参数发生变化,原问题的最优解还是不是最优 参数发生变化, • 哪些参数容易发生变化 – C, b, A • 每个参数发生多大的变化不会破坏最优解 • 灵敏度越小,解的稳定性越好 灵敏度越小,
18
例2.4.3 • • • • • • • • • 最优解的B 最优解的 –1是什么 产品A的影子价为多少 产品 的影子价为多少 组方案的生产费用提高2元 第II组方案的生产费用提高 元,是否要调整生产组别 组方案的生产费用提高 若工人加班费为1元 小时 小时, 若工人加班费为 元/小时,是否要采取加班措施 若通过租借机器增加工时, 若通过租借机器增加工时,租费的上限应为多少 A产品的订购合同是否有利 产品的订购合同是否有利 若要选用第IV组方案,该组的生产费用应降低多少 若要选用第 组方案, 组方案 若工人加班费为0.3元 小时 小时, 若工人加班费为 元/小时,最多允许加班时间多少 若机器租费低于44元 小时 问租几部机器才合适(每天 小时, 若机器租费低于 元/小时,问租几部机器才合适 每天 8小时计 小时计) 小时计 • 若第 组方案使机器工时减少 小时,能否被选入 若第III组方案使机器工时减少 小时, 组方案使机器工时减少0.5小时

运筹学灵敏度分析目标规划

运筹学灵敏度分析目标规划

3 灵敏度分析
例3 7:
例3 4增加3x1+ 2x2≤15;原最优解不 满足这个约束 于是
Ci
2 3000
0
CB XB b X1 X2 X3 X4 X5
X6
2 X1 4 1 0 0 1/4 0
0
0 X5 4 0 0 -2 1/2 1
0
3 X2 2 0 1 1/2 -1/8 0
0
0 X6 -1 0 0 -1 -1/2 0
故恒有d+×d=0
目标规划问题及其数学模型
2 统一处理目标和约束
对有严格限制的资源使用建立系统约束;数学形式同线性规划中 的约束条件 如C和D设备的使用限制
4 x 1 16 4 x 2 12
对不严格限制的约束;连同原线性规划建模时的目标;均通过目 标约束来表达 1例如要求甲 乙两种产品保持1:1的比例;系统约束表达为: x1=x2 由于这个比例允许有偏差; 当x1<x2时;出现负偏差d;即: x1+d =x2或x1x2+d =0 当x1>x2时;出现正偏差d+;即: x1d+ =x2或x1x2d+ =0
-z
m
f
0…
m
0 σm+1 … σn
其中:f = ∑ ci bi’ j = cj ∑ ci aij’ 为检验数 向量 b’ = B1 b
i=1
i=1
A= p1; p2; …; pn ; pj’ = B1 pj; pj’ = a1j’ ; a2j’ ; … ; amj’ T ; j = m+1; … ; n
0
0
-1.5-ΔC2/2 -1/8+ΔC2/8
0
σj=cjc1×a1j+c5 × a5j+c2+Δc2 ×a2jj=3;4 可得到 3≤Δc2≤1时;原最优解不变

《运筹学》第二章 对偶问题和灵敏度分析jssk1

《运筹学》第二章 对偶问题和灵敏度分析jssk1

2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改进多少,才能得到该决策变量的正数解。0表示不需再改进。
目标式系数: 指目标函数中的系数 允许增量、允许减量:表示目标函数中的系数在允许的增
量与减量范围内变化时,原问题的最优解不变。
450和1E+30的含义是什么?
2.2.2 图解法
x2
8 7 6 5 4 3 2 1
0<=c1<=750
(2,6)是最优解
2.4.2 图解法——改变车间2的约束
x2 改变车间1的约束又会是如何的?
2x2=18
8 7 6 5 4 3 2 1
(2,6)是最优解
2x2=12
可行域
2x2=6
1 23 4 5 6 7 8
x1
2.5 多个约束右端值同时变化的灵敏度分析
分析1小时的工时从车间3移到车间2,对总利润所产生的 影响。 那么,根据影子价格,可知总利润变化量如下: 车间2: 12-->13,利润增加?元 车间3: 18-->17,利润减
课本P50,例2.3,回答五个问题
1. 产品甲的单位利润将会在3.8万元~5.2万元之间波动,公司该 如何应对这种情况,提前对生产格局做好调整预案?
2. 当资源A的限额(储备量)在42~46之间变化时,对线性规划 的影响? 3. 材料B在最优生产格局中出现了12.5单位的剩余,那么应如何 重新制定限额,做好节约工作? 4. 若公司停止生产,把各种原材料变卖。该如何决策?

max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
现从另一角度提出问题。假定某A公司想把该工厂的资源收购过 来,它至少应付出多大代价,才能使该工厂愿意放弃生产活动, 出让自己的资源?显然该工厂愿意出让自己资源的条件是:出让 代价应不低于用同等数量资源由自己组织生产活动时获取的赢利。 设分别用y1、y2、y3代表单位时间车间1、车间2、车间3的出让代 价,因该工厂用1小时车间1和3小时车间3可生产1扇门,赢利300 元;分别用2小时车间2和车间3可生产1扇窗,赢利500元,由此, y1、y2、y3的取值应满足: y1 + 3y3 ≥ 300 2y2 + 2y3 ≥ 500
该问题为原问题的对偶问题
该问题的最优解的意义: 代表资源最优利用条件下对单位第i种资源的估价。这种 估价不是资源的市场价格,而是根据资源在生产中作出的贡 献而做的估价,为区别起见,称为影子价格(阴影价格)
影子价格

资源的市场价格是其价值的客观体现,相对比较
稳定,而它的影子价格则有赖于资源的利用情况, 是未知数。
第二章 线性规划的
灵敏度分析
在根据一定数据求得最优解后,当这些数据中某 一个或某几个发生变化时,对最优解会产生什么影响。 或者说,要使最优解保持不变,各个数据可以有多大 的幅度的变动。这种研究线性规划模型的原始数据变 化对最优解产生的影响就叫做线性规划的灵敏度分析。
回答两个问题:
①这些系数在什么范围内发生变化时,最优基不变(即最 优解或最优解结构不变)? ②系数变化超出上述范围时,如何用最简便的方法求出新 的最优解?
c1=0(z=0x1+500x2)
可行域 c1=300(z=300x1+500x2)
1 23 4 5 6 7 8
x1
c1=750(z=750x1+500x2)
2.3 多个目标函数系数同时变化
多个系数 c j 发生变化,即其他条件均不变,把300改成450, 把500改成400
max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
2.4 单个约束右端值变化的灵敏度分析

只有一个约束右端值 bi 发生变化,即如果其他条
件均不变,把12改成13
max z 300 x1 500 x2 x1 4 2 x 13 2 s.t. 3 x1 2 x2 18 x1 , x2 0
max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
A公司希望用最小的代价把该工厂的全部资源收买过来,故有
min z = 4y1 + 12 y2 + 18y3
显然,yi ≥ 0 (i=1,2,3)
综上,现在的问题为:
min z 4 y1 12 y2 18 y3 y1 3 y3 300 s.t. 2 y2 2 y3 500 y , y , y 0 1 2 3
规划求解得到
2.7 增加一个新变量
在例1.1中,如果增加一个变量x3,比如考虑增加一种新产品: 防盗门,单位利润400元,生产一扇防盗门会占用车间1、车间 2、车间3各2、1、1小时,此时,新的线性规划模型变为:
max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
max z 300 x1 500 x2 x1 4 1.5 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 , x3 0
max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0

如果所得的变化的百分比总和不超过100%,则最优 解不会改变;如果超过了100%,则不能确定最优解 是否改变,可通过重新运行“规划求解”命令来判 断
敏感性报告——百分之百法则
作用 1. 可用于确定在保持最优解不变的条件下,目标函数系 数的变化范围; 2. 百分之百法则通过将允许的增加量或减少量在各个系 数之间进行分摊,从而可以直接显示出每个系数允许的变化 值; 3. 线性规划求解后,如果将来条件变化,致使目标函数 中一部分或所有系数都发生变化,那么百分之百法则可以直 接表明最初最优解是否保持不变

但此时敏感性报告是否有效?
2.5.1 敏感性报告——百分之百法则

含义:如果约束右端值同时变化,计算每一右端值变化量 占该约束右端值允许变化量的百分比,然后将每个约束右 端值变化的百分比相加。如果所得的变化的百分比总和不
超过100%,那么影子价格依然有效;如果超过了
100%,那就无法确定影子价格是否依然有效,可通过 重新运行“规划求解”命令来判断。
影子价格与线性规划的对偶问题

课本P54
max z 300 x1 500 x2 400 x3 x1 2 x3 4 2 x x 12 2 3 s.t. 3 x1 2 x2 x3 18 x1 , x2 , x3 0
规划求解得到
2.8 增加一个约束条件
增加一个约束条件,比如增加电力供应限制时, 最优解是否会发生变化? 假设生产一扇门和窗需要消耗电力分别为20kw和 10kw,工厂可供电量最多为90kw,此时应该在原 有的模型中加入新的约束条件:
例1.1 下列模型中,对最优值有 影响的因素有哪些?
max z = 300x1 + 500x2 x1 4 s.t. 2x2 12 3x1 + 2x2 18 x1 , x2 0
灵敏度分析的内容
目标函数系数 c j 变化的灵敏度分析
约束右端值 bi 变化的灵敏度分析
(单个变化和多个变化) (单个变化和多个变化)
max z 500 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
用Excel求解
最优解没有改变
2.2.1 敏感性报告
几个基本概念
递减成本: 它的绝对值表示目标函数中决策变量的系数必须
变化的百分比总和为133.34%, 所以最优解变化与否不确定,需通过“规划求解”重新计算
重新“规划求解”得到
最优解改变,最大利润改变
例1.1 百分比总和=100% ——最优解不变
门的单位利润 c1=300 c1=525,占允许增加量的百分比

窗的单位利润 c2=500 c2=350 ,占允许减少量的百分比
最优解改变,利润增加
如果车间2的可用工时不断增加,会出现什么情况?
为什么?
最优解不改变,利润不变
2.4.1 敏感性报告
阴影价格,显示了约束右端值每增加(或减少) 1个单位,目标函数值(或最优值)相应的增加 量(减少量) 可从敏感性报告中获得的信息??
补充说明: 影子价格
影子价格的解释: 1. 线性规划的对偶问题 例1.1的线性规划问题为
例1.1 百分比总和>100% ——最优解变化与否不确定
门的单位利润 c1=300 c1=600,占允许增加量的百分比 窗的单位利润 c2=500 c2=300 ,占允许减少量的百分比

600 300 100% 66.67% 450
500 300 100% 66.67% 300
max z 450 x1 400 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
最优解没有改变
敏感性报告
不能反映多个目标函数系数改变时带来的影响
敏感性报告——百分之百法则
定义 如果目标函数系数同时变化,计算出每一系数变化量占 该系数允许变化量的百分比,然后将各个系数变化的百分比 相加。
525 300 100% 50% 450
500 350 100% 50% 300
变化的百分比总和为100%, 所以最优解不变
2.6 约束条件系数变化的灵敏度分析
相关文档
最新文档