【学习方法】高中物理模型总结汇总
高中物理 高中物理22个经典模型汇总 清晰实用
高中物理高中物理22个经典模型汇总清晰实用高中物理22个经典模型汇总与清晰实用一、引言高中物理作为理科学科的重要组成部分,是学生们接触自然科学的第一步,也是理解世界的窗口。
在学习高中物理的过程中,掌握经典模型是至关重要的。
经典模型能够帮助我们理解自然界的规律,为我们解决问题提供了基本的思路,更好地认识自然界的奥秘,也更好地应对未来的挑战。
本文将汇总高中物理22个经典模型,并探讨它们的清晰实用之处。
二、运动学1. 位移、速度、加速度模型位移、速度、加速度是运动的基本概念,它们之间的关系能够帮助我们描述物体的运动状态,从而解释各种日常运动现象。
2. 牛顿三定律牛顿三定律是力学的基础,这个模型能够帮助我们理解物体受力的情况,进而分析物体的运动状态。
3. 万有引力万有引力模型是物理学中重要的一部分,它描述了物体之间的引力大小与距离的关系,解释了宇宙中广泛存在的引力现象。
4. 匀变速直线运动匀变速直线运动模型描述了物体在力作用下的匀变速直线运动规律,让我们能够准确预测物体的位置随时间的变化。
5. 抛体运动抛体运动模型适用于空中物体在重力作用下的运动,可以帮助我们分析和计算各种投掷运动。
6. 圆周运动圆周运动模型帮助我们理解物体在圆周运动中受力的情况,解释了各种圆周运动中发生的现象。
7. 谐振谐振模型能够帮助我们理解谐振现象产生的原因,也让我们在实际应用中更好地利用谐振的特性。
三、动能和势能8. 动能与势能转化动能和势能的转化模型描述了物体在力的作用下,动能和势能之间相互转化的规律,为我们解释各种能量转化现象提供了理论依据。
9. 机械能守恒机械能守恒模型说明了在某些力场内,物体的机械能守恒,这个规律被广泛应用于各种动力学计算中。
四、波动10. 机械波机械波模型帮助我们理解机械波的传播规律,解释了声音、水波等机械波的传播特性。
11. 光的直线传播光的直线传播模型适用于介质中光的传播规律,让我们能够更好地理解光的传播路径。
高中物理模型总结
高中物理模型总结引言在高中物理学习中,物理模型是理解和应用物理原理的重要工具。
通过观察现象、实验验证和理论推导,我们可以建立各种物理模型来解释自然界中的现象。
本文将对高中物理学习中常见的物理模型进行总结和归纳。
初中物理学习中的物理模型在初中物理学习中,我们已经接触到了一些基础的物理模型,比如简谐振动模型、牛顿第二定律模型、能量守恒模型等。
这些模型帮助我们理解了力学、热学、光学等基础物理学概念。
高中物理学习中的物理模型随着进入高中物理学习阶段,我们将接触到更加复杂和抽象的物理模型。
以下是一些常见的高中物理模型总结:1. 理想气体模型理想气体模型是描述气体行为的重要工具。
在理想气体模型中,气体分子被视为质点,忽略分子间的相互作用力和体积。
理想气体满足波义尔定律和理想气体状态方程。
该模型在研究气体的压强、体积、温度之间的关系以及气体的状态变化时非常有用。
2. 电磁场模型电磁场模型是描述电磁现象的基本模型。
该模型基于电荷和电流之间的相互作用产生的电场和磁场。
电磁场模型能够解释静电力、电磁感应、电磁波等现象,并且是理解电路、电磁设备、电磁辐射等问题的重要工具。
3. 波动模型波动模型用于解释波动现象,包括机械波和电磁波。
机械波包括横波和纵波,可以通过简单的模型来描述波长、频率、波速等特征。
电磁波是通过振荡电荷产生的模型,可以解释光学、无线电通信等现象。
4. 光学模型光学模型用于描述光的传播和光的性质。
光学模型包括几何光学模型和波动光学模型。
几何光学模型基于光的直线传播和光的反射、折射定律,并使用光线追迹的方式描述光的传播路径。
波动光学模型使用波动理论解释光的干涉、衍射、偏振等现象。
5. 相对论模型相对论模型是描述高速运动物体的物理模型。
通过引入光速不变原理和相对性原理,相对论模型能够解释光的速度不随观察者的运动状态而改变、时间和空间的相对性等现象。
相对论模型对于理解粒子加速器、宇航飞行等高速物体运动的行为非常重要。
物理高考模型结论总结归纳
物理高考模型结论总结归纳物理学是自然科学中的一门重要学科,也是高考中的重点科目之一。
物理学的学习不仅要理解基本概念和原理,还要熟悉各种物理模型和结论。
掌握物理模型的结论对于高考物理的备考非常重要。
本文将总结归纳物理高考模型的一些重要结论,帮助同学们更好地备考物理高考。
一、力学模型结论1. 牛顿第一定律:物体在没有外力作用下保持静止或匀速直线运动。
2. 牛顿第二定律:物体的加速度与作用在其上的合力成正比,与物体的质量成反比。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
4. 动能定理:物体的动能变化等于外力对其所做的功。
5. 力的合成与分解:合力等于力的矢量和,合力的方向与矢量和的方向相同;分解力是将力分解为多个合力的过程,合力等于分解力的矢量和。
二、电磁学模型结论1. 电荷守恒定律:一个独立系统的总电荷在任何变化过程中都保持不变。
2. 库仑定律:两个点电荷之间的电力与它们之间的距离的平方成反比,与电荷的大小的乘积成正比。
3. 电流、电压和电阻的关系:欧姆定律,电流等于电压与电阻的比值。
4. 磁场的产生:通过导体中电流产生的磁场可以使用安培定理确定。
5. 洛伦兹力:带电粒子在磁场中受到的力与其电荷、速度、磁场强度之间的关系。
三、热学模型结论1. 物体内能:物体的内能等于其微观粒子的平均动能。
2. 热平衡:两个物体达到热平衡时,它们之间没有净热量传递。
3. 热传导:热传导是通过物质内部粒子间的碰撞传递热量的过程。
4. 热容量:物体吸收或释放的热量与温度变化之间的关系。
5. 熵增定律:孤立系统的熵在自发过程中总是增加。
四、光学模型结论1. 光的直线传播:光在均匀介质中直线传播,光遇到界面时发生反射和折射。
2. 光的反射定律:入射角等于反射角。
3. 光的折射定律:折射角、入射角和介质折射率之间的关系。
4. 成像定律:凸透镜成像公式和凹透镜成像公式。
5. 累次反射和全反射:累次反射是指光在界面之间多次反射的现象,全反射是指光由一种介质射入另一种折射率较小的介质时发生的完全反射。
物理模型考点总结归纳高中
物理模型考点总结归纳高中物理是一门研究物质运动以及相互作用的自然科学,广泛应用于现实生活和工程领域。
在高中物理学习中,学生们需要掌握各种物理模型,这些模型用于解释复杂的现象和问题。
本文将总结和归纳高中物理学习中的一些重要考点和物理模型。
一、力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律描述了物体的运动状态将保持恒定,直到遇到外力。
物体在无外力作用下匀速直线运动,或保持静止。
2. 牛顿第二定律(力学基本定律)牛顿第二定律描述了物体的加速度与作用在物体上的合力成正比。
即 F=ma,其中 F 为物体所受力的合力,m为物体的质量,a为物体的加速度。
3. 牛顿第三定律(作用力与反作用力)牛顿第三定律描述了物体之间的相互作用,即使两个物体之间有作用力,这两个力的大小相等、方向相反,且作用在不同的物体上。
4. 弹簧弹力模型弹簧的弹力模型是描述弹簧受力的一种常见模型。
根据胡克定律,弹簧的弹力与弹簧的伸长或压缩程度成正比。
二、电磁模型1. 静电力模型静电力模型用于描述电荷之间的相互作用。
根据库仑定律,两个电荷之间的静电力与它们之间的距离的平方成反比。
2. 电场模型电场模型用于描述静电力的传递方式。
电场是由电荷产生的,电场中的电荷会受到电场力的作用。
3. 磁场模型磁场模型用于描述磁力的传递。
根据洛伦兹力,运动带电粒子在磁场中受到的磁力与粒子的速度和磁场的强度成正比。
4. 电磁感应模型电磁感应模型用于描述电磁感应现象。
当导体中的磁通量发生变化时,会在导体中产生感应电动势。
三、光学模型1. 光的射线模型光的射线模型用于描述光在直线传播时的特性。
根据光的直线传播原理,光线在一直线传播过程中可以发生折射、反射等现象。
2. 光的波动模型光的波动模型用于描述光的波动性质。
根据光的波动理论,光具有波长、频率等特性,并符合波的干涉、衍射、偏振等规律。
3. 光的粒子模型(光量子模型)光的粒子模型用于描述光的粒子性质。
根据光量子理论,光以光子的形式传播,光子具有能量和动量。
高中物理模型总结归纳
高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。
通过模型,我们可以更好地理解和描述自然现象。
本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。
它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。
通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。
2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。
其中包括了质点力学、刚体力学和弹性力学等内容。
通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。
3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。
它包括了弹簧劲度系数、振动周期和频率等概念。
通过这个模型,我们可以更好地理解和计算弹簧的振动特性。
第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。
其中包括了库仑定律和电场强度等概念。
通过这个模型,我们可以预测和计算电荷之间的相互作用力。
2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。
其中包括了洛伦兹力和磁感应强度等概念。
通过这个模型,我们可以解释和计算磁场对物体的作用力。
3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。
其中包括了法拉第电磁感应定律和楞次定律等概念。
通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。
第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。
其中包括了折射定律、焦距和成像等概念。
通过这个模型,我们可以解释和计算光的传播路径和成像特性。
2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。
其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。
通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。
第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。
高三物理常见模型与方法
高三物理常见模型与方法高三物理常见模型与方法如下:1. 质心模型:研究多种体育运动中的集中典型运动规律、力能角度。
2. 绳件、弹簧、杆件模型:研究三者在直线与圆周运动中的动力学问题和功能问题,以及异同点。
3. 挂件模型:解决平衡问题,包括死结与活结问题,并采用正交分解法、图解法、三角形法则和极值法等。
4. 追碰模型:研究运动规律、碰撞规律和临界问题,可采用数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。
5. 运动关联模型:研究一物体运动的同时性、独立性、等效性,以及多物体参与的独立性和时空联系。
6. 皮带模型:研究摩擦力、牛顿运动定律、功能及摩擦生热等问题。
7. 斜面模型:研究运动规律、三大定律和数理问题。
8. 平抛模型:研究运动的合成与分解、牛顿运动定律和动能定理(类平抛运动)。
9. 行星模型:研究向心力(各种力)、相关物理量、功能问题和数理问题(圆心、半径、临界问题)。
10. 全过程模型:研究匀变速运动的整体性、保守力与耗散力、动量守恒定律、动能定理和全过程整体法。
11. 人船模型:研究动量守恒定律、能量守恒定律和数理问题。
12. 子弹打木块模型:研究三大定律、摩擦生热、临界问题和数理问题。
13. 爆炸模型:研究动量守恒定律、能量守恒定律。
14. 单摆模型:研究简谐运动、圆周运动中的力和能问题,可采用对称法、图象法等。
15. 限流与分压器模型:研究电路设计、串并联电路规律及闭合电路的欧姆定律、电能、电功率和实际应用。
16. 电路的动态变化模型:研究闭合电路的欧姆定律、判断方法和变压器的三个制约问题。
17. 磁流发电机模型:研究平衡与偏转、力和能问题。
18. 回旋加速器模型:研究加速模型(力能规律)和回旋模型(圆周运动)及数理问题。
19. 对称模型:研究简谐运动(波动)、电场、磁场、光学问题中的对称性、多解性和对称性。
20. 电磁场中的单杆模型:处理角度为力电角度、电学角度和力能角度,涉及棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨和竖直导轨等。
高中物理总结物理模型归纳
高中物理总结物理模型归纳物理学是一门理论与实践相结合的学科,通过建立物理模型来描述和解释自然界中的现象和规律。
在高中物理学习中,我们接触了许多物理模型,这些模型帮助我们更好地理解物理学的基本原理和应用。
本文将对高中物理学习中所涉及的一些重要物理模型进行总结和归纳。
一、牛顿第一定律——惯性模型牛顿的第一定律也被称为惯性定律,它提出了物体在没有外力作用时将保持匀速直线运动或保持静止的概念。
这一定律描述了物体惯性的特性,为物体运动的起点提供了基本解释。
在高中物理学习过程中,我们常常通过惯性模型来解释许多实际问题,如自行车漂移、离心力的作用等。
二、牛顿第二定律——力学模型牛顿的第二定律描述了物体受力时的运动情况,它指出物体的加速度与作用力成正比,与物体质量成反比。
这一定律在我们的日常生活中无处不在,通过建立力学模型,我们可以定量地描述物体运动的加速度与合力之间的关系。
在高中物理学习中,我们经常使用受力分析方法来解决各种力学问题,如斜面上的物体滑动、简谐振动等。
三、牛顿第三定律——作用-反作用模型牛顿的第三定律表明,对于每一个作用力,都存在着一个大小相等、方向相反的反作用力。
这一定律被称为作用-反作用定律。
通过作用-反作用模型,我们可以解释许多力的相互作用问题,如牛顿摆动力丝、牛顿陀螺等。
牛顿第三定律的应用也推动了火箭、飞机等交通工具的发展。
四、库仑定律——电场模型库仑定律描述了电荷之间的相互作用规律,它提出了两个电荷之间作用力与电荷之间距离的平方成反比的关系。
通过建立电场模型,我们可以解释静电力、电场强度等概念。
在高中物理学习中,我们学习了电荷与电荷之间的相互作用和电场的分布规律,并应用于静电场、电动力场等问题的解决。
五、欧姆定律——电路模型欧姆定律描述了电流与电阻、电压之间的关系,它指出电流的大小正比于电压,反比于电阻。
通过建立电路模型,我们可以解决电路中的电流分布、电阻功率等问题。
在高中物理学习中,我们学习了串联电路、并联电路等电路拓扑结构,应用欧姆定律解决了各种电路中的电流、电压和电阻的关系。
高考物理模型专题归纳总结
高考物理模型专题归纳总结一、引言高考物理考试中的物理模型是学生们备考的重点内容之一。
物理模型的理解和应用能力是解题的关键。
在高考物理考试中,常见的物理模型包括力学模型、电磁感应模型、光学模型等等。
本文将对这些物理模型进行归纳总结,帮助广大考生更好地掌握和应用这些知识。
二、力学模型1. 牛顿运动定律模型牛顿第一定律、牛顿第二定律、牛顿第三定律是力学模型中最基础的内容。
牛顿第一定律指出物体如果没有外力作用,将保持匀速直线运动或静止状态。
牛顿第二定律则给出了物体力学模型的数学表达式F=ma,其中F为物体所受合力,m为物体质量,a为物体加速度。
牛顿第三定律则说明了作用力与反作用力相等并方向相反的关系。
2. 弹性模型弹簧弹性模型是高考中常见的题型,通过应用胡克定律和弹簧势能公式进行计算。
胡克定律描述了弹簧伸长或缩短的变形与所受力的关系,F=kx,其中F为作用在弹簧上的力,k为弹簧的劲度系数,x为弹簧的伸长或缩短量。
弹簧势能公式为E=1/2kx²,其中E为弹簧的势能。
3. 圆周运动模型圆周运动模型中,角速度、角加速度、圆周位移与线位移的关系是基础内容。
角速度ω定义为角位移θ与时间t的比值,单位为弧度/秒。
角加速度α定义为角速度的变化率,单位为弧度/秒²。
圆周位移和线位移之间的关系为s=rθ,其中s为圆周位移,r为半径,θ为角位移。
三、电磁感应模型1. 法拉第电磁感应模型法拉第电磁感应模型是高考物理中的重要内容,应用于电磁感应的计算和分析。
法拉第电磁感应定律指出,通过导线的磁通量的变化率产生感应电动势,其大小和方向由导线所围成的回路和磁场变化率决定。
可以通过Faraday公式ε=-dΦ/dt进行计算,其中ε为感应电动势,Φ为磁通量,t为时间。
2. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了通过导体的电流所产生的磁场与导体所受磁场力的关系。
根据该定律,通过导体的电流所产生的磁场方向垂直于电流方向,其大小与电流强度和导线到磁场中心的距离正比。
高中物理24个模型总结电子版
高中物理24个模型总结电子版在高中物理课程中,模型是理解物理学概念的重要工具。
这些模型帮助学生更好地理解各种物理现象,并且可以帮助他们预测和解释实验结果。
这篇文章将总结高中物理课程中的24个重要模型,帮助读者更好地了解这些概念。
1. 等速直线运动模型在物理学中,等速直线运动是最简单的一种运动情形。
当一个物体在直线上以恒定速度移动时,我们可以使用等速直线运动模型来描述其位置和速度随时间的变化关系。
根据这个模型,物体的位移与其速度成正比,速度大小不变。
2. 自由落体模型自由落体是物理学中常见的一种现象,当物体只受重力作用时,其垂直方向上的运动就可以用自由落体模型来描述。
根据这个模型,物体在自由落体运动中的垂直位移与时间的平方成正比,速度不断增大。
3. 牛顿第一定律模型牛顿第一定律也称为惯性定律,它指出一个物体如果不受外力作用,将保持匀速直线运动或静止状态。
这个模型对于理解物体的运动状态和力的平衡关系非常重要。
4. 牛顿第二定律模型牛顿第二定律是描述物体受力运动的定律,指出物体的加速度与作用在其上的合力成正比。
根据这个模型,可以计算物体的加速度,推断作用力的大小和方向。
5. 牛顿第三定律模型牛顿第三定律也称为作用-反作用定律,它指出任何一个物体向另一个物体施加力时,另一个物体也会向第一个物体施加大小相等、方向相反的力。
这个模型对于理解物体之间的相互作用非常重要。
6. 弹簧振子模型弹簧振子是一种简单的机械振动系统,它由固定在一端的弹簧和一个连接在另一端的物体组成。
根据弹簧振子模型,振子的振动频率与弹簧刚度和振子的质量有关,可以用简谐振动的理论来描述。
7. 阻尼振动模型阻尼振动是指振动系统受到阻尼力的影响,振动幅度逐渐减小的运动。
根据阻尼振动模型,振动系统的振动幅度与振动频率的关系受到阻尼系数的影响,阻尼系数越大,振动幅度减小得越快。
8. 复式电路模型复式电路是由电阻、电感和电容元件组成的电路系统,根据复式电路模型,可以分析交流电路中各种元件之间的相互作用和电流、电压的关系。
高中物理模型总结
高中物理模型总结物理作为一门基础学科,研究自然界中各种现象和规律,是理解世界的一把钥匙。
在高中物理学习中,我们学习了许多模型,这些模型帮助我们理解复杂的物理理论和定律。
在这篇文章中,我将对高中物理中常见的几个重要模型进行总结和讨论。
一、质点模型质点模型是高中物理中最基础的模型之一。
我们将物体简化为一个质点,忽略其大小和形状,这样可以将物体的运动、相互作用等问题简化为质点在空间中的运动。
质点的位置可以用坐标来表示,从而实现对物体运动的描述。
例如,我们可以用质点模型来研究自由落体运动、抛体运动等。
二、弹簧模型弹簧模型是研究弹性力和弹性形变的重要工具。
我们将弹簧简化为一个能够贮存和释放弹性势能的弹性体系,通过其变形和恢复的过程来研究物体间的相互作用。
弹簧的劲度常数和变形量之间存在线性关系,这使得我们可以用胡克定律来描述弹簧力。
在弹簧模型中,我们可以研究弹簧振动、弹簧串联和并联等问题。
三、牛顿第二定律模型牛顿第二定律模型是研究物体力学性质的核心模型。
根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
利用这个模型,我们可以研究物体受力平衡和运动状态。
例如,我们可以通过分析物体的受力情况,计算物体的加速度和速度变化。
四、万有引力模型万有引力模型是研究天体运动的重要工具。
根据万有引力定律,任何两个物体之间都存在着相互吸引的作用力,这个力与物体质量有关,与物体之间的距离成反比。
万有引力模型可以用来解释行星围绕太阳的运动、人造卫星的轨道等问题。
通过万有引力模型,我们可以预测和计算天体的运动轨迹和速度。
五、波的传播模型波的传播是高中物理中的重要内容。
我们可以采用波的传播模型来研究光波、声波等在介质中的传播规律。
光波传播可以用光的折射和反射来描述,声波传播可以用声速和波长来研究。
通过波的传播模型,我们可以解释声音的传递、光的折射等现象。
总结:高中物理模型的学习对于理解和应用物理知识都具有重要意义。
通过质点模型,我们可以理解和描述物体的运动;弹簧模型可以研究弹性力和形变等问题;牛顿第二定律模型可以研究力学性质;万有引力模型可以解释天体运动;波的传播模型可以研究波动现象。
高中物理最全模型归纳总结
高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。
本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。
这个模型可以解释为何我们在车上突然刹车时会向前倾斜。
2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。
这个模型可以帮助我们计算物体受到的合力以及其加速度。
3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
这个模型可以解释为何我们划船时推水就能向后移动。
4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。
这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。
第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。
这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。
2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。
它遵循热量自高温物体向低温物体传递的规律。
这个模型可以解释为何我们触摸金属杯时会感觉更冷。
3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。
热辐射是指物体由于其温度而产生的电磁波辐射。
这个模型可以帮助我们理解太阳能的产生和传递。
第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。
根据电荷的性质,带电物体可能相互吸引或者相互排斥。
这个模型可以解释为何我们的头发梳理之后会挑起纸片。
2. 电流模型电流模型用于描述电荷在导体中流动的现象。
根据导体的电阻和电压差,电流的大小和方向也会发生变化。
这个模型可以帮助我们计算电路中的电流和电压。
物理高中模型总结归纳
物理高中模型总结归纳物理作为一门自然科学学科,研究物质和能量之间的相互作用规律。
在高中物理学习过程中,模型的运用是相当重要的。
模型在物理学中的作用是描述和解释物理现象、问题,并帮助我们更好地理解和应用物理学原理。
在这篇文章中,我们将对高中物理学中常见的模型进行总结和归纳。
一、力学模型力学是物理学中最基础的学科,描述物体的运动以及受力情况。
在力学中,常见的模型包括:1. 质点模型:将物体看作一个质点,忽略其内部结构,简化了问题的复杂性。
2. 弹簧模型:用弹簧来模拟弹性体,刻画弹性体的特性和变形规律。
3. 轨迹模型:通过确定物体在相应的力场中的运动轨迹来研究物体的运动规律。
二、热学模型热学是研究热量传递和物体热力学性质的学科。
在热学中,常见的模型包括:1. 热平衡模型:假设系统和周围环境达到热平衡状态,用于分析热传递过程中的温度变化。
2. 理想气体模型:以理想气体为研究对象,通过理想气体状态方程和理想气体定律等模型分析气体的性质和行为。
3. 相变模型:描述物质在温度和压力变化下发生相变的过程和规律,如水的沸腾、冰的熔化等。
三、电磁学模型电磁学是研究电荷、电场、磁场和电磁波的学科。
在电磁学中,常见的模型包括:1. 电荷模型:将物体抽象为带电粒子,用于分析电荷间的相互作用和电场的分布。
2. 电路模型:通过电路元件和电路关系描述电流、电压和电阻等电路参数的变化和相互关系。
3. 电磁感应模型:根据楞次定律和法拉第电磁感应定律来分析电磁感应现象,如电磁感应产生的电流和电动势等。
四、光学模型光学是研究光的传播和现象的学科。
在光学中,常见的模型包括:1. 光线模型:将光看作直线传播的微粒,用来分析光的反射、折射和光路等现象。
2. 波动模型:将光看作波动,用来分析光的干涉、衍射和偏振等现象,如双缝干涉、光的波长等。
3. 光的色散模型:用来描述光通过不同介质时,由于介质折射率不同而发生的色散现象。
通过以上对物理高中模型的总结和归纳,我们可以看到不同模型在物理学中的应用广泛而重要。
高中物理模型归纳整理总结
高中物理模型归纳整理总结物理作为一门自然科学,通过建立模型来描述和解释自然界中各种现象和规律。
在高中物理学习过程中,我们学习了各种不同类型的物理模型,这些模型帮助我们更好地理解和应用物理知识。
本文将对高中物理学习过程中的一些常见的物理模型进行归纳整理和总结。
1. 质点模型质点模型是最基本的物理模型之一,用来描述物体的简单运动。
在质点模型中,物体被视为一个质点,忽略了物体的体积和形状。
质点模型常用于描述运动学问题,例如直线运动、曲线运动等。
2. 弹簧模型弹簧模型用来描述弹性体的性质和变形规律。
在物体受到力的作用下,会发生形变,而弹簧模型可以帮助我们定量地描述物体的形变和恢复力。
弹簧模型在弹簧振动、弹性碰撞等问题中有广泛应用。
3. 运动学模型运动学模型用来描述物体的运动规律,不考虑物体受到的力的作用。
运动学模型通过建立运动方程,可以精确描述物体的位置、速度和加速度的变化。
常见的运动学模型包括匀速直线运动、匀加速直线运动、圆周运动等。
4. 动力学模型动力学模型用来描述物体的运动规律,考虑物体受到的力的作用。
动力学模型通过牛顿定律和其它运动定律,可以分析物体受力情况下的运动情况。
常见的动力学模型包括斜面运动、摩擦力、弹力等。
5. 光学模型光学模型用来描述光的传播和反射、折射等现象。
光学模型根据光的波动性和粒子性,可以通过几何光学和物理光学建立不同的模型。
常见的光学模型包括平面镜成像、球面镜成像、光的干涉和衍射等。
6. 电路模型电路模型用来描述电流、电压和电阻等电学量之间的关系。
电路模型通过欧姆定律和基尔霍夫定律等,可以分析电路中的电流分布、电压分布和电阻等。
常见的电路模型包括串联电路、并联电路、电阻网络等。
7. 磁学模型磁学模型用来描述磁场和磁力的作用规律。
磁学模型通过安培定律和洛伦兹力等,可以分析磁场中导体受到的力和磁力线的分布。
常见的磁学模型包括电磁感应、电磁铁、电动机等。
8. 热学模型热学模型用来描述物体的温度和热能的传递规律。
最全面高中物理模型汇总
最全面高中物理模型汇总经典力学:1、质点:是指由一个物理量组成的一体物,没有内部结构,其受到的外力可以用向量的思想来描述。
2、运动学:描述物体运动的性质和关系,如速度、加速度、距离、时间等变化的规律。
3、动量:指上时间变化的质量和速度之积,它决定了物体运动的各种特性,是基本定律力学中的重要概念。
4、功和能量:是指一种物质或物理量在发生变化时所消耗的能量。
5、库仑定律:物体任一点上受外力的大小和方向同沿着任一虚拟空间,同一方向绕该点旋转一周后,外力和原来大小和方向相等,此定律是力学的基本定律。
电学:1、回路:指电流从一点经过一定电阻、电容或电感等设备后又返回至原点的系统,电路的基本组成单位是线路和电子器件。
2、电压和电流:是指流过导体中的电荷的速度和数量,单位分别是伏特和安培,它们也是电路的基本量。
3、电容:是指电介质中存在的一种气体电荷,它可以把电流储存起来,是电路中常用的设备。
4、电感:是指一个电路中由于电流产生磁场,以抗影响电流流动的装置。
5、磁学:是指用磁场理论解释电磁相关现象的科学,它可以用来研究电磁感应和电磁干扰的原理。
光学:1、衍射:是指光线在不同材料介质间发生折射时所观察到的现象,它可以用来研究光波传播过程中不同物质之间的光学折射现象。
2、反射:是指当光线照射到不同方向时,它们会反向发射,这种现象就是反射,它可以帮助我们了解光在不同物质间的传播、折射和反射等现象。
3、折射:是指当光线穿过不同物质介质时产生的现象,这种现象是由物质的光学性质决定的,它可以提高我们对光的理解。
4、几何光学:是指在特定环境条件下,光的运动规律及其与物体运动的关系,可以用全局几何的方法来描述它们的相互作用,这些规律也是光的传播的基础。
5、量子光学:是指用量子理论来研究光的行为,可以帮助我们更好地理解光的特性,如电磁相互作用、波动特性等。
物态变化:1、电离:是指温度、压力等能量介质作用,使原子或分子电荷分布发生变化,而原子或分子中电子由原子团脱离,形成新的原子或分子体系,这种现象叫做电离。
高中物理模型总结
高中物理模型总结高中物理课程中,老师通常会教授一些重要的物理模型,这些模型是帮助我们理解和描述物理现象的工具。
以下是我对高中物理模型的总结,包括力学、光学、电学和热学等方面。
首先,力学方面的物理模型是最基础和重要的模型之一。
牛顿三定律是力学领域的核心模型,可以描述物体如何受力、如何运动。
这个模型告诉我们,当一个物体受到一个力时,会产生一个相等大小、反向作用的力。
另外,动量和能量守恒定律也是力学中的重要模型。
动量守恒定律说明了在一个封闭系统中,总动量保持不变;能量守恒定律告诉我们在一个封闭系统中,总能量保持不变。
光学方面的物理模型主要是关于光传播和反射折射等问题的。
光的传播模型是把光看作是一条直线的传播,通过这个模型我们可以解释光是如何直线传播、如何进入不同介质时产生折射等现象。
折射定律是光学中非常重要的模型之一,它描述了光从一种介质传播到另一种介质时的折射规律。
另外,反射定律也是光学中的重要模型,它描述了光在界面上的反射规律。
电学方面的物理模型主要是关于电荷和电流的行为的。
库仑定律是电学中的核心模型之一,它描述了电荷之间的作用力和距离之间的关系。
欧姆定律是电学中非常重要的模型,它描述了电流和电压之间的关系。
另外,电路中的基本元件,如电阻、电容和电感等,也有各自的模型和规律,用来描述它们的特性和行为。
热学方面的物理模型主要是关于能量传递和转换的。
热传导模型可以帮助我们理解热量是如何从高温物体传递到低温物体的。
热膨胀模型可以描述物体在加热时膨胀的现象。
另外,热力学定律也是热学中的重要模型,它描述了热量的守恒和熵的增加的规律。
综上所述,高中物理课程中的物理模型是帮助我们理解和描述物理现象的重要工具。
这些模型涵盖了力学、光学、电学和热学等方面,能够帮助我们解释和预测物理现象,提高我们的物理理解能力。
高中物理解题常用经典模型的总结
高中物理解题常用经典模型的总结高中物理解题常用经典模型的总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它能够给人努力工作的动力,让我们一起认真地写一份总结吧。
总结怎么写才是正确的呢?下面是小编为大家收集的高中物理解题常用经典模型的总结,仅供参考,大家一起来看看吧。
高中物理解题常用经典模型的总结1、皮带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、斜面模型:运动规律,三大定律,数理问题。
3、运动关联模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系。
4、人船模型:动量守恒定律,能量守恒定律,数理问题。
5、子弹打木块模型:三大定律,摩擦生热,临界问题,数理问题。
6、爆炸模型:动量守恒定律,能量守恒定律。
7、单摆模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。
8。
电磁场中的双电源模型:顺接与反接,力学中的三大定律,闭合电路的'欧姆定律。
电磁感应定律。
9。
交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。
10、平抛模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。
11、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
12、全过程模型:匀变速运动的整体性,保守力与耗散力,动量守恒定律。
动能定理。
全过程整体法。
13、质心模型:质心(多种体育运动),集中典型运动规律,力能角度。
14、绳件。
弹簧。
杆件三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。
15、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
16、追碰模型:运动规律,碰撞规律,临界问题,数学法(函数极值法。
图像法等)和物理方法(参照物变换法。
守恒法)等。
17。
能级模型:能级图,跃迁规律,光电效应等光的本质综合问题。
18。
远距离输电升压降压的变压器模型。
19、限流与分压器模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。
高中物理必考18个模型总结
高中物理必考18个模型总结高中物理必考18个模型总结1. 牛顿第一定律:物体的运动状态不会改变,除非外力的作用。
2. 牛顿第二定律:物体受到的外力与物体的加速度成正比。
3. 牛顿第三定律:相互作用的两个物体之间的力大小相等,方向相反。
4. 弹簧振子模型:弹性力与重力之间的竞争作用形成振动。
5. 牛顿万有引力定律:两个物体之间的万有引力与它们的质量成正比,与它们之间距离的平方成反比。
6. 热力学模型:物体的温度与其内部粒子的平均动能有关。
7. 熵的增加模型:在孤立系统中,系统中的熵一定会增加,直到达到最大值。
8. 热传导模型:高温物体中的热量会流向低温物体,直到两者达到热平衡。
9. 安培环路定理模型:电路中的各个元件形成一个回路,所通过回路的电流总和等于零。
10. 电容器模型:电容器存储电荷,它的电容量与板之间的距离和电介质的介电常数有关。
11. 磁场模型:一个带电的粒子在磁场中会受到一个垂直于磁场方向的力。
12. 波动模型:波动是沿着传播方向传递的能量或信息。
13. 等离子体模型:由气体中的离子和自由电子组成的四态物质。
14. 半导体模型:半导体的电流与掺杂类型和施主、受主杂质的浓度有关。
15. 能带模型:固体的电导率与其能带结构有关,能带上的电子以电荷载流子的形式参与电导。
16. 布拉格衍射模型:X射线穿过晶体时遇到空间周期性结构,会产生衍射。
17. 激光模型:激光的产生是通过激发原子的外部电子,使它们释放急速衰减的光子。
18. 星际物质模型:由物质和不同类型的辐射组成,对宇宙学和天文学研究非常重要。
以上就是高中物理必考的18个模型总结,希望能够帮助大家更好地学习和理解物理知识。
物理笔记高中模型总结归纳
物理笔记高中模型总结归纳本文旨在对高中物理学习中常见的模型进行总结归纳,将不同模型的理论知识和应用案例整合,帮助读者更好地理解并应用这些模型。
一、力的叠加模型力的叠加模型是物理学中常用的一个基本模型。
根据该模型,多个力作用于一个物体时,可以将这些力的矢量合成为一个合力矢量。
合力的大小和方向由各个力的大小和方向共同决定。
例如,当一个物体受到垂直向下的重力和斜向上的斜力时,可以通过叠加模型计算出合力的大小和方向,进而得出物体的运动状态。
二、牛顿第二定律模型牛顿第二定律模型是描述物体在受力作用下产生加速度的模型。
根据该模型,物体的加速度与作用于物体的合力成正比,与物体的质量成反比。
可表达为 F = m * a,其中 F为合力,m为物体的质量,a为物体的加速度。
该模型在解决力与加速度问题时非常实用。
例如,当我们知道一个物体受到的合力和质量时,可以利用牛顿第二定律模型求解出物体的加速度。
三、动量守恒模型动量守恒模型是描述物体之间相互作用时动量守恒的模型。
根据该模型,一个封闭系统中,物体之间的动量总和在相互作用前后保持不变。
即在没有外力作用下,物体之间的动量转移和相互碰撞可以通过动量守恒模型来解释。
例如,当两个物体发生碰撞时,可以利用动量守恒模型推导出碰撞前后物体的速度变化。
四、万有引力模型万有引力模型是描述质点之间引力相互作用的模型,也是描述行星运动等天体现象的重要模型。
根据该模型,两个质点之间的引力与它们的质量和距离的平方成正比,与它们之间的相对方向成反比。
万有引力模型可以解释行星围绕太阳的运动、卫星绕地球的运动等天体运动的规律。
五、波动模型波动模型是描述波动现象的模型。
根据该模型,波是一种通过介质或者空间传播的能量传递现象。
波动模型可以用来解释光的传播、声音的传播等现象。
例如,根据波动模型可以解释光的折射、反射等行为,解释声音在空气中传播的原理。
六、电路模型电路模型是描述电流和电势差相互作用的模型。
根据该模型,电路中的电流通过导线的闭合回路流动,而电势差则推动电流的流动。
高中物理物理模型总结
高中物理物理模型总结《高中物理物理模型总结》高中物理学下来,整体感觉就像是在一个巨大的迷宫里探索。
一开始进去,觉得眼花缭乱,各种概念、公式、现象相互交织。
但是当慢慢梳理出一些物理模型后,就像在迷宫里找到一个个节点,突然觉得清晰了许多。
先来说说具体的收获吧。
在力学部分,最经典的当属质点模型。
比如研究汽车在直线公路上的行驶问题时,就可以把汽车看成质点。
这让我明白,一个实际的物体在某些情况下我们只需关注它的整体运动的位置变化等信息,就可以将其简化。
这也告诉我,根据研究的问题来确定模型是很关键的。
等等,还有个重要的点。
在动能定理的应用中,滑块斜面模型也很有代表性。
现在想想,当初做那些滑块从斜面上滑下的题目时,总是会忽略斜面是否受到地面摩擦力。
像滑块与斜面光滑接触、滑块带着斜面一起运动等不同情况,对斜面的受力分析结果完全不同。
这就是教训,要把所有相关的物体都考虑周全。
重要发现就是在电磁感应这一块,看到导体棒在磁场中运动的模型。
一开始做题只是根据公式生搬硬套,后来发现,这个模型中导体棒有时候会受到重力、安培力、摩擦力等多种力的作用,它的运动状态的改变其实是这些力共同作用的结果。
还会有能量的转换,机械能会转化为电能然后以焦耳热的形式散失等情况。
在这里值得深入想想的,是如何更好地根据具体题目条件确定是哪几种能量之间的转化。
反思自己在学习物理模型的过程,我发现我总是死记硬背一些结论。
其实应该更深入地理解模型的建立依据和适用范围,就像质点模型并非所有情况下都适用一样。
在解答带电粒子在电场中的偏转问题这一模型时,也是如此。
原来如此,通过对高中物理模型的总结使我明白了,每个物理模型都是一把钥匙,能够打开某一类物理问题的大门。
而要熟练运用这些钥匙,就不能浮于表面地记忆,而是要真正去理解它们背后的物理意义、适用情况和物理量之间的关系。
这样才能在遇到复杂问题时,准确地提取出合适的物理模型来解决问题。
凭我的经验,要多做些有代表性的题目,从中深入体会模型的应用,不能只是盲目刷题。
【学习方法】高中物理模型总结汇总
高中物理模型 高一物理组 张玉侠1、追及、相遇模型火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件?故不相撞的条件为dvv a 2)(221-≥2、传送带问题(1)若传送带静止,物块滑到B 端作平抛运动的水平距离S 0。
(2)当皮带轮匀速转动,角速度为ω,物体平抛运动水平位移s ;以不同的角速度ω值重复上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。
解:(1))(12110m ghv t v s ===(2)综上s —ω关系为:⎪⎩⎪⎨⎧≥≤≤≤srad s rad srad s /707/70101.0/101ωωωω2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以恒定的速率s m v /2=运送质量为kg m 5.0=的工件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求:(1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功(4)每个工件与传送带之间由于摩擦产生的内能解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02120=-=-=② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=⨯==∆ ③ (3)J J mv mv W 75.0)12(5.021212122202=-⨯⨯=-=④ (4)工件停止相对滑动前相对于传送带滑行的距离)21(20at t v vt s +-=m )5.02215.01(5.022⨯⨯+⨯-⨯=m m 25.0)75.01(=-=⑤J mgs fs E 25.0===μ内 ⑥3、汽车启动问题 匀加速启动 恒定功率启动4、行星运动问题[例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?5、微元法问题微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理模型 高一物理组 张玉侠1、追及、相遇模型火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件?故不相撞的条件为dv v a 2)(221-≥2、传送带问题(1)若传送带静止,物块滑到B 端作平抛运动的水平距离S 0。
(2)当皮带轮匀速转动,角速度为ω,物体平抛运动水平位移s ;以不同的角速度ω值重复上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。
解:(1))(12110m ghv t v s ===(2)综上s —ω关系为:⎪⎩⎪⎨⎧≥≤≤≤srad s rad srad s /707/70101.0/101ωωωω2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以恒定的速率s m v /2=运送质量为kg m 5.0=的工件,工件都是以s m v /10=的初速度从A位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求:(1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功(4)每个工件与传送带之间由于摩擦产生的内能解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02120=-=-=② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=⨯==∆ ③ (3)J J mv mv W 75.0)12(5.021212122202=-⨯⨯=-=④ (4)工件停止相对滑动前相对于传送带滑行的距离)21(20at t v vt s +-=m )5.02215.01(5.022⨯⨯+⨯-⨯=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥3、汽车启动问题 匀加速启动 恒定功率启动4、行星运动问题[例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?5、微元法问题微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
设某一时间人经过AB 处,再经过一微小过程Δt (Δt →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:v C =CC t 0S lim t'∆→∆∆=AA t 0HS H h lim t '∆→∆-∆=H H h -v 可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动。
6、等效法问题例1:如图4—1所示,水平面上,有两个竖直的光滑墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙之间的O 点斜向上抛出,与A 和B 各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ 。
由题意得:2d = v 0cos θ⋅t = v 0cos θ⋅02v sin gθ可解得抛射角:θ =12arcsin 202gd v例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0 ,加速度为a ,如果将L 分成相等的n 段,质点每通过Ln的距离加速度均增加an,求质点到达B 时的速度。
因加速度随通过的距离均匀增加,则此运动中的平均加速度为: a 平 =a a 2+初末=(n 1)aa a n 2-++=3an a 2n -=(3n 1)a 2n - 由匀变速运动的导出公式得:2a 平L =2Bv -20v 解得:v B7、超重失重问题【例4】如图24-3所示,在一升降机中,物体A 置于斜面上,当升降机处于静止状态时,物体A 恰好静止不动,若升降机以加速度g 竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是[ ]A .物体仍然相对斜面静止,物体所受的各个力均不变B .因物体处于失重状态,所以物体不受任何力作用C .因物体处于失重状态,所以物体所受重力变为零,其它力不变D .物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用 点拨:(1)当物体以加速度g 向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.(2)处于完全失重状态的物体,地球对它的引力即重力依然存在. 答案:D4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为[ D ]A gBC 0D ....()()M m g mM m g m-+8、万有引力问题例、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。
若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。
已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。
求该星球的质量M 。
例、小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB=d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图9所示。
试求d 的取值范围。
解.为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:dL V m m g D-≤2根据机械能守恒定律可得m 图9[])(212d L d mg mV D --= 由以上两式可求得:L d L ≤≤539、天体运动问题 7.(16分)火星和地球绕太阳的运动可以近似看作为同一平面内同方向的匀速圆周运动,已知火星的轨道半径m r 11105.1⨯=火,地球的轨道半径m r 11100.1⨯=地,从如图所示的火星与地球相距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字10、牛顿第二定律问题例3 为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速 v=120km /h ,假设前方车辆突然停下,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s .刹车时汽车受到阻力的大小f 为汽车重力的0.40倍,该高速公路上汽车间的距离s 至少应为多少?取 g=10m /s 2.11、平抛问题10.如图所示,在一次空地演习中,离地H 高处的飞机以水平速度1v 发射一颗炮弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以速度2v 竖直向上发射炮弹拦截. 设拦截系统与飞机的水平距离为s ,若拦截成功,不计空气阻力,则1v 、2v 的关系应满足( )A .1v =2vB .1v =2v sHC .1v =sH 2v D .1v =2v Hs 12、曲线运动问题 17.(10分)如图所示,支架质量M ,放在水平地面上,在转轴O 处用一长为l 的细绳悬挂一质量为m 的小球。
求:(1)小球从水平位置释放后,当它运动到最低点时地面对支架的支持力多大?(2)若小球在竖直平面内摆动到最高点时,支架恰对地面无压力,则小球在最高点的速度是多大?13、图线问题1. 质量为的m 物体放在A 地的水平地面上,用竖直向上的力拉物体,物体的加速度a 和拉力F 关系的a-F 图线如图中A 所示。
质量为m’的另一物体在B 地做类似实验所得a-F 图线如图中B 所示。
A 、B 两线延长线交Oa 轴于同一点P 。
设A 、B 两地重力加速度分别为g 和g’ ( )A 、m’>m g’=gB 、m’<m g’=gC 、m’=m g’<gD 、m’>m g’<g[提示:由a=g mF-可知斜率、纵横坐标的物理意义] 2. 物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A ,m B 和m C ,与水平面间的动摩擦因数分别为μA ,μB 和μC ,用平行于水平面的拉力F ,分别拉物体A 、B 、C ,它们的加速度a 与拉力F 的关系图线如图所示,A 、B 、C 对应的直线分别为甲、乙、丙,甲、乙两直线平行,则下列说法正确的是:( ) A 、μA =μB ,m A =m B ; B 、μB =μC ,m A =m B ; C 、μA >μB ,m A >m B ; D 、μB <μC ,m A <m B 。
14、直线运动问题推论1.物体作初速度为零的匀加速直线运动,从开始(t =0)计时起,在连续相邻相等的时间间隔(△t=1s )内的位移比为连续奇数比。
即:S 第1s 内∶S 第2s 内∶S 第3s 内…=1∶3∶5∶…推论2.物体作匀加速(加速度为a )直线运动,它经历的两个相邻相等的时间间隔为T ,它在这两个相邻相等的时间间隔内的位移差为△S ,则有△S=aT 2推论3.物体作初速度为零的匀加速直线运动,从初始位置(S=0)开始,它通过连续相邻相等的位移所需的时间之比为15、共点力平衡问题1.如图所示,轻质光滑滑轮两侧用细绳连着两个物体A 与B ,物体B 放在水平地面上,A 、B 均静止.已知A 和B 的质量分别为m A 、m B ,,绳与水平方向的夹角为θ,则( BD ) A .物体B 受到的摩擦力可能为0 B .物体B 受到的摩擦力为mg A cos θ C.物体B 对地面的压力可能为0D .物体B 对地面的压力为m B -m A gsin θ16、功和动量结合问题[例题1] 一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S ,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.17、碰撞问题弹性碰撞 完全非弹性碰撞 完全弹性碰撞 18、多物体动量守恒1.(14分)如图所示,A 、B 质量分别为,2,121kg m kg m ==置于小车C 上。