哈工大人工智能导论实验报告
人工智能实验报告
人工智能实验报告一、实验目的。
本次实验旨在通过对人工智能相关算法的实验操作,深入了解人工智能的基本原理和实际应用,提高对人工智能技术的理解和掌握。
二、实验内容。
1. 人工智能算法的原理及应用。
2. 人工智能在图像识别、语音识别等领域的实际应用案例分析。
3. 人工智能算法在实际项目中的具体运用。
三、实验步骤。
1. 理论学习,通过学习相关教材和资料,掌握人工智能算法的基本原理和应用场景。
2. 实际操作,运用Python等编程语言,实现人工智能算法的实际应用,如图像识别、语音识别等。
3. 案例分析,结合实际案例,分析人工智能在不同领域的具体应用,了解其在实际项目中的运用情况。
四、实验结果。
通过本次实验,我们深入了解了人工智能算法的基本原理和应用场景,掌握了人工智能在图像识别、语音识别等领域的实际应用案例,并对人工智能算法在实际项目中的具体运用有了更深入的了解。
五、实验总结。
人工智能作为当今科技领域的热门话题,其应用场景和前景备受关注。
通过本次实验,我们不仅对人工智能算法有了更深入的理解,也对其在实际项目中的应用有了更清晰的认识。
人工智能技术的不断发展,必将为各行各业带来更多的创新和改变。
六、展望。
随着人工智能技术的不断进步和应用,我们相信在不久的将来,人工智能将会在更多的领域发挥重要作用,为人类社会带来更多的便利和进步。
我们也将继续深入学习和研究人工智能技术,不断提升自己的技术水平,为人工智能技术的发展贡献自己的力量。
七、参考资料。
1. 《人工智能导论》,XXX,XXX出版社,2018年。
2. 《Python人工智能编程实践》,XXX,XXX出版社,2019年。
3. 《深度学习与人工智能》,XXX,XXX出版社,2020年。
以上为本次人工智能实验的报告内容,谢谢。
魏泽涛—人工智能实验报告
H a r b i n I n s t i t u t e o f T e c h n o l o g y a t W e i h a i人工智能实验报告设计题目:智能五子棋院系:计算机科学与技术学院班级:0604104学号:060410408设计者:XXX哈尔滨工业大学(威海)一.实验内容用程序实现五子棋人机对弈二.题目介绍五子棋是一种爱大众广泛喜爱的游戏.其规则简单,变化多端,非常富有趣味性和消遣性。
这里设计和地了一小人机对下的五子程序采用了博弈甜的方法,应用了剪枝和最大最小树原理进行搜索发现最好的下子位置。
介绍五子棋程序的数据结构.评分规则、胜负判断方法和搜索算法过程。
三.实验原理1.评分规则对于下子的重要性评分,需要从六个位置来考虑当前棋局的情况,分别为,¦ ;实际上需要考虑在这六个位置上某一方所形成的子的布局的情况,对于在还没有子的地方落子以后的当前局面的分,主要是为了说明在这个地方下子的重要性程度,设定了一个简单的规则来表示当前棋面对电脑方的分数。
2.胜负判断实际上,是根据当前最后一个落f的情况来判断雌负的。
实际上需要从四个位置判断,以该子为出发点的水半,直和两条分别为45度角和 1 3 5 度角的线¨的是看在这四个方向是否最后落子的----方构成连续五个的棋子,如果是的话,就表示该盘棋局已经分出胜负。
3.搜索算法实现描述人机对弈算法:人机对弈算法完全按照CGame基类定义的接口标准,封装在了COneGame派生类之中。
下面将对这个算法进行详细地介绍。
[14]1获胜组合获胜组合是一个三维数组,它记录了所有取胜的情况。
也就是说,参考于CTable::Win中的情况,对于每一个落子坐标,获胜的组合一共有15 * 11 * 2 + 11 * 11 * 2 = 572种。
而对于每个坐标的获胜组合,应该设置一个[15][15][572]大小的三维数组。
在拥有了这些获胜组合之后,就可以参照每个坐标的572种组合给自己的局面和玩家的局面进行打分,也就是根据当前盘面中某一方所拥有的获胜组合多少进行权值的估算,给出最有利于自己的一步落子坐标。
人工智能导论实验报告
人工智能导论实验报告
一、实验要求
实验要求是使用Python实现一个简单的人工智能(AI)程序,包括
使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,通过提供用户输入的信息,实现基于信息的自动响应和推理。
二、实验步骤
1. 数据采集:编写爬虫程序或者使用预先定义的数据集(如movielens)从互联网收集数据;
2. 数据预处理:使用numpy对数据进行标准化处理,以便机器学习
程序能够有效地解析数据;
3. 模型构建:使用scikit-learn或者tensorflow等工具,构建机
器学习模型,从已经采集到的数据中学习规律;
4.模型训练:使用构建完成的模型,开始训练,通过反复调整参数,
使得模型在训练集上的效果达到最优;
5.模型评估:使用构建完成的模型,对测试集进行预测,并与实际结
果进行比较,从而评估模型的效果;
6. 部署:使用flask或者django等web框架,将模型部署为网络应用,从而实现模型的实时响应;
三、实验结果
实验结果表明,使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,可以得到很高的模型预测精度,模型的准确性可以明
显提高。
人工智能导论实习报告
一、实习背景随着科技的飞速发展,人工智能(Artificial Intelligence,AI)已成为当今世界最具发展潜力的领域之一。
为了更好地了解人工智能的理论和应用,我们选择了人工智能导论课程进行实习。
通过本次实习,我们深入学习了人工智能的基本理论、核心技术和应用场景,为今后在相关领域的发展奠定了基础。
二、实习内容本次实习主要分为以下几个部分:1. 基础知识学习在实习初期,我们系统地学习了人工智能的基本概念、发展历程和主要流派。
通过阅读教材、查阅资料和参加讲座,我们对人工智能有了初步的认识。
我们了解到,人工智能研究始于20世纪50年代,经历了多个发展阶段,目前主要分为符号主义、连接主义和混合主义三种流派。
2. 编程实践为了更好地掌握人工智能算法,我们进行了大量的编程实践。
在实习过程中,我们学习了Python编程语言,并使用TensorFlow、Keras等深度学习框架进行项目实践。
具体包括以下内容:(1)使用TensorFlow实现线性回归、逻辑回归和神经网络等算法;(2)使用Keras实现卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等算法;(3)使用遗传算法、粒子群算法和蚁群算法等优化算法解决实际问题。
3. 项目实践在实习过程中,我们参与了一个手写体识别项目。
该项目旨在利用深度学习技术实现手写数字的识别。
具体步骤如下:(1)数据预处理:将手写数字图像进行灰度化、二值化等处理,并转换为适合神经网络输入的格式;(2)模型构建:设计卷积神经网络模型,包括卷积层、池化层和全连接层等;(3)模型训练:使用大量手写数字图像数据对模型进行训练,并调整参数以优化模型性能;(4)模型评估:使用测试数据对模型进行评估,并分析模型的准确率、召回率等指标。
4. 实习总结与反思在实习过程中,我们不仅掌握了人工智能的理论知识,还提高了编程能力和实际应用能力。
以下是我们对实习的总结与反思:(1)人工智能技术发展迅速,未来应用前景广阔;(2)编程能力是人工智能领域的基础,需要不断学习和提高;(3)团队合作和沟通能力在项目实践中至关重要;(4)理论联系实际,将所学知识应用于解决实际问题。
哈工大人工智能导论实验报告
人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术2016.12.20目录人工智能导论实验报告 (1)一、简介(对该实验背景,方法以及目的的理解) (3)1. 实验背景 (3)2. 实验方法 (3)3. 实验目的 (3)二、方法(对每个问题的分析及解决问题的方法) (4)Q1: Depth First Search (4)Q2: Breadth First Search (4)Q3: Uniform Cost Search (5)Q4: A* Search (6)Q5: Corners Problem: Representation (6)Q6: Corners Problem: Heuristic (6)Q7: Eating All The Dots: Heuristic (7)Q8: Suboptimal Search (7)三、实验结果(解决每个问题的结果) (7)Q1: Depth First Search (7)Q2: Breadth First Search (9)Q3: Uniform Cost Search (10)Q4: A* Search (12)Q5: Corners Problem: Representation (13)Q6: Corners Problem: Heuristic (14)Q7: Eating All The Dots: Heuristic (14)Q8: Suboptimal Search (15)自动评分 (15)四、总结及讨论(对该实验的总结以及任何该实验的启发) (15)一、简介(对该实验背景,方法以及目的的理解)1.实验背景1) 自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。
到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈。
2)吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。
人工智能导论课程总结报告
人工智能导论课程总结报告一、课程概述本学期,我有幸参与了“人工智能导论”课程的学习。
该课程为我们提供了一个全面而深入的人工智能领域概览,涵盖了从基础知识到前沿技术的广泛内容。
二、课程内容1. 基础知识:课程初期,我们学习了人工智能的基本概念、发展历程和应用领域。
这为我们后续的学习奠定了坚实的基础。
2. 搜索与问题求解:我们深入探讨了搜索算法,如深度优先搜索、广度优先搜索等,并理解了它们在问题求解中的应用。
3. 知识表示与推理:学习了如何表示知识(如语义网络、框架和逻辑表示法)以及如何使用这些知识进行推理。
4. 机器学习:这部分内容让我们了解了机器学习的基础算法,如决策树、支持向量机和神经网络等,并体验了它们在数据分类和预测中的强大能力。
5. 深度学习:作为机器学习的子领域,深度学习介绍了更复杂的神经网络结构,如卷积神经网络和循环神经网络,以及它们在图像和语音识别等领域的应用。
6. 伦理与社会影响:课程还讨论了人工智能的伦理问题和社会影响,使我们更加意识到技术的双重性。
三、学习体验1. 理论与实践相结合:课程不仅提供了丰富的理论知识,还通过编程作业和项目实践让我们亲身体验了人工智能技术的魅力。
2. 挑战与成就感并存:虽然课程内容有时颇具挑战性,但每当解决一个难题或完成一个项目时,那种成就感都无以言表。
3. 团队合作与沟通:在小组项目中,我们学会了如何与他人合作、有效沟通和共同解决问题。
四、收获与展望1. 知识层面:通过本课程的学习,我对人工智能领域有了更全面和深入的了解,掌握了多项基本技能和工具。
2. 能力层面:我的问题解决能力、创新能力和团队协作能力都得到了显著提升。
3. 未来展望:我计划在未来继续深入探索人工智能的某个子领域,如机器学习或深度学习,并期望能够将所学应用于实际项目或研究中。
五、结语“人工智能导论”课程为我打开了一扇通向新世界的大门。
感谢老师和同学们的陪伴与支持,期待在未来的学习和生活中继续与人工智能相伴前行。
人工智能导论实验报告模板
《人工智能导论》上机实验八数码问题求解专业班级:姓名:学号:指导教师:基于人工智能的状态空间搜索策略研究——八数码问题求解一、实验软件VC6.0编程语言或其它编程语言二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、需要的预备知识1. 熟悉VC6.0 编程语言;2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法;3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用;4. 熟悉计算机常用人机接口设计。
四、实验数据及步骤1. 实验内容八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:2 5 4 1 2 33 7 8 41 8 6 7 6 5(a) 初始状态 (b) 目标状态图1 八数码问题示意图请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。
2. 实验步骤(1)分析算法基本原理和基本流程;(2)确定对问题描述的基本数据结构,如Open表和Closed表等;(3)编写算符运算、目标比较等函数;(4)编写输入、输出接口;(5)全部模块联调;(6)撰写实验报告。
五、实验报告要求所撰写的实验报告必须包含以下内容:1. 算法基本原理和流程框图;2. 基本数据结构分析和实现;3. 编写程序的各个子模块,按模块编写文档,含每个模块的建立时间、功能、输入输出参数意义和与其它模块联系等;4. 程序运行结果,含使用的搜索算法及搜索路径等;5. 实验结果分析;6. 结论;7. 提供全部源程序及软件的可执行程序。
六、操作实现该设计采用启发式搜索方法编写程序。
哈工大实验报告
哈工大实验报告近年来,哈尔滨工业大学(简称哈工大)作为中国著名的工科院校,一直致力于高水平的教学和科学研究。
作为一名哈工大的学生,我有幸参与了一项有关智能机器人的实验,并撰写本篇实验报告,以分享我的经验和感悟。
实验内容本次实验的目标是设计一个智能机器人,它能够在指定场地内进行自主导航。
我们小组采取了模块化的设计思路,将机器人分为感知模块、决策模块和执行模块。
感知模块通过摄像头和多种传感器,获取环境信息,并将其转化为数据输入。
决策模块采用人工智能算法,对感知模块的数据进行处理分析,并制定相应的行为策略。
执行模块则负责机器人的运动控制和实际行为。
实验过程我们小组的实验过程分为几个步骤。
首先,我们进行了大量文献调研和相关技术的学习。
了解了当今智能机器人领域的前沿技术和发展方向。
接着,我们进行了感知模块的设计与搭建。
通过对感知器件的选型和硬件的调试,成功地将环境信息转化为数据输入。
接下来,我们开始着手研究决策模块。
利用神经网络算法对感知数据进行训练和优化,使机器人能够根据环境变化做出正确决策。
最后,我们进行了执行模块的实现。
通过编程控制机器人的执行行为,使机器人能够准确地导航和移动。
实验结果经过数个月的努力,我们小组取得了令人满意的实验结果。
我们的智能机器人在实验场地内能够自主导航,避开障碍物,并正确地执行任务。
感知模块具有较高的准确性和鲁棒性,能够获取到准确的环境信息。
决策模块经过训练后,能够对各种情况做出相应的反应,且具有较高的智能性。
执行模块的行为控制也相当精确,机器人能够按照预定路径运动,并在需要时改变方向。
实验感悟通过参与这个实验,我深刻地体会到了科学研究的艰辛和乐趣。
在实验过程中,我们不断遇到各种问题和困难,但通过团队的努力和合作,我们一一克服了这些困难,完成了实验目标。
同时,实验中所学到的知识和技能也使我受益匪浅,拓宽了我的专业视野,提升了我的动手实践能力。
此外,我还意识到科研的重要性在于其对社会的贡献。
大工20秋《人工智能实验(一)》实验报告
大工20秋《人工智能实验(一)》实验报
告
实验目标
此次实验的目标是介绍和探索人工智能领域的基本概念和技术。
通过实践和实验,我们将了解人工智能的定义、应用领域和常用算法。
实验步骤
1. 阅读相关文献和资料,了解人工智能的基本概念和发展历程。
2. 研究和实践常用的人工智能算法,如决策树、神经网络和遗
传算法。
3. 进行实验,使用Python编程语言实现所学算法,对给定数
据集进行训练和测试。
4. 分析实验结果,评估所选算法的性能和效果。
5. 撰写实验报告,总结实验过程、结果和结论。
实验结果
通过实验,我们成功实现了决策树算法、神经网络算法和遗传算法的编码和运行。
对给定数据集进行训练和测试后,我们得到了相应的结果和评估指标。
实验结论
根据实验结果,我们可以得出以下结论:
1. 决策树算法在某些情况下表现良好,但在处理复杂数据和高维特征时可能存在局限性。
2. 神经网络算法在处理大规模数据和复杂模式识别任务时具有显著优势。
3. 遗传算法在优化和搜索问题上有很好的应用前景,但可能需要更多的调整和参数优化。
改进建议
在后续实验中,可以考虑以下改进和深入研究的方向:
1. 探索其他常用的人工智能算法,并进行比较和评估。
2. 使用更多数据集和真实场景的数据,验证算法的鲁棒性和泛化能力。
3. 对算法进行参数调整和优化,提升性能和效果。
参考资料
- 人工智能导论,XXX - 机器研究实战,XXX - Python机器学习,XXX。
人工智能导论实验报告
人工智能导论实验报告人工智能导论实验报告一、实验目的本实验旨在通过实际操作,加深对人工智能导论中基本概念和算法的理解,培养我们的实践能力和解决问题的能力。
二、实验原理在人工智能导论中,我们学习了机器学习、深度学习、自然语言处理等重要概念和算法。
本实验将通过应用这些算法,实现对特定数据集的分类、预测和生成等任务。
三、实验步骤1.数据准备:选择合适的数据集,进行预处理和特征工程。
在本实验中,我们选择了经典的MNIST手写数字数据集。
2.模型训练:根据所选择的算法和数据集,构建并训练模型。
本实验中,我们采用了深度学习中的卷积神经网络(CNN)算法进行图像分类。
3.模型评估:使用测试集对模型进行评估,计算准确率、精度等指标。
4.模型优化:根据评估结果,对模型进行优化调整,提高性能。
5.应用扩展:将优化后的模型应用于实际场景中,实现分类、预测等功能。
四、实验结果与分析1.实验结果经过训练和优化,我们在MNIST数据集上达到了95%的准确率,取得了较好的分类效果。
2.结果分析通过对比不同模型结构和参数的实验结果,我们发现以下几点对模型性能影响较大:(1)数据预处理:合适的预处理方法能够提高模型的分类性能。
例如,对手写数字图像进行灰度化和归一化处理后,模型的分类准确率得到了显著提升。
(2)模型结构:在本实验中,我们采用了卷积神经网络(CNN)算法。
通过调整CNN的层数、卷积核大小和池化参数等,可以显著影响模型的分类性能。
(3)优化算法:选择合适的优化算法能够提高模型的训练效果。
我们采用了梯度下降法进行优化,并比较了不同的学习率和优化策略对模型性能的影响。
(4)特征工程:虽然MNIST数据集较为简单,但适当的特征工程仍然可以提高模型的性能。
例如,我们尝试了不同的图像尺寸和归一化方法,发现它们对模型的分类性能具有一定影响。
五、结论与展望通过本次实验,我们深入了解了人工智能导论中的基本概念和算法,并成功应用到了MNIST手写数字分类任务中。
人工智能导论实验报告
院系:计算机科学学院
专业:计算机科学与技术
年级: 2012级
课程名称:人工智能
学号: ********** *名:***
****:**
2014年 6月 24 日
实验结果分析及心得体会实验截图1、A算法:
2、A*算法:
实验截图
实
验
结
果
分
析
及
心
得
体
会
心得体会
本实验利用广度优先搜索找出所有可能解,进一步加深了我对该算法的理解。
成
绩
评
教师签名:
定
2014年月日
实验截图
实
验
结
果
分
析
及
心
得
体
会
心得体会
在遗传算法中,种群内进行交配、变异、选择,从而产生最优解。
该实验加深了我对遗传算法的理解和体会,进一步了解了它的用途和好处。
成
绩
评
教师签名:
定
2014年月日。
《人工智能》实验报告
《人工智能》实验报告人工智能实验报告引言人工智能(Artificial Intelligence,简称AI)是近年来备受瞩目的前沿科技领域,它通过模拟人类智能的思维和行为,使机器能够完成复杂的任务。
本次实验旨在探索人工智能的应用和局限性,以及对社会和人类生活的影响。
一、人工智能的发展历程人工智能的发展历程可以追溯到上世纪50年代。
当时,科学家们开始研究如何使机器能够模拟人类的思维和行为。
经过几十年的努力,人工智能技术得到了长足的发展,涵盖了机器学习、深度学习、自然语言处理等多个领域。
如今,人工智能已经广泛应用于医疗、金融、交通、娱乐等各个领域。
二、人工智能的应用领域1. 医疗领域人工智能在医疗领域的应用已经取得了显著的成果。
通过分析大量的医学数据,人工智能可以辅助医生进行疾病诊断和治疗方案的制定。
此外,人工智能还可以帮助医疗机构管理和优化资源,提高医疗服务的效率和质量。
2. 金融领域人工智能在金融领域的应用主要体现在风险评估、交易分析和客户服务等方面。
通过分析大量的金融数据,人工智能可以帮助金融机构预测市场趋势、降低风险,并提供个性化的投资建议。
此外,人工智能还可以通过自动化的方式处理客户的投诉和咨询,提升客户满意度。
3. 交通领域人工智能在交通领域的应用主要体现在智能交通管理系统和自动驾驶技术上。
通过实时监测和分析交通流量,人工智能可以优化交通信号控制,减少交通拥堵和事故发生的可能性。
同时,自动驾驶技术可以提高交通安全性和驾驶效率,减少交通事故。
三、人工智能的局限性与挑战1. 数据隐私和安全问题人工智能需要大量的数据进行训练和学习,但随之而来的是数据隐私和安全问题。
个人隐私数据的泄露可能导致个人信息被滥用,甚至引发社会问题。
因此,保护数据隐私和加强数据安全是人工智能发展过程中亟需解决的问题。
2. 伦理和道德问题人工智能的发展也引发了一系列伦理和道德问题。
例如,自动驾驶车辆在遇到无法避免的事故时,应该如何做出选择?人工智能在医疗领域的应用是否会导致医生失业?这些问题需要我们认真思考和解决,以确保人工智能的发展符合人类的价值观和道德规范。
人工智能实验报告(二)2024
人工智能实验报告(二)
引言概述:
本文是关于人工智能实验的报告,主要研究了人工智能技术在
不同领域应用的情况。
通过实验,我们探讨了人工智能在语音识别、图像处理、自然语言处理、机器学习和智能推荐等方面的应用。
通
过这些实验,我们可以深入了解人工智能技术的发展和应用前景。
正文内容:
1. 语音识别
- 分析语音识别技术的基本原理和方法
- 探索语音识别在智能助手、语音控制和语音翻译等领域的应
用
- 研究不同语音识别算法的准确性和鲁棒性
2. 图像处理
- 研究图像处理算法及其在人脸识别、图像识别和图像增强等
方面的应用
- 比较不同图像处理算法的效果和性能
- 探讨图像处理技术在医疗、安防和智能交通等领域的潜力
3. 自然语言处理
- 分析自然语言处理技术的研究方向和应用场景
- 探讨自然语言处理在智能客服、文本分类和情感分析等方面
的应用
- 研究不同自然语言处理模型的性能和可扩展性
4. 机器学习
- 研究机器学习算法的基本原理和发展趋势
- 探索机器学习在数据挖掘、预测分析和推荐系统等领域的应用
- 比较不同机器学习算法的准确性和效率
5. 智能推荐
- 分析智能推荐算法的特点和应用场景
- 探讨智能推荐在电商、社交媒体和音乐平台等领域的应用
- 研究不同智能推荐算法的精度和个性化程度
总结:
通过本次实验,我们对人工智能技术在不同领域的应用有了更深入的了解。
语音识别、图像处理、自然语言处理、机器学习和智能推荐等方面的技术都展现出了巨大的潜力和发展空间。
随着人工智能技术的不断进步,我们可以期待在未来的各个领域看到更多创新和应用。
人工智能导论实验报告:吃豆人游戏
人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术2016.12.20目录人工智能导论实验报告 (1)一、简介(对该实验背景,方法以及目的的理解) (2)1. 实验背景 (2)2. 实验方法 (3)3. 实验目的 (3)二、方法(对每个问题的分析及解决问题的方法) (3)Q1: Depth First Search (3)Q2: Breadth First Search (4)Q3: Uniform Cost Search (5)Q4: A* Search (6)Q5: Corners Problem: Representation (6)Q6: Corners Problem: Heuristic (6)Q7: Eating All The Dots: Heuristic (7)Q8: Suboptimal Search (7)三、实验结果(解决每个问题的结果) (7)Q1: Depth First Search (7)Q2: Breadth First Search (9)Q3: Uniform Cost Search (10)Q4: A* Search (12)Q5: Corners Problem: Representation (13)Q6: Corners Problem: Heuristic (14)Q7: Eating All The Dots: Heuristic (14)Q8: Suboptimal Search (15)自动评分 (15)四、总结及讨论(对该实验的总结以及任何该实验的启发) (15)一、简介(对该实验背景,方法以及目的的理解)1.实验背景1) 自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。
到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈。
2)吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。
人工智能导论实验
人工智能导论实验报告姓名:蔡鹏学号:1130310726实验一一、实验内容有如下序列,试把所有黑色格移到所有白色格的右边,黄色格代表空格,黑色格和白色格可以和距离不超过三的空格交换。
二、实验代码#include <iostream>#include <stdlib.h>#include <stdio.h>#define N 10#define inf 9999int g=999;void tree_gener(struct node *fn,struct node *root);struct node{char seq[7];int f,g,n;struct node *sn[N];};struct stack{int num;struct node *n[50];};void Enstack(struct node *sn,struct stack *S){S->n[S->num]=sn;S->num++;}struct node *Destack(struct stack *S){S->num--;return S->n[S->num];}void find_min_f(struct node *root){int i;struct node *n,*min;struct stack S;S.num=0;min=root;Enstack(root,&S);while(S.num!=0){n=Destack(&S);if(n->f < min->f){min=n;}for(i=0;i<n->n;i++){Enstack(n->sn[i],&S);}}tree_gener(min,root);if(g>min->g){printf("seq:%c %c %c %c %c %c %c | g:%d \n",min->seq[0],min->seq[1],min->seq[2],min->seq[3],min->seq[4],min->seq[5],min->seq[6],min->g);}g=min->g;}void swap(struct node *sn,struct node *fn,int n,int m){int i;for(i=0;i<7;i++){sn->seq[i]=fn->seq[i];}sn->seq[n]=fn->seq[m];sn->seq[m]=fn->seq[n];}int calcu_h(char seq[]){int m=0,n=0,i;for(i=0;i<7;i++){if(seq[i]=='B'){m++;}if(seq[i]=='W'){n=n+m;}}return n;}void tree_gener(struct node *fn,struct node *root){if (calcu_h(fn->seq)!=0){int i;int j=0,k;for (i=0;i<7;i++){if(fn->seq[i]=='#'){for(k=1;k<=3;k++){if(i+k<7){fn->sn[j]=(struct node *)malloc(sizeof(struct node));swap(fn->sn[j],fn,i,i+k);fn->sn[j]->g = fn->g+k;fn->sn[j]->f = fn->sn[j]->g + 3*calcu_h(fn->sn[j]->seq);fn->sn[j]->n=0;j++;}if(i-k>=0){fn->sn[j]=(struct node *)malloc(sizeof(struct node));swap(fn->sn[j],fn,i,i-k);fn->sn[j]->g = fn->g+k;fn->sn[j]->f = fn->sn[j]->g + 3*calcu_h(fn->sn[j]->seq);fn->sn[j]->n=0;j++;}}}}fn->n=j;fn->f=inf;find_min_f(root);}}int main() {struct node *root;printf("seq:每一次选择的f最小的序列\ng:当前节点已花费的代价\nf:预计花费和已花费的代价的和。
《人工智能导论》课程研究报告
程序代码
• • • • • • • • • • • • • • • • • • • • %% 结果分析 figure(1) plot(BPoutput,':og') hold on plot(output_test,'-*'); legend('预测输出','期望输出') title('BP网络预测输出','fontsize',12) ylabel('函数输出','fontsize',12) xlabel('样本','fontsize',12) %预测误差 error=BPoutput-output_test; figure(2) plot(error,'-*') title('BP网络预测误差','fontsize',12) ylabel('误差','fontsize',12) xlabel('样本','fontsize',12) figure(3) plot((output_test-BPoutput)./BPoutput,'-*'); title('神经网络预测误差百分比') errorsum=sum(abs(error))
《人工智能导论》 课程研究报告
BP神经网络的非线性函数拟合
自动化1303班: 汪洋、房亮、彭正昌、蔡博、刘航、 范金祥
BP神经网络模型
• 三层BP网络
BP神经网络的非线性函数拟合
• 运用背景 • 系统状态方程复杂的非线性系统,难以用数学方法精确建模。在这 种情况下,可以建立BP神经网络表达这些非线性系统。该方法把未 知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络 ,使网络能够表达该未知函数,然后就可以用训练好的BP神经网络 预测系统输出。 • 先取出若干组系统的输入输出数据对BP网络进行有效学习,然后就 可以用BP网络来表达这个系统,在知道系统输入参数的情况下,可 以网络来预测系统的输出值。本案例就是用BP网络来拟合一个标准 测试函数,来说明BP网络的拟合能力,并探讨了BP网络在使用中 注意的几个问题。 • 本案例拟合的非线性函数为y=x1^2+x2^2
《人工智能导论》课程研究报告总结
《人工智能导论》课程研究报告题目:BP神经网络的非线性函数拟合班级:自动化1303班姓名:汪洋、房亮、彭正昌、蔡博、刘航、范金祥学号:2016年1月1日目录第一章人工智能相关介绍1.1人工神经网络与matlab (3)1.2人工神经网络的研究背景和意义 (3)1.3神经网络的发展与研究现状 (4)1.4神经网络的应用 (5)第二章神经网络结构及BP神经网络 (5)2.1神经元与网络结构 (5)2.2 BP神经网络及其原理 (9)2.3 BP神经网络的主要功能 (11)第三章基于matlab的BP神经网络的非线性函数拟合3.1运用背景 (5)3.2模型建立 (9)3.3MatLab实现 (11)参考文献 (15)附录 (17)人工智能相关介绍1.1人工神经网络与matlab人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。
人工智能导论课程报告
人工智能导论课程报告1. 什么是人工智能?好吧,大家伙,今天咱们就来聊聊“人工智能”这个话题。
首先,人工智能,简单来说,就是让机器学会像人一样思考、学习和做决策。
听上去是不是很科幻?其实,咱们生活中很多地方都有它的身影。
想想手机里的语音助手,或者你家里的智能音响,它们可不是普通的机器,而是会听、会说、会理解的“聪明”家伙。
有人说,人工智能就像是给机器装上了“大脑”,让它们能处理复杂的任务,甚至可以帮咱们做一些日常工作。
比如,你想订外卖,直接问一声助手,它就能帮你搞定,这感觉就像有个私人小秘书一样,真是太方便了!2. 人工智能的历史2.1 起步阶段说到人工智能的历史,咱们得回到上个世纪,那会儿,科学家们开始琢磨能不能让机器学东西。
最早的时候,他们的目标可不小,想让机器像人类一样思考。
你想,这可是个大工程!他们从数学、心理学等多个学科中吸取灵感,试图模仿人脑的思维过程。
虽然起初的成果并不算太好,但谁说“万事开头难”呢?毕竟,所有伟大的事物都是从零开始的。
2.2 快速发展进入二十一世纪,科技飞速发展,计算能力突飞猛进,这给人工智能的发展带来了新的机遇。
机器学习、深度学习等技术相继被提出,简直就是“如虎添翼”。
再加上海量的数据,让这些“聪明”的机器可以通过学习不断提升自己。
可以说,今天的人工智能已经不再是当年的“幼儿园”阶段,而是朝着“大学”迈进了。
就像是从小学生变成了博士生,真是让人刮目相看。
3. 人工智能的应用3.1 生活中的点滴现在,让我们来聊聊人工智能在生活中的应用。
想象一下,早上你懒洋洋地躺在床上,伸个懒腰,直接对着智能音响说:“今天的天气怎么样?”它立马给你播报,真是神奇得不要不要的。
再比如,网购时推荐的商品,背后也有人工智能在默默工作,分析你的购买习惯,给你推送“你可能会喜欢”的商品。
嘿,这就是个性化服务,让人觉得“被懂得”的感觉,谁不喜欢呢?3.2 工作中的助手在工作中,人工智能同样大显身手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术目录人工智能导论实验报告.......................................... 错误!未定义书签。
一、简介(对该实验背景,方法以及目的的理解) ............. 错误!未定义书签。
1.实验背景......................................... 错误!未定义书签。
2.实验方法......................................... 错误!未定义书签。
3.实验目的......................................... 错误!未定义书签。
二、方法(对每个问题的分析及解决问题的方法)........... 错误!未定义书签。
Q1: Depth First Search ................................ 错误!未定义书签。
Q2: Breadth First Search .............................. 错误!未定义书签。
Q3: Uniform Cost Search ............................... 错误!未定义书签。
Q4: A* Search ......................................... 错误!未定义书签。
Q5: Corners Problem: Representation ................... 错误!未定义书签。
Q6: Corners Problem: Heuristic ........................ 错误!未定义书签。
Q7: Eating All The Dots: Heuristic .................... 错误!未定义书签。
Q8: Suboptimal Search ................................. 错误!未定义书签。
三、实验结果(解决每个问题的结果)..................... 错误!未定义书签。
Q1: Depth First Search ................................ 错误!未定义书签。
Q2: Breadth First Search .............................. 错误!未定义书签。
Q3: Uniform Cost Search ............................... 错误!未定义书签。
Q4: A* Search ......................................... 错误!未定义书签。
Q5: Corners Problem: Representation ................... 错误!未定义书签。
Q6: Corners Problem: Heuristic ........................ 错误!未定义书签。
Q7: Eating All The Dots: Heuristic .................... 错误!未定义书签。
Q8: Suboptimal Search ................................. 错误!未定义书签。
自动评分.............................................. 错误!未定义书签。
四、总结及讨论(对该实验的总结以及任何该实验的启发) ... 错误!未定义书签。
一、简介(对该实验背景,方法以及目的的理解)1.实验背景1)自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。
到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈。
2)吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。
游戏的目的就是控制游戏的主角小精灵吃掉藏在迷宫内所有的豆子,并且不能被幽灵抓到。
高效地浏览世界将是吃豆人掌握世界的第一步。
3)通过本学期的学习我们已经初步掌握了人工智能的基本知识,在实验中则应用这些知识使用人工智能操纵吃豆人游戏。
2.实验方法1)在本实验中, Pacman 智能体将找到通过迷宫世界的路径, 既包括到达一个指定的位置,也包括高效地搜集食物。
我们编辑文件和,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆,并将其应用到Pacman场景,完成对相关人工智能功能的完善。
2)在本实验中,我们对下面8个问题进行研究,针对每个问题提出解决方法,逐步完成吃豆人游戏:Q1: Depth First SearchQ2: Breadth First SearchQ3: Uniform Cost SearchQ4: A* SearchQ5: Corners Problem: RepresentationQ6: Corners Problem: HeuristicQ7: Eating All The Dots: HeuristicQ8: Suboptimal Search3.实验目的1)完成实验报告中的问题,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆;2)通过分析吃豆人游戏巩固课堂上所学内容;3)复习python语言的使用。
二、方法(对每个问题的分析及解决问题的方法)Q1: Depth First Search应用深度优先算法找到一个特定的位置的豆,我们通过depthFirstSearch函数实现深度优先搜索的功能。
深度优先遍历的方法是,从图中某顶点v出发:1)访问顶点v;2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
深度优先搜索的顺序如下图所示:在depthFirstSearch中,由于搜索过程中火重复访问到部分节点,所以需要对于每个节点设置标记,以指示该节点是否被访问过。
先将每个后继节点压入搜索栈中,然后以深度优先的顺序进行搜索,判定是否符合目标状态,并将符合结果的节点放入结果集。
Q2: Breadth First Search应用宽度优先算法找到一个特定的位置的豆,我们通过breadthFirstSearch函数实现深度优先搜索的功能。
广度优先搜索算法的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。
如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
如下图:在breadthFirstSearch中,大体的搜索思路与深度优先算法一致,只是搜索的次序发生了变化。
在这里注意,在深度优先搜索和广度优先搜索方法中,我们使用的图搜索算法是一样的,但是涉及到具体的数据结构却是不同的。
在深度优先搜索算法中,我们使用栈进行操作,在深度优先搜索算法中,我们使用队列进行操作,如下图所示。
这两种数据结构的不同之处就在于其中元素的输出次序,在深度优先搜索中需要按照压栈顺序的逆序进行搜索,咋子广度优先搜索中需要按照入队顺序的顺序进行搜索。
Q3: Uniform Cost Search很多情况下,路径中的代价是可以改变的,在这个问题中,我们完成代价一致搜索方法。
代价一致搜索,其实就是一个贪心搜索,取代扩展深度最浅的节点,代价一致搜索扩展的是路径消耗最低的节点n。
如果所有单步耗散都相等的话,这种算法就和广度优先搜索算法是一样的。
不过,这样在扩展到一个具有能返回到同一状态的零耗散行动的节点时就会陷入无限循环。
在uniformCostSearch函数中,我们计算每条路径的总代价,将总代价作为优先级进行搜索,待搜索序列存储于队列中。
对于每个节点,使用代价函数getCostOfActions计算其所产生的代价,并依次作为搜索的优先级进行搜索。
同样的,对于每个节点添加是否被访问的标记。
Q4: A* SearchA*算法是一种静态路网中求解最短路最有效的直接搜索方法,也是许多其他问题的常用启发式算法,对代价一致搜索算法进行了改进,加入了一个估计代价h。
公式表示为:f(n)=g(n)+h(n),其中 f(n) 是从初始状态经由状态n到目标状态的代价估计,g(n) 是在状态空间中从初始状态到状态n的实际代价,h(n) 是从状态n到目标状态的最佳路径的估计代价(对于路径搜索问题,状态就是图中的节点,代价就是距离)。
在本实验中,我们使用曼哈顿距离作为启发函数。
在aStarSearch函数中,我们首先搜索具有最低组合成本和启发式的节点。
类似于问题三,我们计算每个节点的代价,并以此为依据搜索产生结果集,在搜索的过程中,还需要标记节点是否已经被访问过。
Q5: Corners Problem: Representation找到所有的角落,在角落迷宫的四个角上面有四个豆,通过这个函数找到一条访问所有四个角落的最短的路径。
在CornersProblem类中,我们使用__init__函数存储墙壁的位置,吃豆人的起点和角落位置,定义新的函数getStartState用于获得节点起始状态,isGoalState函数判断当前节点是否为目标节点,getSuccessors函数返回后继状态,所需的操作以及代价,getCostOfActions函数计算动作序列所需的代价。
查找后继节点时,在四个方向一次遍历,使用directionToVector移动位置,如果没有墙,则把下一个的状态,动作,花费的步数加入下一节点Q6: Corners Problem: Heuristic构建合适的启发函数,完成问题5中的角落搜索问题。
在问题五使用的CornersProblem类中定义cornersHeuristic函数,为角落问题构造启发函数。
在cornersHeuristic函数中使用了GetNextNodes函数获取下一个节点,isGoal函数判断是否为目标。
Q7: Eating All The Dots: Heuristic用尽可能少的步数吃掉所有的豆子。
这个问题利用之前A*算法可以很容易找到解,此种方法在这里不再详述。
下面在FoodSearchProblem类中定义函数foodHeuristic,构建合适的启发函数完成豆子搜索(启发式)问题。