山东省东营市实验中学2021届九年级(人教版)中考模拟试卷数学试题

合集下载

2021年东营市中考数学模拟试卷(有答案)

2021年东营市中考数学模拟试卷(有答案)

2021年山东省东营市中考数学模拟试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2= .13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M 的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= ,b= ,c= ,d= ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.2021年山东省东营市中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15 .【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长=πrl代入计算即可.l为5,然后根据圆锥的侧面积公式:S侧【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌握圆锥的侧面积公式:S=•2πr•l=侧πrl是解题的关键.也考查了三视图.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数频率(本)名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC .(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【解答】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,。

2021年山东省东营市九年级中考数学模拟试题

2021年山东省东营市九年级中考数学模拟试题

2021年山东省东营市九年级中考数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.下列运算正确的是( )A .﹣1﹣1=0B .(﹣2)3=﹣8C .a+2b =3abD .x 2+x 3=x 5 3.将一副直角三角板按如图所示方式摆放在一起,其中,ABC MAN 90∠∠==︒,BAC 45∠=︒,N 30∠=︒,若MN //BA ,则CAM ∠的度数为()A .10︒B .15︒C .20︒D .30︒ 4.下列“QQ 表情”中属于轴对称图形的是( )A .B .C .D . 5.足球比赛的得分规则如下:胜一场得3分,平一场得1分,负一场得0分.某足球队一共进行了14场比赛,其中负了5场,共得19分.设该球队胜了x 场,平了y 场,依题意可列方程组()A .x y 5143x y 19++=⎧⎨+=⎩B .x y 514x 3y 19++=⎧⎨+=⎩C .x y 514x 3y 19+-=⎧⎨+=⎩ D .x y 5143x y 19+-=⎧⎨+=⎩ 6.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( ) A .16 B .13 C .12 D .23 7.如图,在△ABC 中,∠C=90°,分别以点A,B 为圆心,大于12AB 长为半径作弧,两弧分别交于M,N 两点,过M,N 两点的直线交AC 于点E,若AC=8,BC=6,则AE 的长为( )A.2 B.3 C.245D.2548.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④9.如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到1D点,蚂蚁爬行的最短距离是()ABC.5D.210.如图,在ABC 中,ABC 90∠=︒,分别以ABC 的边向外作正方形,连接EC 、BF ,过B 作BM FG ⊥于M ,交AC 于N ,下列结论: ABF ①≌AEC ;AEC ABDE S 2S =四边形②;ABF AFMN S 2S =四边形③;ABDE AFMN S S =正方形四边形④,其中正确的是()A .①②B .①②③C .①D .①②③④二、填空题 11.我国首艘国产航母于2021年4月26日正式下水,排水量约为65000吨,将65000科学记数法表示为_____.12.因式分解:-3x 2+3x=________.13.如图,某中学开展了“书香校园”活动,班长小丽统计了本学期全班40名同学课外图书的阅读量(单位:本),绘制了统计图.如图所示,在这40名学生的图书阅读量中,中位数是______.14.已知等腰ABC 的腰AB AC 13cm ==,底边BC 10cm =,A ∠的平分线的长是______cm .15.不等式组{2(x +1)>5x −7x+103>2x 的解集是__________.16.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB 30∠=︒,点E 、F 分别是AC 、BC 的中点,直线EF 与O 交于G 、H 两点.若O 的半径为5,则GE FH +的最大值为______.17.如图,菱形ABCD 在平面直角坐标系中,ADC ∠=120°,BD=2,则点A 的坐标为_________.18.如图,在平面直角坐标系中,点M 是直线y=﹣x 上的动点,过点M 作MN⊥x 轴,交直线y=x 于点N ,当MN≤8时,设点M 的横坐标为m ,则m 的取值范围为_______.三、解答题19. 1()计算:102020202016cos45() 1.73)54(0.25)3-︒+++-⨯-(2)先化简,再求值:23a 4a 44a 1a a 1a 1a 2-+⎛⎫-+÷+- ⎪++-⎝⎭,并从1-,0,2中选一个合适的数作为a 的值代入求值.20.已知如图,O 的直径AB 与弦AC 的夹角A 30∠=︒,AC CP =.1()求证:CP 是O 的切线;2()若AB =21.如图,在平面直角坐标系中,双曲线m y x=和直线y kx b =+交于A ,B 两点,点A 的坐标为()3,2-,BC y ⊥轴于点C ,且OC 6BC =.1()求双曲线和直线的解析式;2()求AOB 的面积. 3()直接写出不等式m kx b x>+的解集.22.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,设这种玩具的销售单价为x 元.(1)根据销售单价每降低1元,每天可多售出2个,则现在销售数量为_____个(用含有x 的代数式表示)(2)当x 为多少元时,厂家每天可获利润20000元?23. 1()尝试探究:如图①,在ABC 中,ACB 90∠=︒,A 30∠=︒,E ,F 分别是BC ,AC 上的点,且EF //AB ,则AF BE=______; 2()类比延伸:如图②,若将图①中的CEF 绕点C 顺时针旋转,则在旋转的过程中,AF BE值是否发生变化?请仅就图②的情形写出推理过程; 3()拓展运用:若BC 3=,CE 2=,在旋转过程中,当B ,E ,F 三点在同一直线上时,请直接写出此时线段AF 的长.24.如图,已知抛物线y =ax 2+bx +3经过点A (﹣1,0)、B (3,0)两点,且交y 轴交于点C .(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点M,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.参考答案1.B【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B .【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.2.B【解析】试题解析:A. 112--=-,故该选项错误;B. ()328-=-,正确;C. 23a b ab +≠,故该选项错误;D. 235x x x +≠,故该选项错误.故选B.3.B【分析】依据平行线的性质,即可得到∠M=∠BAM=60°,再根据∠CAM=∠BAM-∠BAC 进行计算即可.【详解】解:∵∠ABC=∠MAN=90°,∠N=30°,∴∠M=60°,∵MN ∥BA ,∴∠M=∠BAM=60°,∴∠CAM=∠BAM-∠BAC=60°-45°=15°,故选:B .【点睛】此题考查平行线的性质,解题关键在于掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.4.A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A【分析】设该球队胜了x场,平了y场,根据进行l4场比赛,其中负了5场,共得l9分,列方程组.【详解】设该球队胜了x场,平了y场,由题意得x y514 3x y19++=⎧⎨+=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6.C【解析】试题分析:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61122=. 故选C .考点:列表法与树状图法7.D【分析】本题考查的是线段的垂直平分线的性质和勾股定理的应用.【详解】解:根据题意知MN 为AB 的垂直平分线,∴AE=BE ,∵∠C=90°,AC=8,BC=6∴()2222586,4AE AE AE -+=∴= 故选D .8.B【解析】【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB 表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选B .【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.A【分析】根据题意,先将正方体展开,再根据两点之间线段最短求解.【详解】当沿前面和右面爬行时,将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=1+2=3,MD1.当沿前面和上面爬行时,MD1=,故选:A.【点睛】此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.10.D【分析】利用全等三角形的判定和性质、平行线的性质、等高模型即可一一判断;【详解】连接BE,AM.∵AB=AE,AF=AC,∠EAB=∠CAF,∴∠BAF=∠EAC,∴△BAF≌△EAC(SAS),故①正确,∵AE∥CD,∴S△AEC=S△ABE,∵S正方形ABDE=2S△ABE,∴S四边形ABDE=2S△AEC;故②正确;∵BM⊥FG,AF⊥FG,∴AF∥BM,∴S矩形AFMN=2S△AFM=2S△AFB,故③正确,∵∠ABC=∠ANB=90°,∠BAN=∠BAC,∴△ABN∽△ACB,∴AB2=AN•AC,∵AF=AC,∴AB2=AN•AF,∴S正方形ABDE=S四边形AFMN,故④正确,故选:D.【点睛】此题考查正方形的性质、全等三角形的判定和性质、平行线的性质、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11.6.5×104【解析】【分析】直接利用科学计数法的表示规则直接写出即可【详解】将65000科学记数法表示为6.5×104.故答案为:6.5×104.【点睛】本题考查科学计数法,掌握科学计数法定义是解题关键12.-3x(x-1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.13.23【分析】根据中位数的定义求解即可.【详解】由条形统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232=23,故答案为:23.【点睛】此题考查条形统计图及中位数,解题关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依次排列再计算.14.12【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD=12BC=5,根据勾股定理计算即可.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD=12BC=5,∴,故答案为:12.【点睛】此题考查勾股定理、等腰三角形的性质,解题关键在于掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.x<2【解析】【分析】分别解不等式,再确定不等式组解集.【详解】{2(x+1)>5x−7(1) x+103>2x(2)解不等式①,得x<3解不等式②,得x<2所以不等式组的解集是x<2故答案为:x<2【点睛】考核知识点:解不等式组.掌握解不等式方法是关键.16.7.5【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为5,可得AB=OA=OB=5,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=12AB=52,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10-52=7.5.故答案为:7.5.【点睛】此题考查圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.17.(0)【解析】分析:本题考查的是菱形的性质,30度所对的直角边等于斜边的一半.解析:因为ABCD为菱形,∴AC⊥BD,∵ADC=120°,所以∠ADO=60°,∵BD=2,,∴点A的坐标为(,0).故答案为(0).18.﹣4≤m≤4【分析】此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M ,N 的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【详解】解:∵点M 在直线y=﹣x 上,∴M (m ,﹣m ),∵MN ⊥x 轴,且点N 在直线y=x 上,∴N (m ,m ),∴MN=|﹣m ﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为﹣4≤m≤4.【点睛】此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.19.(1)10;(2)-a-1,-1.【分析】(1)根据三角函数值,负整数指数幂,零指数幂,绝对值的非负性进行计算即可.(2)根据分式的加减法和除法可以化简题目中的式子,然后在-1,0,2中选一个使得原分式有意义的值代入即可解答本题.【详解】(1)原式=20206315(1)2⨯+++--=91-=10. (2)(234441112a a a a a a a -+-+÷+-++-) =()231114•1(()2)2a a a a a a a --+++-+-- =()222()()422a a a a a -+-+--- =2422a a a a --+---=()22a a a ---- =-a-1,当a=0时,原式=-0-1=-1.【点睛】此题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解题的关键是明确它们各自的计算方法.20.(1)见解析;(2)-2π.【分析】(1)如图,连接OC ;运用已知条件证明∠OCP=90°,即可解决问题.(2)分别求出△OCP 、扇形OCB 的面积,即可解决问题.【详解】解:(1)如图,连接OC ;∵OA=OC ,AC=CP ,∴∠A=∠OCA=30°,∠P=∠A=30°,∴∠POC=∠A+∠OCA=60°,∴∠OCP=180°-60°-30°=90°,∴CP 是⊙O 的切线.(2)∵,∴∴PC=30OC tan ︒=6 ∴S △OCP =12OC•PC=12× S 扇形OBC 223()π =2π,∴图中阴影部分的面积-2π.【点睛】此题考查了切线的判定、三角形的面积公式、扇形的面积公式,解题的关键是作辅助线,准确选择切线的判定方法;灵活运用扇形的面积公式等几何知识点来分析、判断、解答. 21.(1)双曲线的解析式为:y=-6x ,直线的解析式为:y=-2x-4;(2)8;(3)-3<x <0或x >1.【分析】(1)先把A 点坐标代入m y x=求出m ,从而得到反比例函数解析式;再利用OC=6BC 可设B 点坐标为(t ,-6t )(t >0),然后把B (t ,-6t )代入反比例函数解析式求出t ,得到B 点坐标为(1,-6),再利用待定系数法求一次函数解析式;(2)先确定直线y=-2x-4与x 轴的交点D 的坐标,然后根据三角形面积公式和△AOB 的面积=S △AOD +S △BOD 进行计算;(3)根据一次函数与反比例函数的两交点A 与B 的横坐标,以及0,将x 轴分为四个范围,找出反比例图象在一次函数图象上方时x 的范围即可.【详解】(1)∵点A (-3,2)在双曲线m y x =上, ∴2=3m - ,即m=-6, ∴双曲线的解析式为:y=-6x , ∵点B 在双曲线y=-6x 上,且OC=6BC ,设点B 的坐标为(a ,-6a ), ∴-6a=-6a ,解得:a=±1(负值舍去),∴点B 的坐标为(1,-6),∵直线y=kx+b 过点A ,B ,∴326k b k b ==-+⎧⎨+-⎩, 解得:24k b -⎧⎨-⎩== ,∴直线的解析式为y=-2x-4;(2)直线y=-2x-4交x轴于点D,如图,把y=0代入y=-2x-4得-2x-4=0,解得x=-2,则D点坐标为(-2,0),△AOB的面积=S△AOD+S△BOD=12×2×2+12×2×6=8.(3)根据图象得:不等式mx>kx+b的解集为-3<x<0或x>1.【点睛】此题考查一次函数与反比例函数的交点问题,利用了待定系数法及数形结合的思想,熟练掌握待定系数法是解题的关键.22.(1)(1120﹣2x);(2)460.【解析】【分析】(1)销售单价为x元,降低了(480﹣x)元,每天可多售出2(480﹣x)个,销售数量为160+2(480﹣x)个,化简即可;(2)总获利=每件玩具的获利×玩具的销量,根据此公式列方程,解方程即可.【详解】(1)根据题意,可得现在销售数量为160+2(480﹣x)=(1120﹣2x)个.故答案为(1120﹣2x);(2)由题意,得:(x﹣360)[160+2(480﹣x)]=20000,整理得:x2﹣920x+211600=0,解得:x 1=x 2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.【点睛】本题是较为典型的销售问题,需熟练掌握一元二次方程的应用.23.(1(2)不变化,理由见解析;(3)AF 的长为或.【分析】(1)根据直角三角形30°角的性质即可解决问题;(2)只要证明△ACF ∽△BCE ,可得AF AC BE BC,由此即可解决问题; (3)分两种情形画出图形分别解决问题即可;【详解】(1)如图①中,∵在△ABC 中,∠ABC=90°,∠A=30°,EF ∥AB ,∴∠CFE=∠A=30°,∴,,∴(BC-EC )BE ,∴AF BE(2)不变化,理由如下:如图②中,由(1)及旋转的性质知,∠CFE=∠CAB=30°.∠FCE=∠ACB=90°.在Rt △CEF 中,tan ∠CEF=CF CE在Rt △CBA 中,tan ∠ABC=AC BC∴CF AC CE BC = , 又∵∠FCE=∠ACB=90°,∠FCA+∠ACE=∠FCE ,∠ACE+∠BCE=∠ACB ,∴∠FCA=∠ECB .∴△ACF ∽△BCE ,∴AF AC BE BC=(3)①如图,由△ECB ∽△FCA ,可得:AF :BE=CF :设BE=a ,则,∵B ,E ,F 共线,∴∠BEC=∠AFC=120°,∵∠EFC=30°,∴∠AFB=90°,在Rt △ABF 中,AB=2BC=6,,BF=EF+BE=4+a ,)2+(4+a )2=62,∴或(舍弃),∴②如图,当E ,B ,F 共线时,同法可证:,∠AFB=90°,在Rt △ABF 中,62=(4-a )2+a )2,解得或(舍弃),∴AF 的长为【点睛】此题考查三角形综合题,旋转变换,相似三角形的判定和性质,直角三角形30°角 的性质,勾股定理,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题. 24.(1)y =﹣x 2+2x +3;(2)MN =﹣m 2+3m (0<m <3);(3)存在,当m =32时,△BNC 的面积最大,最大值为278【分析】 (1)直接利用待定系数法即可求出抛物线的解析式;(2)先利用待定系数法求出直线BC 的解析式,已知点M 的横坐标,代入直线BC 、抛物线的解析式中,可得到M 、N 点的坐标,N 、M 纵坐标的差的绝对值即为MN 的长; (3)根据题(1)(2)的结论,列出BNC S ∆关于m 的表达式,再利用函数的性质求解BNC S ∆的最大值即可.【详解】(1)抛物线23y ax bx =++经过点(10),(30)A B -,,两点,代入得: 309330a b a b -+=⎧⎨++=⎩,解得:12a b =-⎧⎨=⎩则抛物线的解析式为2y x 2x 3=-++;(2)由抛物线2y x 2x 3=-++可知,(03)C ,因此,设直线BC 的解析式为:3y kx =+代入(30)B ,得330k += 解得:1k =-则直线BC 的解析式:3y x =-+已知点M 的横坐标为m ,且//MN y 轴,则2(,3),(,23)M m m N m m m -+-++; 则2223(3)3(03)MN m m m m m m =-++--+=-+<<故MN 的长为23(03)m m m -+<<;(3)存在点M ,使BNC ∆的面积最大如图,过点M 作MD x ⊥轴于点D 则1111(2222)BNC MNC MNB S OD DB OD DB O S S MN MN MN MN B ∆∆∆=+=⋅⋅+=⋅⋅+= 即2211(332733)2282()2BNC O M m B S m N m ∆=⋅-+=--+⋅=(03)m << 由二次函数的性质可知:当302m <≤时,BNC S ∆随m 的增大而增大;当332m <<时,BNC S ∆随m 的增大而减小 则当32m =时,BNC ∆的面积最大,最大值为278.【点睛】本题考查了利用待定系数法求一次函数和二次函数的解析式,以及二次函数图象的性质,较难的是题(3),求出BNC ∆的面积关于m 的表达式是解题关键.。

山东省东营市2021年中考数学模拟考试(1)

山东省东营市2021年中考数学模拟考试(1)

二0一四年东营市初中学生中考模拟考试数学试题(总分120分考试时刻120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部份,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共7页.2. 数学试题答案卡共9页.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试终止,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必需用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm签字笔答在答题卡的相应位置上.4. 考试时,不许诺利用科学计算器.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来.每题选对得3分,选错、不选或选出的答案超过一个均记零分.1.世界文化遗产长城总长约为6700000m,假设将6700000用科学记数法表示为6.7×10n(n是正整数),那么n的值为().A.5 B.6 C.7 D.8【答案】B.2.以下运算正确的选项是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.()2=x6D.-3(2x-4)=-6x-12【答案】C.3.实验学校九年级一班十名同窗定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,那么这组数据的中位数,众数别离为()A.4,5 B.5,4 C.4,4 D.5,5【答案】A .4. 如图,边长为6的大正方形中有两个小正方形,假设两个小正方形的面积别离为S 1、S 2,那么S 1+S 2的值为( )A .16B .17C .18D .19【答案】B .5. 河堤横断面如下图,堤高BC =6米,迎水坡AB 的坡比为1:,那么AB 的长为( ) A .12B .4米C .5米 D .6米 【答案】B .6. 在一个能够改变体积的密闭容器内装有必然质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 2)与体积V (单位:m 3)知足函数关系式Vk=ρ(k 为常数,k ≠0),其图象如下图,那么k 的值为( )A .9B .-9C .4D .-4 【答案】:A .7. 如图,▱ABCD 的极点A 、B 、D 在⊙O 上,极点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,那么∠AEB 的度数为( )A 、36°B 、46°C 、27°D 63° 【答案】:A .OV ρA第5题S2S8. 将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A′处,那么AE 的长为______. A 、10 B 、3 C 、103D 6 【答案】A9.2021年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家动身前去观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出终止后,童童搭乘邻居刘叔叔的车顺利抵家.其中x 表示童童从家动身后所历时刻,y 表示童童离家的距离.以下图能反映y 与x 的函数关系式的大致图象是( )【答案】A10.如图,在等腰直角ABC ∆中,90ACB O∠=,O 是斜边AB 的中点,点D 、E 别离在直角边AC 、BC 上,且90DOE O∠=,DE 交OC 于点P .那么以下结论:(1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3)CD CE +=;(4)222AD BE OP OC +=⋅.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 【答案】C第Ⅱ卷(非选择题 共84分)二、填空题:本大题共8小题,共24分,只要求填写最后结果,每题填对得4分. 11. 已知实数a ,b 知足a +b =2,a -b =5,那么(a +b )3·(a -b )3的值是__________ 【答案】100012. 如图6,Rt △ABC 的斜边AB =16, Rt △ABC 绕点O 顺时针旋转后取得C B A Rt '''∆,那么C B A Rt '''∆的斜边D.A .B.C.(第9题图)B A ''上的中线DC '的长度为_____________ .【答案】 8.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个.这些球除颜色不同外,其它无任何不同,搅匀后随机从中摸出一个恰好是黄球的概率为13,那么放入口袋中的黄球总数n = . 【答案】414.假设一个一元二次方程的两个根别离是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】x 2-5x +6=0 其图15.已知反比例函数y =6x在第一象限的图象如下图,点A 在象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO =AB ,那么S △AOB = . 【答案】6.16.如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条切线,切点为D ,假设AC=7,AB=4,那么sinC 的值为 .【答案】:52. 17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,假设光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,那么屏幕上图形的高度为 cm . 【答案】:18.18. 如图,在平面直角坐标系中,Rt △OAB 的极点A 在x 轴的正半轴上,极点B 的坐标为(33),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,那么PA +PC 的最小值为 . A BOD第16题【答案】312. 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明进程或演算步骤.19. (此题总分值7分,第⑴题4分,第⑵题4分) (1)计算: 2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.(2)先简化,再求值:,其中x=.解:原式=•=,当x=+1时,原式==.20. (此题总分值8分)东营市某学校开展课外体育活动,决定开高A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜爱哪一种活动项目(每人只选取一种).随机抽取了部份学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答以下问题.[中国#&教育出*版~@网]⑴样本中最喜爱A 项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;⑵请把条形统计图补充完整;⑶假设该校有学生1000人,请依照样本估量全校最喜爱踢毽子的学生人数约是多少? 【答案】:(1)40%,144 (2)如图:(3)100%101000=⨯人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°; (2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如下图:(3)1000×10%=100(人).答:全校最喜爱踢毽子的学生人数约是100人.21. (此题总分值9分) 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,别离于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.(2)假设BC BE BD ⋅=2试判定直线CD 与⊙O 的位置关系,并说明理由.答案:22. (此题总分值9分) 如图,△ABC 中,AB=BC ,AC=8,tanA=k ,P 为AC 边上一动点,设PC=x ,作PE∥AB 交BC 于E ,PF∥BC 交AB 于F . (1)证明:△PCE 是等腰三角形;(2)EM 、FN 、BH 别离是△PEC、△AFP、△ABC 的高,用含x 和k 的代数式表示EM 、FN ,并探讨EM 、FN 、BH 之间的数量关系;(3)当k=4时,求四边形PEBF 的面积S 与x 的函数关系式.x 为何值时,S 有最大值?并求出S 的最大值. 【答案】(1)证明:∵AB=BC , ∴∠A=∠C , ∵PE ∥AB , ∴∠CPE=∠A , ∴∠CPE=∠C ,∴△PCE 是等腰三角形;(2)解:∵△PCE 是等腰三角形,EM ⊥CP , ∴CM=CP=,tanC=tanA=k , ∴EM=CM•tanC=•k=, 同理:FN=AN•tanA=•k=4k﹣,由于BH=AH•tanA=×8•k=4k, 而EM+FN=+4k ﹣=4k ,∴EM+FN=BH ;(3)解:当k=4时,EM=2x ,FN=16﹣2x ,BH=16,因此,S △PCE =x•2x=x 2,S △APF =(8﹣x )•(16﹣2x )=(8﹣x )2,S △ABC =×8×16=64, S=S △ABC ﹣S △PCE ﹣S △APF , =64﹣x 2﹣(8﹣x )2, =﹣2x 2+16x ,配方得,S=﹣2(x ﹣4)2+32, 因此,当x=4时,S 有最大值32.23. (此题总分值10分) 某工厂投入生产一种机械的总本钱为2000万元.当该机械生产数量至少为10台,但不超过70台时,每台本钱y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部份对应值如下表:x (单位:台) 10 20 30 y (单位:万元/台)605550(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)求该机械的生产数量;(3)市场调查发觉,这种机械每一个月销售量z (台)与售价a (万元/台)之间知足如下图的函数关系.该厂生产这种机械后第一个月按同一售价共卖出这种机械25台,请你求出该厂第一个月销售这种机械的利润.(注:利润=售价-本钱)【答案】:解:(1)设y 与x 的函数解析式为y =kx +b , 依照题意,得10602055k b k b +=⎧⎨+=⎩,, 解得1265k b ⎧=-⎪⎨⎪=⎩,.1535 55 75 z∴y 与x 之间的函数关系式为1652y x =-+(10≤x ≤70).(2)设该机械的生产数量为x 台,依照题意,得x (1652x -+)=2000,解得x 1=50,x 2=80.∵10≤x ≤70,∴x =50.答:该机械的生产数量为50台.(3)设销售数量z 与售价a 之间的函数关系式为z =ka +b ,依照题意,得55357515k b k b +=⎧⎨+=⎩,, 解得190k b =-⎧⎨=⎩,.∴z =-a +90.当z =25时,a =65.设该厂第一个月销售这种机械的利润为w 万元,w =25×(65-200050)=625(万元). 24. (此题总分值10分)如图一艘海上巡逻船在A 地巡航,这时接到B 地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C 地有一艘渔船遇险,要求马上前去救援.现在C 地位于A 地北偏西30°方向上.A 地位于B 地北偏调西75°方向上.AB 两地之间的距离为12海里.求A .C 两地之间的距离. (参考数据:2≈l . 41,3≈1.73,6≈2.45.结果精准到0.1.)【解】如图,过点B 作BD ⊥CA ,交CA 的延长线于点D ,由题意,得∠ACB =60°-30°=30°. ∠ABC =75°-60°=15° ∴∠DAB =∠DBA =45°在Rt ⊿ADB 中.AB =12.∠ BAD =45°, ∴BD =AD =2645cos =AB在Rt ⊿BCD 中,6630tan ==BDCD ∴2.62666≈-=AC (海里) 答:AC 两地之间的距离约为6.2海里25. (此题总分值12分) 如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)假设抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限内,抛物线C 1上是不是存在点F ,使得以点B 、C 、F 为极点的三角形与△BCE 相似?假设存在,求m 的值;假设不存在,请说明理由. 图1 解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.因此C (4, 0),E (0, 2).因此S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.因此点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,因此当CE BCCB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.因此F ′(m +2, 0).由'CO BF CE BF =4m BF +=.因此(m BF m +=. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,因此BE BCBC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .因此F ′(2,0)m .因此BF ′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =± 综合①、②,符合题意的m 为2+数学试题参考答案与评分标准一、选择题:本大题共10小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来.每题选对得3分,选错、不选或选出的答案超过一个均记零分.1.【答案】B .2.【答案】C .3.【答案】A .4. 【答案】B .5. 【答案】B .6. 【答案】:A .7. 【答案】:A .8. 【答案】A9.【答案】A10.【答案】C第Ⅱ卷(非选择题 共84分)二、填空题:本大题共8小题,共24分,只要求填写最后结果,每题填对得4分.11. 【答案】100012.【答案】 8.13.【答案】414.【答案】x 2-5x +6=015.【答案】6.16. 【答案】:52. 17.【答案】:18.18. 【答案】312. 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明进程或演算步骤.19. (此题总分值7分,第⑴题4分,第⑵题4分)(1)计算: 2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0. 解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0, =2×﹣(﹣4)﹣2﹣1, =+4﹣2﹣1, =3﹣.(2)先简化,再求值:,其中x=. 解:原式=•=, 当x=+1时,原式==. 20.【答案】:(1)40%,144(2)如图:(3)100%101000=⨯人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如下图:(3)1000×10%=100(人).答:全校最喜爱踢毽子的学生人数约是100人. 21.答案:22. 【答案】(1)证明:∵AB=BC ,∴∠A=∠C ,∵PE ∥AB ,∴∠CPE=∠A ,∴∠CPE=∠C ,∴△PCE 是等腰三角形;(2)解:∵△PCE 是等腰三角形,EM ⊥CP ,∴CM=CP=,tanC=tanA=k , ∴EM=CM•tanC=•k=, 同理:FN=AN•tanA=•k=4k﹣,由于BH=AH•tanA=×8•k=4k,而EM+FN=+4k ﹣=4k ,∴EM+FN=BH ;(3)解:当k=4时,EM=2x ,FN=16﹣2x ,BH=16,因此,S △PCE =x•2x=x 2,S △APF =(8﹣x )•(16﹣2x )=(8﹣x )2,S △ABC =×8×16=64, S=S △ABC ﹣S △PCE ﹣S △APF ,=64﹣x 2﹣(8﹣x )2,=﹣2x 2+16x ,配方得,S=﹣2(x ﹣4)2+32,因此,当x=4时,S 有最大值32.23. 【答案】:解:(1)设y 与x 的函数解析式为y =kx +b ,依照题意,得10602055k b k b +=⎧⎨+=⎩,, 解得1265k b ⎧=-⎪⎨⎪=⎩,.∴y 与x 之间的函数关系式为1652y x =-+(10≤x ≤70). (2)设该机械的生产数量为x 台,依照题意,得x (1652x -+)=2000,解得x 1=50,x 2=80.∵10≤x ≤70,∴x =50.答:该机械的生产数量为50台.(3)设销售数量z 与售价a 之间的函数关系式为z =ka +b ,依照题意,得55357515k b k b +=⎧⎨+=⎩,, 解得190k b =-⎧⎨=⎩,.∴z =-a +90.当z =25时,a =65.设该厂第一个月销售这种机械的利润为w 万元,w =25×(65-200050)=625(万元). 24 【解】如图,过点B 作BD ⊥CA ,交CA 的延长线于点D ,由题意,得∠ACB =60°-30°=30°.∠ABC =75°-60°=15°∴∠DAB =∠DBA =45°在Rt ⊿ADB 中.AB =12.∠ BAD =45°,∴BD =AD =2645cos =AB 在Rt ⊿BCD 中,6630tan ==BD CD ∴2.62666≈-=AC (海里)答:AC 两地之间的距离约为6.2海里25.解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.因此C (4, 0),E (0, 2). 因此S △BCE =1162622BC OE ⋅=⨯⨯=. (3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EO CP CO =. 因此234HP =.解得32HP =.因此点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,因此当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.因此F ′(m +2, 0).由'CO BFCE BF =4m BF +=.因此BF =.由2BC CE BF =⋅,得2(2)m += 整理,得0=16.此方程无解.图2 图3 图4 ②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,因此BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+. 解得x =2m .因此F ′(2,0)m .因此BF ′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =± 综合①、②,符合题意的m 为2+。

山东实验学校2021届九年级学生学业模拟考试数学试题及答案

山东实验学校2021届九年级学生学业模拟考试数学试题及答案

秘密★启用前试卷类型:A山东省实验学校2021届九年级学业模拟考试数学试题(总分120分考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.山东某市2014年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为29.39亿元,那么这个数值( D )A.精确到亿位 B.精确到百分位C.精确到千万位 D.精确到百万位2.已知一个正棱柱的俯视图和左视图如图,则其主视图为( D )3.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( C )A.1<m<7 B.3<m<4C.m>1 D.m<44.雷霆队的杜兰特当选为2021~2021赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为( B )场次 1 2 3 4 5 6 7 8得分30 28 28 38 23 26 39 42A.29,28 B.28,29C.28,28 D.28,275.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为( D )A、90°B、120°C、150°D、180°6.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( C ) A.(2,10) B.(-2,0)C.(2,10)或(-2,0) D.(10,2)或(-2,0)7.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( B )A.⎩⎪⎨⎪⎧x -y =22x×2.5%+y×0.5%=10000 B.⎩⎪⎨⎪⎧x -y =22x 2.5%+y0.5%=10000 C.⎩⎪⎨⎪⎧x +y =10000x×2.5%-y×0.5%=22 D.⎩⎪⎨⎪⎧x +y =10000x 2.5%-y0.5%=22 8.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50人B. 步行人数为30人C 乘车人数是骑车人数的2.5倍. D. 骑车人数占20% 9.如图,在半径为6 cm 的⊙O 中,点A 是劣弧BC ︵的中点,点D是优弧BC ︵上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6 3 cm ;③sin∠AOB =32;④四边形ABOC 是菱形.其中正确结论的序号是( B ) A .①③ B.①②③④ C .②③④ D.①③④10.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b ;③8a+7b+2c>0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有(B )A .1个B . 2个C . 3个D . 4个第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20%.12.如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为 60° .13.若x +y =1,且x≠0,则(x +2xy +y 2x )÷x +y x的值为__1__.14.)如图,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y轴的正半轴上,点F 在AB 上,点B ,E 在反比例函数y =kx 的图象上,OA =1,OC =6,则正方形ADEF 的边长为__2__.15.如图,在平面直角坐标系中,点O 是原点,点B(0,3),点A 在第一象限且AB⊥BO,点E 是线段AO 的中点,点M 在线段AB 上,若点B 和点E 关于直线OM 对称,则点M 的坐标是(__1__,__3__).16.如图,正六边形ABCDEF 的边长为2,延长BA ,EF 交于点O .以O 为原点,以边AB 所在的直线为x 轴建立平面直角坐标系,则直线DF 与直线AE 的交点坐标是(2,4).17.如图,已知在矩形ABCD 中,点E 在边BC 上,BE=2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD 交于点F ,D′F 与BE 交于点G .设AB=t ,那么△EFG 的周长为 2t (用含t 的代数式表示).18.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2021次,点B的落点依次为B1,B2,B3,…,则B2021的坐标为(1342,0).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(﹣1)(+1)﹣2+|1﹣|﹣(π﹣2)0+(2) 解不等式≤,并求出它的正整数解.20.(本题满分8分)我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a= 0.1 ,b= 6 ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)市里决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5 0.125攸县 b 0.15醴陵市8 0.2株洲县 5 0.125株洲市城区12 0.25解:(1)∵茶陵县频数为5,频率为0.125,∴数据总数为5÷0.125=40,∴a=4÷40=0.1,b=40×0.15=6.故答案为0.1,6;(2)∵4+5+6+8+5+12=40,∴各组频数正确,∵12÷40=0.3≠0.25,∴株洲市城区对应频率0.25这个数据是错误的,该数据的正确值是0.3;(3)设来自炎陵县的4位“最有孝心的美少年”为A、B、C、D,列表如下:∵共有12种等可能的结果,A 、B 同时入选的有2种情况, ∴A、B 同时入选的概率是:=.21.(本题满分8分)如图,AD 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC∥AD,交⊙O 于点C ,连接AC ,过点C 作CD∥AB,交AD 于点D ,连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP=∠ACD.(1)判断直线PC 与⊙O 的位置关系,并说明理由; (2)若AB =9,BC =6,求PC 的长.解:(1)直线PC 与圆O 相切.理由:连接CO 并延长,交圆O 于点N ,连接BN.∵AB∥CD,∴∠BAC =∠ACD.∵∠BAC =∠BNC ,∴∠BNC =∠ACD.∵∠BCP =∠ACD ,∴∠BNC =∠BCP.∵CN 是圆O 的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN =90°,∴∠PCO=90°,即PC⊥OC.又点C 在圆O 上,∴直线PC 与圆O 相切 (2)∵AD 是圆O 的切线,∴AD⊥OA,即∠OAD=90°.∵BC∥AD,∴OM⊥BC,∴MC=MB ,∴AB=AC.在Rt△AMC 中,∠AMC=90°,AC =AB =9,MC =12BC =3,由勾股定理,得AM =AC 2-MC 2=92-32=6 2 .设圆O 的半径为r ,在Rt△OMC 中,∠OMC=90°,OM =AM -AO =62-r ,MC =3,OC =r ,由勾股定理,得OM 2+MC 2=OC 2,即(62- r)2+32=r 2,解得r =2782.在△OMC 和△OCP 中,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴OM OC =CMPC ,即62-27822782=3PC ,∴PC=27722.(本题满分8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm .点A 、C 、E 在同一条只显示,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离(结果精确到1cm ). 解:(1)∵在Rt△ACD 中,AC=45cm ,DC=60cm ∴AD==75(cm ),∴车架档AD 的长是75cm ;(2)过点E作EF⊥AB,垂足为F,∵AE=AC+CE=(45+20)cm,∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63(cm),∴车座点E到车架档AB的距离约是63cm.23. (本题满分8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A 型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.24.(本题满分11分)如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴E H=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.25.(本题满分12分) 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣1/2,∴E(-1/2﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=1/2×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=1/2BF•|xG|﹣1/2BF|xE|=1/2BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).。

2021年山东省东营市实验中学九年级中考三模数学试题

2021年山东省东营市实验中学九年级中考三模数学试题
13.下表记录了东营市××学校甲、乙、丙、丁四名运动员最近几次1000米训练成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_______运动员.




成绩
3分6秒
3分13秒
3分13秒
3分6秒
方差
3.6
3.6
11.4
11.4
14.在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=______.
21.如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D= ,求AE的长.
22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y= (k>0)的图象经过BC边的中点D(3,1).
2021年山东省东营市实验中学九年级中考三模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的相反数是( )
A. B. C. D.
2.下列运算正确的是( )
A. B.
C. D.
3.下列几何体中,其主视图为三角形的是( )
A. B. C. D.
9.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()
A.2+π B.2+2π C.4+π D.2+4π
10.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF.给出以下五个结论:①∠AND=∠MPC;② ;③△ABM≌△NGF;④ ;⑤A,M,P,D四点共圆.其中正确的个数是( )

山东省东营市2021年中考数学模拟试卷(II)卷

山东省东营市2021年中考数学模拟试卷(II)卷

山东省东营市2021年中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)零是()A . 正数B . 负数C . 整数D . 分数2. (2分)(2019·港南模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2017·莒县模拟) 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A . 1.05×105B . 0.105×10﹣4C . 1.05×10﹣5D . 105×10﹣74. (2分)如图,将一张等腰直角△ABC纸片沿中位线DE剪开后,可以拼成的四边形是()A . 矩形或等腰梯形B . 矩形或平行四边形C . 平行四边形或等腰梯形D . 矩形或等腰梯形或平行四边形5. (2分) (2016八上·长泰期中) 下列运算式中,正确的是()A . a2•a3=a6B . (a3)3=a9C . (2a2)2=2a4D . a6÷a3=a26. (2分)下列说法中,正确的是()A . 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 掷一枚硬币,正面朝上的概率为D . 若 0.1, 0.01,则甲组数据比乙组数据稳定7. (2分)一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,如图是这个立方体的平面展开图,若20、0、9的对面分别写的是a、b、c,则a2+b2+c2-ab-bc-ca的值为()A . 481B . 301C . 602D . 9628. (2分)(2020·松滋模拟) 如图,等腰△ABC的顶角∠A=36°,若将其绕点C顺时针旋转36°,得到△A′B′C,点B′在AB边上,A′B′交AC于E,连接AA′.有下列结论:①△ABC≌△A′B′C;②四边形A′ABC 是平行四边形;③图中所有的三角形都是等腰三角形;其中正确的结论是()A . ①②B . ①③C . ②③D . ①②③9. (2分) (2017八下·路北期末) 园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A . 40平方米B . 50平方米C . 80平方米D . 100平方米10. (2分)(2017·汉阳模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题: (共6题;共6分)11. (1分)(2017·道外模拟) 把多项式a﹣ax2分解因式的结果是________.12. (1分)方程kx2+1=x﹣x2无实根,则k________13. (1分)已知线段AB及一点P,若PA=PB,则点P在________.14. (1分)(2012·盐城) 小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.15. (1分)(2017·百色) 我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩.若扇形的半径为2cm,则C等级所在的扇形的面积是________cm2 .16. (1分)(2017·连云港模拟) 如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1 ,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 ,交x 轴于点A2;将C2绕点A2旋转180°得C3 ,交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(37,m)在此“波浪线”上,则m的值为________.三、计算题: (共2题;共15分)17. (5分)(2020·东城模拟) 计算:(3.14﹣π)0+|1﹣ |﹣2cos45°+(﹣1)2019+(﹣)﹣118. (10分)综合题。

山东省东营市中考数学模拟试卷含答案解析

山东省东营市中考数学模拟试卷含答案解析

山东省东营市中考数学模拟试卷一、选择题:(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共计30分.)1.﹣4的倒数的相反数是()A.﹣4 B.4 C.﹣ D.2.下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.﹣=﹣43.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.554.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.5.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D.5种7.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.8.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.29.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S的值为()△AOCA.B.C.D.10.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水59800吨,将59800吨用科学记数法表示(结果保留2个有效数字)应为.12.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.13.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.14.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.15.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.16.在平行四边形ABCD中,BC边上的高为4,AB=5,AC=2,则平行四边形ABCD的周长等于.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.18.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).三、解答题:(本大题共6小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(1)计算:|﹣|﹣+2sin60°+()﹣1+(2﹣)0(2)先化简,再求值:÷(1﹣),其中a=﹣2.20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.21.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?22.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC 垂直x轴于点C,连结BC.若△ABC的面积为2.(1)求k的值;(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.24.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,求S△ACP的面积;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?山东省东营市中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共计30分.)1.﹣4的倒数的相反数是()A.﹣4 B.4 C.﹣ D.【考点】17:倒数;14:相反数.【分析】利用相反数,倒数的概念及性质解题.【解答】解:∵﹣4的倒数为﹣,∴﹣的相反数是.故选:D.2.下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.﹣=﹣4【考点】4C:完全平方公式;24:立方根;35:合并同类项;46:同底数幂的乘法.【分析】根据同类项、同底数幂的乘法、立方根和完全平方公式计算即可.【解答】解:A、5a2+3a2=8a2,错误;B、a3•a4=a7,错误;C、(a+2b)2=a2+4ab+4b2,错误;D、,正确;故选D.3.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】JA:平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP 的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.5.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】C2:不等式的性质.【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.6.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D.5种【考点】95:二元一次方程的应用.【分析】设小虎足球队踢平场数是所负场数的k倍,依题意建立方程组,解方程组从而得到用k表示的负场数,因为负场数和k均为整数,据此求得满足k为整数的负场数情况.【解答】解:设小虎足球队胜了x场,平了y场,负了z场,依题意得,把③代入①②得,解得z=(k为整数).又∵z为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种情况.故选:B.7.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.【考点】AA:根的判别式;F3:一次函数的图象.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k<0,b=0,即kb=0,故D不正确;故选:B.8.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2【考点】KP:直角三角形斜边上的中线;KQ:勾股定理;KS:勾股定理的逆定理.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S的值为()△AOCA.B.C.D.【考点】S9:相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.10.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.【考点】KM:等边三角形的判定与性质.【分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.【解答】解:连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选:A.二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水59800吨,将59800吨用科学记数法表示(结果保留2个有效数字)应为 6.0×104吨.【考点】1L:科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将59800用科学记数法表示为:5.98×104.保留2个有效数字为6.0×104故答案为:6.0×104吨.12.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1 .【考点】B2:分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.13.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】L8:菱形的性质;T7:解直角三角形.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴E、C、B共线,在Rt△AEB中,tan∠ABC===.故答案为.14.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有4 个.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.15.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.【考点】X4:概率公式;CB:解一元一次不等式组.【分析】由关于x的不等式组有解,可求得a>5,然后利用概率公式求解即可求得答案.【解答】解:,由①得:x≥3,由②得:x<,∵关于x的不等式组有解,∴>3,解得:a>5,∴使关于x的不等式组有解的概率为:.故答案为:.16.在平行四边形ABCD中,BC边上的高为4,AB=5,AC=2,则平行四边形ABCD的周长等于12或20 .【考点】L5:平行四边形的性质.【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE=3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 6 .【考点】MA:三角形的外接圆与外心.【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.18.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为①③④(请将所有正确的序号都填上).【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.三、解答题:(本大题共6小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(1)计算:|﹣|﹣+2sin60°+()﹣1+(2﹣)0(2)先化简,再求值:÷(1﹣),其中a=﹣2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据绝对值,二次根式的性质,特殊角的三角函数值,零指数幂,负整数指数幂分别求出每一部分的值,再代入求出即可;(2)先分解因式和算括号内的减法,再把除法变成乘法,算乘法,最后代入求出即可.【解答】解:(1)原式=﹣2+2×+3+1=4;(2)原式=÷=•=,当a=﹣2时,原式==.20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤6 622≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【考点】VB:扇形统计图;V5:用样本估计总体.【分析】(1)直接利用扇形统计图得出体育成绩“良好”所占百分比,进而求出所对扇形圆心角的度数;(2)首先求出体育成绩“优秀”和“良好”的学生数,再利用表格中数据求出答案;(3)直接利用“优秀”和“良好”学生所占比例得出学生中课外体育锻炼时间不少于4小时的学生人数.【解答】解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.21.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y1=k1x+b1,∵y1=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y1=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与,∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.22.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC 垂直x轴于点C,连结BC.若△ABC的面积为2.(1)求k的值;(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于1,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值;(2)先将y=2x与y=联立成方程组,求出A、B两点的坐标,然后分三种情况讨论:①当AD⊥AB时,求出直线AD的关系式,令y=0,即可确定D点的坐标;②当BD⊥AB时,求出直线BD的关系式,令y=0,即可确定D点的坐标;③当AD⊥BD时,由O为线段AB的中点,可得OD=AB=OA,然后利用勾股定理求出OA的值,即可求出D点的坐标.【解答】解:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2.故这个反比例函数的解析式为y=;(2)x轴上存在一点D,使△ABD为直角三角形.将y=2x与y=联立成方程组得:,解得:,,∴A(1,2),B(﹣1,﹣2),①当AD⊥AB时,如图1,设直线AD的关系式为y=﹣x+b,将A(1,2)代入上式得:b=,∴直线AD的关系式为y=﹣x+,令y=0得:x=5,∴D(5,0);②当BD⊥AB时,如图2,设直线BD的关系式为y=﹣x+b,将B(﹣1,﹣2)代入上式得:b=﹣,∴直线AD的关系式为y=﹣x﹣,令y=0得:x=﹣5,∴D(﹣5,0);③当AD⊥BD时,如图3,∵O为线段AB的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0).根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣,0).故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为(5,0)或(﹣5,0)或(,0)或(﹣,0).23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;L8:菱形的性质.【分析】(1)根据已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,求出∠BAD=CAF,证△BAD≌△CAF,推出CF=BD即可;(2)求出∠BAD=∠CAF,根据SAS证△BAD≌△CAF,推出BD=CF即可;(3)画出图形后,根据SAS证△BAD≌△CAF,推出CF=BD即可.【解答】(1)证明:∵菱形AFED,∴AF=AD,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∴CF+CD=BD+CD=BC=AC,即①BD=CF,②AC=CF+CD.(2)解:AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF﹣CD,理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴BD=CF,∴CF﹣CD=BD﹣CD=BC=AC,即AC=CF﹣CD.(3)AC=CD﹣CF.理由是:∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴CF=BD,∴CD﹣CF=CD﹣BD=BC=AC,即AC=CD﹣CF.24.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,求S△ACP的面积;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?【考点】HF:二次函数综合题.【分析】(1)将A、B点的坐标代入函数解析式中,即可得到关于a、b的二元一次方程,解方程即可得出结论;(2)令x=0可得出C点的坐标,设出直线BC解析式y=kx+4,代入B点坐标可求出k值,利用面积法求出点A到直线BC的距离结合三角形的面积,即可得出结论;(3)①由直线BC的解析式为y=﹣x+4可得知OE=CP,设出P、F点的坐标,由F点的纵坐标﹣P点的纵坐标即可得出PF的长度关于t的函数表达式,结合二次函数的性质即可求出最值问题;②由翻转特性可知PC=P′C,PF=P′F,若四边形PFP′C是菱形,则有PC=PF,由此得出关于t的二元一次方程,解方程即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,∴,解得:.∴抛物线的表达式为y=﹣x2+3x+4.(2)令x=0,则y=4,即点C的坐标为(0,4),∴BC==4.设直线BC的解析式为y=kx+4,∵点B的坐标为(4,0),∴0=4k+4,解得k=﹣1,∴直线BC的解析式为y=﹣x+4.当t=1时,CP=,点A(﹣1,0)到直线BC的距离h===,S△ACP =CP•h=××=.(3)①∵直线BC的解析式为y=﹣x+4,∴CP=t,OE=t,设P(t,﹣t+4),F(t,﹣t2+3t+4),(0≤t≤4)PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).当t=﹣=2时,PF取最大值,最大值为4.②∵△PCF沿CF折叠得到△P′CF,∴PC=P′C,PF=P′F,当四边形PFP′C是菱形时,只需PC=PF.∴t=﹣t2+4t,解得:t1=0(舍去),t2=4﹣.故当t=4﹣时,四边形PFP′C是菱形.31 / 31。

山东省东营市2021年九年级数学中考模拟试卷B卷

山东省东营市2021年九年级数学中考模拟试卷B卷

山东省东营市2021年九年级数学中考模拟试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若am+n•an+1=a6 ,且m﹣2n=1,则mn+1的值是()A . 1B . 3C . 6D . 92. (2分) (2017七上·乐清期中) 某市2017的第一季度的财政收入约为64.23亿元,用科学记数法表示为()A . 64.23×108元B . 6.423×108元C . 6.423×109元D . 0.6423×1010元3. (2分) (2016八上·高邮期末) 16的平方根是()A . 4B . ±4C . ﹣4D . ±84. (2分)用公式法解方程3x2+4=12x,下列代入公式正确的是()A . x1、2=B . x1、2=C . x1、2=D . x1、2=5. (2分)若关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A . kB . kC . k 且k≠0D . k 且k≠06. (2分)当x≠﹣时, =2成立,则a2﹣b2等于()A . 0B . 1C . 99.25D . 99.757. (2分)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A . 40海里B . 60海里C . 70海里D . 80海里8. (2分) 10名初中毕业生的中考体育考试成绩如下:35 、36 、36 、36 、36、37 、38、39、39、40 ,这些成绩的中位数是()A . 35B . 36C . 36.5D . 409. (2分)如图,爸爸从家(点O)出发,沿着扇形AOB上OA→AB→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A .B .C .D .10. (2分)如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A . 7B . 14C . 21D . 2811. (2分)(2014·柳州) 小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A . 无解B . x=1C . x=﹣4D . x=﹣1或x=412. (2分)定义运算a⊕b=a(1﹣b),下面给出了这种运算的四个结论:①2⊕(﹣2)=6;②若a+b=0,则(a⊕a)+(b⊕b)=2ab;③a⊕b=b⊕a;④若a⊕b=0,则a=0或b=1.其中结论正确的有()A . ①②B . ①②③C . ②③④D . ①②④二、填空题 (共8题;共8分)13. (1分)(2020·三明模拟) 计算:2cos60°+tan45°=________.14. (1分) (2019七下·洪江期末) 方程,,,,中是二元一次方程的是________个.15. (1分)(2018·象山模拟) 近年来,义乌市民用汽车拥有量持续增长,2011年至2015年市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆).这五个数的平均数为16,则x的值为________.16. (1分)若∠1=25°12′,∠2=25.2°,则∠1与∠2的大小关系为________17. (1分)(2019·下城模拟) 如图,在∆ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD=2,且BD=CE,则BD=________.18. (1分) (2019九上·乐山月考) 若规定一种运算:,则 ________.19. (1分)(2019·贵港模拟) 若a是不为2的有理数我们把称为a的“哈利数”.如3的“哈利数”是=﹣2;﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,以此类推,a2019=________.20. (1分) (2019九上·滨江竞赛) 如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为________cm2 .三、解答题 (共6题;共65分)21. (5分)(2020·上海模拟) 先化简,再求值:,其中.22. (15分) (2013八下·茂名竞赛) “最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?23. (10分)如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)若点E为x轴上的点,且△AOE的面积为.求:①点E的坐标;②证明:△AOE∽△DAO;(2)若点M在平面直角坐标系中,则在直线AB上是否存在点F,使以A,C,F,M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.24. (10分)(2019·定安模拟) 如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).25. (10分)如图,⊙O是△ABC的外接圆,圆心O在AB上,且∠B=2∠A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线(2)设⊙O的半径为2,且AC=CE,求AM的长26. (15分)(2020·历下模拟) 如图1,抛物线与x轴交于A、B两点,与y轴交于C点,连接、,已知点A、C的坐标为、.(1)求抛物线的表达式;(2)点P是线段下方抛物线上的一动点,如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形为平行四边形,求点Q的坐标;(3)如图2,若点M是内一动点,且满足,过点M作,垂足为N,设的内心为I,试求的最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共65分)21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

山东省东营市东营区实验中学2021年中考考前模拟卷二

山东省东营市东营区实验中学2021年中考考前模拟卷二

2021年数学中考备战模拟试题(二)一、单选题(共10小题,每题3分,合计30分)1.-的平方是()A.C.2-D. 22.下列计算正确的是( )A .87a a -= B .2242a a a +=C .2236a a a ⋅=D .623a a a ÷=3.以下调查中,最适合采用全面调查的是( )A .检测长征运载火箭的零部件质量情况 B .了解全国中小学生课外阅读情况C .调查某批次汽车的抗撞击能力 D .检测某城市的空气质量4.如图,在ABC 中,,80BA BC B =∠=︒,观察图中尺规作图的痕迹,则DCE ∠的度数为( )A .60B .65C .70D .755.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( ) A .16B .14C .13D .126.甲、乙两地相距600km ,提速前动车的速度为/vkm h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( )A .60016003 1.2-=v vB .60060011.23v v =-C .60060020 1.2v v -= D .600600201.2v v=-7.函数13y x =-x 的取值范围是( )A .2x ≥,且3x ≠B .2x ≥C .3x ≠D .2x >,且3x ≠8.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A .24I R= B .36I R =C .48I R=D .64I R=9.如图,在四边形ABCD 中,AD BC ∥,90D ∠=︒,4AB =,6BC =,30BAD ∠=︒.动点P 沿路径A B C D →→→从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作PH AD ⊥,垂足为H .设点P运动的时间为x (单位:s ),APH 的面积为y ,则y 关于x 的函数图象大致是( )A B C D10.如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ︒∠=∠=.连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ︒∠=;②AC BD =;③OM 平分AOD ∠;④MO 平分AMD ∠ 其中正确的结论个数有( )个.A .4 B .3 C .2 D .1(第4题图) (第5题图) (第8题图) (第10题图)二、填空题(共8小题,11-14每题3分,15-18每题4分,共28分) 11.面对2020年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗.据统计共投入约21亿元资金.21亿用科学记数法可表示为.. 12.因式分解:221218x x -+=___________________. 13.某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是_______(结果保留小数点后一位). 14.已知1023a b +=,16343a b +=,则+a b 的值为_________. 15..如图,在菱形OABC 中,OB 是对角线,2OA OB ==,⊙O 与边AB 相切于点D ,则图中阴影部分的面积为_______.16.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.6米,BD =1米,BE =0.2米,那么井深AC 为____米.17. 如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为 . 18. 如图,点123,,A A A 在反比例函数1(0)y x x=>的图象上,点123,,n B B B B 在y 轴上,且11212323B OA B B A B B A ∠=∠=∠=,直线y x =与双曲线1y x=交于点111122123322,,A B A OA B A B A B A B A ⊥⊥⊥,,则B 2021(n 为正整数)的坐标是 .(第15题图)(第16题图)(第17题图)(第18题图)三、解答题(共7小题,合计62分)19.(7分)(1)计算:2020 1202012|3|45(2)2-⎛⎫++︒--⋅ ⎪⎝⎭.(2)先化简2224421111x x x xx x x-+-÷+-+-,再从2-,1-,0,1,2中选一个合适的数作为x的值代入求值.20.(8分)如图,AB是圆O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB与圆O交于点F,在CD上取一点E,使得EF=EC.(1)求证:EF是圆O的切线;(2)若D是OA的中点,AB=4,求CF的长.21.(8分)如图,一艘渔船位于小岛B的北偏东30方向,距离小岛40nmile的点A处,它沿着点A的南偏东15的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行206nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?、22.(8分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角 的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.23.(8分)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.24.(10分)如图1,抛物线y =x 2+bx+c 交x 轴于A ,B 两点,其中点A 的坐标为(1,0),与y 轴交于点C ((0,﹣3).(1)求抛物线的函数解析式;(2)点D 为y 轴上一点,如果直线BD 与直线BC 的夹角为15°,求线段CD 的长度; (3)如图2,连接AC ,点P 在抛物线上,且满足∠PAB =2∠ACO ,求点P 的坐标.25.(12分)发现规律:(1)如图①,ABC 与ADE 都是等边三角形,直线,BD CE 交于点F .直线BD ,AC 交于点H .求BFC ∠的度数(2)已知:ABC 与ADE 的位置如图②所示,直线,BD CE 交于点F .直线BD ,AC 交于点H .若ABC ADE α∠=∠=,ACB AED β∠=∠=,求BFC ∠的度数应用结论:(3)如图③,在平面直角坐标系中,点O 的坐标为(0,0),点M 的坐标为(3,0),N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60得到线段MK ,连接NK ,OK ,求线段OK 长度的最小值。

2021年山东省东营市中考数学模拟试卷11

2021年山东省东营市中考数学模拟试卷11

20210525--2021年山东省东营市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.−223的倒数是()A. 223B. −312C. −38D. 382.下列计算正确的是()A. 3a+4b=7abB. (ab3)2=ab6C. (a+2)2=a2+4D. x12÷x4=x83.如图,如果AB//EF,EF//CD,下列各式正确的是()A. ∠1+∠2−∠3=90°B. ∠1−∠2+∠3=90°C. ∠1+∠2+∠3=90°D. ∠2+∠3−∠1=180°4.如图所示的几何体的左视图是()A. B. C. D.5.不等式组{x+1<0x−2>0的解集在数轴上表示正确的是()A. B.C. D.6.2020年9月1日,《深圳市生活垃圾分类管理条例》正式实施.滨海学校九(1)班成立了“环保卫士”宣传小组,其中男生2人,女生3人,从中随机抽取一名同学进社区宣传“垃圾分类”,恰好抽到女生的概率为()A. 35B. 25C. 23D. 137.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A. 30cm2B. 60πcm2C. 30πcm2D. 48πcm28.在平面直角坐标系中,已知点A(0,1),B(4,2),以原点O为位似中心,把△OAB按相似比1:2缩小,则点B的对应点B′的坐标是()A. (2,1)B. (−2,1)C. (2,1)或(−2,1)D. (2,1)或(−2,−1)9.已知△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A. 168B. 84C. 84或36D. 168或7210.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出下列结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;.其中正确结论的个数是()④S△BEF=725A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.我国最大的领海是南海,总面积有3500000km2,用科学记数法可表示为______ km2.12.把多项式2a2b−4ab+2b分解因式的结果是______.13.已知:2,4,2x,4y四个数的平均数是5;5,7,4x,6y四个数的平均数是9,则x2+y3=______ .14.如图,已知函数y=kx+2与函数y=mx−4的图象交于点A,根据图象可知不等式kx+2<mx−4的解集是______ .15.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,,那么该矩形的周长为______ .已知折痕AE=5√5cm,且cot∠EFC=4316.如图,在等边△ABC中,AB=4,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是______.17.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为______.18. 如图,平面直角坐标系中,点A 1的坐标为(1,2),以O 为圆心,OA 1长为半径画弧,交直线y =12x 于点B 1.过点B 1作B 1A 2//y 轴交直线y =2x 于点A 2,以O 为圆心,OA 2长为半径画弧,交直线y═12x 于点B 2;过点B 2作B 2A 3//y 轴交直线y =2x 于点A 3,以点O 为圆心,OA 3长为半径画弧,交直线y =12x 于点B 3;……按如此规律进行下去,点B 2020的坐标为______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:(−12)−3+|√3−2|−(2sin60°−3√3)0+2cos30°.(2)先化简,再求值:(x −2−5x+2)÷x−32x+4,其中x =√2−3.20. 如图,以AB 为直径的⊙O 经过AC 的中点D ,DE ⊥BC 于点E .(1)求证:DE 是⊙O 的切线;(2)当AB =4√3,∠C =30°时,求图中阴影部分的面积(结果保留根号和π).21.“食品安全”受到全社会的广泛关注,武汉市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______ 人,扇形统计图中“了解”部分所对应扇形的圆心角为______ ;(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数.(3)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用列表法或树状图恰好抽到1个男生和1个女生的概率.(k≠0)的图象与一次函数y=mx−2相交于A(6,1),B(n,−3),直线AB与x 22.如图,反比例函数y=kx轴,y轴分别交于点C,D.(1)求k,m的值;(2)求出B点坐标,再直接写出不等式mx−2<k的解集.x23.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?24.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−√2,0),直线BC的解析式为y=−√2x+2.3(1)求抛物线的解析式;(2)过点A作AD//BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标.25.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=2√2,求BC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图是一个几何体的三视图,根据图中提供的数据 单位: 可求得这个几何体的体积为
A. B. C. D.
4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
9.将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是( )
A.x≤﹣1B.x≥3C.﹣1≤x≤3D.x≥0
10.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′的最小值为( )
(3)求sin∠BAC的值.
21.△ABC中,∠BAC=60°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作菱形ADEF,使∠DAF=60°,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①AB与CF的位置关系为:;
②BC,CD,CF之间的数量关系为:.
(1)该班参加第三试场考试的人数为_____,并补全频数分布直方图;
(2)根据实际情况,需从第一试场调部分学生到第三试场考试,使第一试场的人数与第三试场的人数比为2:3,应从第一试场调多少学生到第三试场?
19.已知如图:点(1,3)在函数y= (x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y= (x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:
A.7.2 cmB.5.4 cmC.3.6 cmD.0.6 cm
5.在Rt△ABC中,∠C=90°,如果 ,那么 的值是( )
A. B. C. D.3
6.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是轴对称图形的概率为( )
A.1B. C. D.
详解:只有符号不同的数互为相反数,故 的相反数是- ,
故选:C.
点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.
2.B
【解析】
分析:根据同类项、幂的乘方和同底数幂的除法计算判断即可.
(1)求出点C坐标及抛物线的解析式;
(2)若以A,C,P,G为顶点的四边形面积等于30时,求点P的坐标;
(3)若Q为线段AC上一动点,过点Q平行于y轴的直线与过点G平行于x轴的直线交于点M,将△QGM沿QG翻折得到△QGN,当点N在坐标轴上时,求Q点的坐标.
参考答案
1.C
【解析】
分析:根据相反数的意义求解即可.
山东省东营市实验中学2018届九年级(人教版)中考模拟试卷数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的相反数是( )
A.3B.C.D.-3
2.下列运算正确的是( )
A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xyD.x6÷x3=x2
7.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做 件,依题意列方程正确的是( )
A. B.
C. D.
8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则弧AC的长为()
A.2πB.πC. D.
16.计算:3tan60°- +(2012-π)0-|- |.
17.如图,在△ABC中,DF∥AB,DE∥BC,连接BD.
(1)求证:△DEB≌△BFD;
(2)若点D是AC边的中点,当△ABC满足条件_____时,四边形DEBF为菱形.
18.2021年12月全市组织了计算机等级考试,江南中学九(1)班同学都参加了计算机等级考试,分第一试场、第二试场、第三试场,下面两幅统计图反映原来安排九(1)班考生人数,请你根据图中的信息回答下列问题:
15.如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.
(1)AB中点P经过的路径长_____.
()点C运动的路径长是_____.
三、解答题
A.1.6B.2.4C.2D.2
二、填空题
11.已知 ,则 的值是_____.
12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.
13.不等式组 的最大整数解为_____.
14.如图,△ABC中,AB=AC,∠A=60°,BC=6,直线MN∥BC,且分别交边AB,AC于点M,N,已知直线MN将△ABC分为△AMN和梯形MBCN面积之比为5:1的两部分,如果将线段AM绕着点A旋转,使点M落在边BC上的点D处,那么BD=_____.
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.
20.如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为6,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找一格点E,使△ABE为直角三角形,求出所有满足条件的线段AE的长度.
(2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸:如图3,当点D在线段BC的延长线上时,设AD与CF相交于点G,若已知AB=4,CD= AB,求AG的长.
22.二次函数y=ax2+c的图象经过点A(﹣4,3),B(﹣2,6),点A关于抛物线对称轴的对称点为点C,点P是抛物线对称轴右侧图象上的一点,点G(0,﹣1).
相关文档
最新文档