一般线性回归分析案例

合集下载

相关和回归的有趣案例

相关和回归的有趣案例

相关和回归的有趣案例
相关和回归是统计学中的重要概念,用于探索变量之间的关系。

以下是一些有趣的相关和回归案例:
1. 身高和体重:这是一个常见的相关和回归的例子。

一般来说,身高和体重之间存在正相关关系,即身高越高的人通常体重也越重。

通过回归分析,我们可以更精确地预测一个人的体重,给定其身高。

2. 考试分数和努力学习:这是一个典型的线性回归的例子。

一般来说,考试分数和努力学习之间存在正相关关系,即努力学习的人通常考试分数也更高。

通过回归分析,我们可以预测一个人在考试中的表现,给定其努力学习的程度。

3. 股票价格和通货膨胀:股票价格和通货膨胀之间可能存在一定的关系。

当通货膨胀率上升时,股票价格可能会下跌,因为通货膨胀可能导致消费者购买力下降,从而降低对商品和服务的消费需求,进而影响公司的盈利和股票价格。

4. 气候变化和冰川融化:气候变化和冰川融化之间存在相关性。

全球气候变暖可能导致冰川融化,因为温度升高会导致冰川融化。

通过分析气候变化和冰川融化的数据,我们可以更好地了解全球气候变化的趋势和影响。

5. 广告投入和销售额:广告投入和销售额之间可能存在一定的关系。

一般来说,广告投入越多,销售额也可能越高。

通过回归分析,我们可以预测销售额,给定广告投入的金额。

这些案例表明,相关和回归分析可以帮助我们更好地理解数据之间的关系,并为预测、决策提供有用的信息。

一元线性回归案例

一元线性回归案例
Hale Waihona Puke 0.5%和56.3%. OLS回归线为
S=963.191+18.501R
例9. CEO薪水与股本回报率
OLS回归线为 S=963.191+18.501R N=209, R^2=0.0132
企业股本回报率只能解释薪水变异中的 1.3%.
例2. 一个简单的工资方程
美国研究者以1976年的526名美国工人为样 本,OLS回归方程为:
W=-0.90 +0.54 E 这里W单位为美元/小时,E单位为年. E平均工资计算为5.90美元/小时. 根据消费者价格指数,这一数值相当于2003
年的19.06美元.
例2. 一个简单的工资方程
对同样的数据,但是把log(w)作为因变量, 得到的回归方程为:
Log(invpc)=-0.550+1.24log(price) (0.043) (0.382)
N=42 R^2=0.208 显著性检验不明显,事实上这一关系也是错误的,未
来我们将加上时间序列分析中特有的趋势分析说 名这个问题.
例8. 集装箱吞吐量与外贸额
2001-2006年中国集装箱吞吐量增长与外贸 额增长的弹性分析.以Y表示集装箱吞吐量( 百万标准箱),X表示外贸额(百亿美元).
出勤率无关,但这几乎不可能.
例5. 学校的数学成绩与学校午餐项目
以math10表示高中十年级学生在一次标准化 数学考试中通过的百分比.lnchprg表示有资 格接受午餐计划的学生的百分比.
若其他条件不变,若学生太贫穷不能保证正常 饮食,可以有资格接受学校午餐项目的资助, 他的成绩应有所提高.
例5. 学校的数学成绩与学校午餐项目
1992-1993学年美国密歇根州408所高中的 数据的OLS回归方程:

一般线性回归分析案例

一般线性回归分析案例

一般线性回归分析案例1、案例为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。

这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。

表一血红蛋白与钙、铁、铜必需元素含量(血红蛋白单位为g;钙、铁、铜元素单位为ug)case y(g)ca fe cu1 7.00 76.90 295.30 0.8402 7.25 73.99 313.00 1.1543 7.75 66.50 350.40 0.7004 8.00 55.99 284.00 1.4005 8.25 65.49 313.00 1.0346 8.25 50.40 293.00 1.0447 8.50 53.76 293.10 1.3228 8.75 60.99 260.00 1.1979 8.75 50.00 331.21 0.90010 9.25 52.34 388.60 1.02311 9.50 52.30 326.40 0.82312 9.75 49.15 343.00 0.92613 10.00 63.43 384.48 0.86914 10.25 70.16 410.00 1.19015 10.50 55.33 446.00 1.19216 10.75 72.46 440.01 1.21017 11.00 69.76 420.06 1.36118 11.25 60.34 383.31 0.91519 11.50 61.45 449.01 1.38020 11.75 55.10 406.02 1.30021 12.00 61.42 395.68 1.14222 12.25 87.35 454.26 1.77123 12.50 55.08 450.06 1.01224 12.75 45.02 410.63 0.89925 13.00 73.52 470.12 1.65226 13.25 63.43 446.58 1.23027 13.50 55.21 451.02 1.01828 13.75 54.16 453.00 1.22029 14.00 65.00 471.12 1.21830 14.25 65.00 458.00 1.0002、回归分析表2 变量说明表输入/移去的变量a模型输入的变量移去的变量方法1 cu, fe,ca b. 输入a. 因变量: yb. 已输入所有请求的变量。

相关分析回归分析案例

相关分析回归分析案例

相关分析
概念
种类
线性相关
变量之间关系
函数关系
相关关系
因果关系
互为因果关系
共变关系
确定性依存关系
随机性依存关系
种类
一元相关
多元相关
负 相 关
正 相 关
线性相关
曲线相关
x
y
正 相 关
x
y
负 相 关
x
y
曲线相关
x
y
不 相 关
Hale Waihona Puke 线性相关相关系数测定两变量是否线性相关?
定义式:
(2)D.W检验 D.W检验用于检验残差序列的自相关性。自相关性会影响模型参数估计值不具有最优性,使区间估计和预测区间的精度较低。J.Durbin和 G.S.Watson 于1951年提出的一种序列自相关的方法。简称DW检验。DW检验目前是检验自相关性的最常用方法,但它只适用于检验一阶自相关性。一般只需考察计算得到的DW值落入的区间,以确定模型自相关状态。判别准则 若0≤D.W ≤d,序列存在正相关; 若d< D.W <4- d ,序列无自相关; 若4-dL < D.W ≤4,序列存在负相关
3·相关分析测定相关程度和方向,回归分析用回归模型进行预测和控制。
y与x之间是一种相关关系,即当自变量x变化时,因变量y大体按某规律变化,两者之间的关系不能直观地看出来,需要用统计学的办法加以确定,回归分析就是研究随机现象中变量间关系的一种数理统计方法,相关关系存在着某种程度的不确定性。 身高与体重;矿物中A组分含量与B组分含量间的关系;分析化学制备标准工作曲线,浓度与吸光度间的关系。 求回归方程的方法,通常是用最小二乘法,其基本思想就是从并不完全成一条直线的各点中用数理统计的方法找出一条直线,使各数据点到该直线的距离的总和相对其他任何线来说最小,即各点到回归线的差分和为最小,简称最小二乘法。

线性回归案例

线性回归案例

线性回归案例线性回归是统计学中一种常见的建模方法,用于研究自变量和因变量之间的关系。

在本文中,我们将通过一个实际的案例来介绍线性回归的应用和分析过程。

假设我们是一家房地产公司的数据分析师,公司希望了解房屋的售价与其面积之间的关系,以便更好地定价和销售房屋。

我们收集了一些房屋的数据,包括房屋的面积和售价,现在我们将利用线性回归模型来分析这些数据。

首先,我们需要对数据进行可视化分析,以便更直观地了解变量之间的关系。

我们可以绘制散点图来展现房屋面积与售价之间的关系,通过观察散点图,我们可以大致判断出是否存在线性关系,并初步了解数据的分布情况。

接下来,我们可以利用线性回归模型来拟合数据,建立房屋面积与售价之间的数学模型。

线性回归模型的数学表达式为,Y = β0 + β1X + ε,其中Y表示因变量(售价),X表示自变量(面积),β0和β1分别表示截距和斜率,ε表示误差。

通过拟合线性回归模型,我们可以得到最优的截距和斜率的估计值,从而建立起房屋面积与售价之间的线性关系。

同时,我们还可以利用拟合的模型对房屋售价进行预测,从而帮助公司更好地制定定价策略。

除了建立模型和进行预测,我们还需要对模型的拟合效果进行评估。

常用的评估指标包括均方误差(MSE)、决定系数(R-squared)等,这些指标可以帮助我们判断模型的拟合程度和预测精度,从而更好地理解房屋面积与售价之间的关系。

最后,我们需要对线性回归模型的结果进行解释和分析,从统计学的角度来解释房屋面积对售价的影响程度。

通过对模型结果的解释,我们可以为公司提供更深入的市场分析和房屋定价建议,从而更好地满足客户的需求。

通过以上实例,我们可以看到线性回归在实际数据分析中的应用和重要性。

通过建立数学模型、进行预测和评估,线性回归可以帮助我们更好地理解变量之间的关系,为决策提供更有力的支持。

希望本文的案例分析能够帮助读者更好地理解线性回归的应用和分析过程,为实际工作中的数据分析提供一些启发和帮助。

一元线性回归案例

一元线性回归案例

例8. 集装箱吞吐量与外贸额
2001-2006年中国集装箱吞吐量增长与外贸 额增长的弹性分析.以Y表示集装箱吞吐量 (百万标准箱),X表示外贸额(百亿美元). OLS回归方程为 Y=3.7667+0.509X (2.06) (31.78) t (5)=2.776 n=6 R^2=0.996
0.1
例8. 集装箱吞吐量与外贸额
例8. 集装箱吞吐量与外贸额
2001-2007年中国集装箱吞吐量增长与外贸 额增长的弹性分析.以Y表示集装箱吞吐量 增长率(%),X表示外贸额增长率(%). OLS回归方程为 Y=18.449+0.3155X (2.3982) (1.078) t (5)=2.015 n=7 R^2=0.1887
0.1
例4. 考试分数与出勤率
假如期末考试的分数(score)取决于出勤率 (attend)和影响考试成绩的其他无法观测因素 (如学生能力等): score= β1+β2 attend+u 许多不加分析的回归发现: 这一回归中β2 〈0,即分数与出勤率负相关. 这一模型在什么情况下满足均值独立条件? 除非学生学习能力、学习攻击、年龄及其他因素与 出勤率无关,但这几乎不可能.
例3. 静态菲利普斯曲线
时间序列数据 令inf(t)表示年通货膨胀率,unem(t)表示事业率, 下 列菲利普斯曲线假定了一个不变的自然失业率和 固定的通货膨胀率预期. Inf(t)=β1+β2 unem(t)+u 依据1948-1996年美国经济数据, OLS回归方程为 Inf(t)=1.42+0.468 unem(t) (1.72) (0.289) n=49 R^2=0.053
例5. 学校的数学成绩与学校午餐项目

一元线性回归分析案例

一元线性回归分析案例

求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
2、由散点图知道身高和体重有比较好的线性相 关关系,因此可以用线性回归方程刻画它们之间 的关系。
第17页/共39页
课题:选修2-3 8.5 回归分析案例
分析:由于问题中要求根 据身高预报体重,因此选 取身高为自变量,体重为 因变量.
再冷的石头,坐上三年也会暖 !
1. 散点图;
2.回归方程: yˆ 0.849x 85.172 身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
本例中, r=0.798>0.75.这表明体重与身高有很强的线性相关关系,从而也表明我们 建立的回归模型是有意义的。
xi2
2
nx
,......(2)
i 1
i 1
其中x
1 n
n i 1
xi ,
y
1 n
n i 1
yi .
(x, y) 称为样本点的中心。
第8页/共39页
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
然后,我们可以通过残差 e1, e2 , , en 来判断模型拟合的效果,
判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。
表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。
编号 1
2
3
4
5

一般线性回归分析案例

一般线性回归分析案例

一般线性回归分析案例
案例背景:
在本案例中,我们要研究一个公司的运营数据,并探究它们之间的关
联性。

这家公司的运营数据包括:它的营业额(单位:万元)、产品质量
指数(QI)、客户满意度(CSI)和客户数量。

我们的目标是建立营业额
与其他变量之间的关联性模型,来预测公司未来的营业额。

资料收集:
首先,我们需要收集有关营业额、QI、CSI和客户数量的数据,以进
行分析。

从历史记录上可以收集到过去六个月的数据。

数据预处理:
接下来,我们需要对数据进行预处理,可以使用Excel进行格式整理,将数据归类分组,并计算总营业额。

建立模型:
接下来,我们就可以利用SPSS软件来建立一般线性回归模型,模型
表示为:Y=β0+β1X1+β2X2+…+βnXn。

其中,Y代表营业额,X1、
X2…Xn代表QI、CSI和客户数量等因素。

模型检验:
接下,我们要对模型进行检验,确定哪些因素与营业额有关联性,检
验使用R方和显著性检验确定系数的有效性。

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)多重共线性分析财政收入是一个国家政府部门的公共收入。

国家财政收入的规模大小往往是衡量其经济实力的重要标志。

近20年来,我国财政收入一直保持着快速增长态势,经济总体发展良好。

一个国家财政收入的规模要受到经济规模等诸多因素的影响。

因此我们以财政收入为被解释变量,建立财政收入影响因素模型,分析影响财政收入的主要因素及其影响程度。

财政收入的因素众多复杂,但是通过研究经济理论对财政收入的解释以及对实践的考察,我们选取影响财政收入的因素为工业总产值、农业总产值、建筑业总产值、社会商品零售总产值、人口总数和受灾面积。

将这六个变量作为解释变量,财政收入作为被解释变量,利用1989~2003年数据建立中国国家财政收入计量经济模型,资料如下表。

表1 影响财政收入的因素资料(资料来源:《中国统计年鉴2004》)使用上述数据建立多元线性模型,采用普通最小二乘法得到国家财政收入估计方程为:1234562(0.46)(0.44)(8.59)(0.03)(3.80)(0.65)( 1.53)6922.5880.1260.9360.0400.5720.0920.0470.998620.56Y X X X X X X R F ---=-+-+++-==由上可以看出模型的拟合优度2R 和F 值都较大,说明建立的回归方程显著。

但在显著性水平为5%下, t (15)=2.131,大多数回归参数的t 检验不显著,若据此判断大部分因素对财政收入的影响不显著。

因此可以判定解释变量之间存在严重的多重共线性。

采用逐步回归法对解释变量进行筛选。

分别将Y 与各解释变量作一元线性回归方程,以拟合优度值最大的模型为基础,将其余变量依次引入方程中。

经过我们多次比较各模型的F 值和各参数的t 值,最终确定的模型为:242(1.79)(13.42)(35.57)519.6780.8120.7230.9971943.91Y X X R F -=-+==该模型的经济意义十分明显,即财政收入主要取决于农业总产值和社会商品零售总产值,各因素数量的变化引起财政收入总量变化的程度由各自的系数来反映。

一元线性回归模型案例分析

一元线性回归模型案例分析

一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

数据分析线性回归报告(3篇)

数据分析线性回归报告(3篇)

第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。

本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。

二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。

2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。

(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。

(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。

三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。

2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。

(2)计算回归系数:使用最小二乘法计算回归系数。

(3)检验模型:对模型进行显著性检验、方差分析等。

四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。

(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。

2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。

(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。

3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。

(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。

(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。

案例五(回归分析)

案例五(回归分析)

4 3 2 2 3 3 4 3 3 5 3 4 5 2 6 4 2 5 5 4 2 2 3 5 4 2 3 3 3 5 2
20.08 15.58 6.68 8.18 17.68 17.4 21.78 16.9 18.97 19.69 20.98 19.59 22.4 14.3 23.6 22.4 18.6 22.4 23.6 21.2 13.15 11 11.3 22.4 18.2 15.1 10.2 12.3 13.21 20.3 14.51
4
可以看出, x1 和 x4 (0.9479) 、 x2 和 x3 (0.7811)之间高度相关。 为此,我们引入岭回归方法来克服多重共线性的影响。即引入岭估计
ˆ (k ) = (X ′X + k ⋅ I )−1 X ′y β
其中 k 称为岭参数。上述岭估计中主要工作是确定岭参数 k ,我们将通过岭迹分 析来找出岭参数 k 。对全部的5个自变量做岭迹分析,岭迹图见图1。可以看出, 岭迹比较混乱。
ˆ = ( X ′X )−1 X ′y β
1 x11 y1 1 x y 21 2 其中 y = ,X = M M M yn 1 x n1 x12 x 22 M xn2
ˆ β L x1 p 0 ˆ L x2 p β ˆ= 1 。 ,β M M L x np β ˆ p
3
由此得到如下模型
ˆ = −906.7488 + 0.7379 x1 + 639.9670 x2 + 129.9216 x3 + 2.5077 x4 + 48.5950 x5 y
( −0.07 )
( 4.70 )
( 2.99 )

SAS线性回归分析案例

SAS线性回归分析案例

线性回归20094788 陈磊 计算2SouthWest JiaoT ong U niversity-------------------------------------------------------------------线性回归分为一元线性回归和多元线性回归。

一元线性回归的模型为Y=β0+β1X+ε,这里X是自变量,Y是因变量,ε是随机误差项。

通常假设随机误差的均值为0,方差为σ2(σ2>0),σ2与X的值无关。

若进一步假设随机误差服从正态分布,就叫做正态线性模型。

一般情况,设有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含有一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。

当函数形式为未知参数的线性函数时,称为线性回归分析模型。

如果存在多个因变量,则回归模型为:Y=β0+β1X1+β2X2+⋯+βi X i+ε。

由于直线模型中含有随机误差项,所以回归模型反映的直线是不确定的。

回归分析的主要目的是要从这些不确定的直线中找出一条最能拟合原始数据信息的直线,并将其作为回归模型来描述因变量和自变量之间的关系,这条直线被称为回归方程。

通常在回归分析中,对ε有以下最为常用的经典假设。

1、ε的期望值为0.2、ε对于所有的X而言具有同方差性。

3、ε是服从正态分布且相互独立的随机变量。

对线性回归的讲解,本文以例题为依托展开。

在下面的例题中既有一元回归分析,又有二元回归分析。

例题(《数据据分析方法》_习题2.4_page79)某公司管理人员为了解某化妆品在一个城市的月销量Y(单位:箱)与该城市中适合使用该化妆品的人数X1(单位:千人)以及他们人均月收入X2(单位:元)之间的关系,在某个月中对15个城市作了调查,得到上述各量的观测值如表2.12所示。

假设Y与X1,X2之间满足线性回归关系y i=β0+β1x i1+β2x i2+εi,i=1,2,…,15其中εi独立同分布于N(0,σ2).(1)求线性回归系数β0,β1,β2的最小二乘估计和误差方差σ2的估计,写出回归方程并对回归系数作解释;(2)求出方差分析表,解释对线性回归关系显著性检验结果。

一元线性回归模型案例

一元线性回归模型案例

第二章一元线性回归模型案例一、中国居民人均消费模型从整体上考察中国居民收入与消费支出的关系。

表给出了1990年不变价钱测算的中国人均国内生产总值(GDPP)与以居民消费价钱指数(1990年为100)所见的人均居民消费支出(CONSP)两组数据。

表中国居民人均消费支出与人均GDP(单位:元/人)年份CONSP GDPP年份CONSP GDPP19781990197919911980 19921981 19931982 19941983 19951984 19961985 19971986 19981987 19991988 200019891) 成立模型,并分析结果。

输出结果为:对应的模型表达式为:=+201.1070.3862CONSP GDPP20.9927,2859.23,0.55===R F DW从回归估量的结果能够看出,拟合度较好,截距项和斜率项系数均通过了t查验。

中国人均消费增加10000元,GDP增加3862元。

二、线性回归模型估量表给出黑龙江省伊春林区1999年16个林业局的年木材采伐量和相应砍木剩余物数据。

利用该数据(1)画散点图;(2)进行OLS回归;(3)预测。

表年剩余物y林业局名年木材剩余物y t(万m3)年木材采伐量x t(万m3)乌伊岭东风新青红星五营上甘岭友好翠峦乌马河美溪大丰南岔带岭朗乡桃山双丰合计(1)画散点图先输入横轴变量名,再输入纵轴变量名得散点图(2)OLS估量弹出方程设定对话框取得输出结果如图:由输出结果能够看出,对应的回归表达式为:ˆ0.76290.4043t t yx =-+20.9129,146.7166, 1.48R F DW === (3)x=20条件下模型的样本外预测方式 第一修改工作文件范围将工作文件范围从1—16改成1—17确信后将工作文件的范围改成包括17个观测值,然后修改样本范围将样本范围从1—16改成1—17打开x的数据文件,利用Edit+/-给x的第17个观测值赋值为20将Forecast sample选择区把预测范围从1—17改成17—17,即只预测x=20时的y的值。

统计学案例——相关回归分析

统计学案例——相关回归分析

《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。

经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。

2、数据的收集序号回流温度(℃)液化气收率(%)序号回流温度(℃)液化气收率(%)1 2 3 4 5 6 7 8 9 10 11 12 13 14 1536 39 43 43 39 38 43 44 37 40 34 39 40 41 4413.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.116 17 18 19 20 21 22 23 24 25 26 27 28 29 3042 43 46 44 42 41 45 40 46 47 45 38 39 44 4512.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。

3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。

因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。

从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。

案例:一元线性回归模型实现

案例:一元线性回归模型实现

一元线性回归模型:案例分析下面用一个实例对本章内容作一简单回顾。

我们将收集中国财政收入和国内生产总值在1978~2006年间的历史数据,然后建立两者的一元线性回归模型,并用最小二乘法对其中的参数进行估计,最后对模型进行一些必要的检验。

一、中国财政收入和国内生产总值的历史数据由经济学等相关学科的理论我们知道,国内生产总值是财政收入的来源,因此财政收入在很大程度上由国内生产总值来决定。

为了考察中国财政收入和国内生产总值之间的关系,我们收集了中国财政收入和国内生产总值在1978~2005年间的历史数据,如表 2.4.1所示。

表2.4.1中国财政收入和国内生产总值数据表单位:亿元年份财政收入(Y) 国内生产总值(X) 年份财政收入(Y) 国内生产总值(X)1978 1132 3624 1992 3483 266521979 1146 4038 1993 4349 345611980 1160 4518 1994 5218 466701981 1176 4860 1995 6242 607941982 1212 5302 1996 7408 711771983 1367 5957 1997 8651 789731984 1643 7207 1998 9876 844021985 2005 8989 1999 11444 896771986 2122 10201 2000 13395 992151987 2199 11955 2001 16386 1096551988 2357 14922 2002 18904 1203331989 2665 16918 2003 21715 1358231990 2937 18598 2004 26396 1598781991 3149 21663 2005 31628 183868我们以X为横轴,Y为纵轴将这些数据的描绘在二维坐标图上,得到如下的散点图(图2.4.1 )。

线性回归分析与统计案例

线性回归分析与统计案例

A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于 20%
B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于 20%
C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于 20%
D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于 20%
【解析】 观察图形,可知人体脂肪含量与年龄正相关,且 脂肪含量的中位数小于 20%,故选 B.
独立性检验 (1)分类变量:变量的不同“值”表示个体所属的不同类别, 像这样的变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称为列联表.假设 有两个分类变量 X 和 Y,它们的可能取值分别为{x1,x2}和{y1, y2},其样本频数列联表(称为 2×2 列联表)为
2×2 列联表
y1
请注意 1.以考查线性回归系数为主,同时可考查利用散点图判断 两个变量间的相关关系. 2.以实际生活为背景,重在考查回归方程的求法.
课前自助餐
两个变量的线性相关 (1)正相关. 在散点图中,点散布在从左下角到右上角的区域.对于两 个变量的这种相关关系,我们将它们称为正相关. (2)负相关. 在散点图中,点散布在从左上角到右下角的区域,两个变 量的这种相关关系称为负相关.
【答案】 B
(2)对四组数据进行统计,获得以下关于其相关系数的比较, 正确的是( )
A.r2<r4<0<r3<r1 C.r4<r2<0<r3<r1
B.r4<r2<0<r1<r3 D.r2<r4<0<r1<r3
【解析】 由相关系数的定义及散点图所表达的含义,可知 r2<r4<0<r3<r1,故选 A.
5.在一项打鼾与患心脏病的调查中,共调查了 1 671 人,经 过计算得 K2=27.63,根据这一数据分析,我们有理由认为打鼾 与患心脏病是____________的(有关,无关).

回归分析实例

回归分析实例
数据序号 1 x 1.5 y 4.8 x2 2.25 y2 23.04 xy 7.20
2
3 4 5 6 7 8
1.8
2.4 3.0 3.5 3.9 4.4 4.8Fra bibliotek5.7
7.0 8.3 10.9 12.4 13.1 13.6
3.24
5.76 9.00 12.25 15.21 19.36 23.04
32.49
49.00 68.89 118.81 153.76 171.61 184.96
10.26
16.80 24.90 38.15 48.36 57.64 65.28
9
合计
5.0
30.3
15.3
91.1
25.00
115.11
234.09
1036.65
76.50
345.09
信息分析
• 根据前表可知:
b n xy x y n x 2 ( x) 2 9 345.09 30.3 91.1 2.9303 2 9 115.11 30.3
信息分析
(3)线性化迭代方法
如:
ˆ y ab
cx
高斯—牛顿迭代方法的基本思想就是使用泰勒级 数展开或去近似地代替非线性回归模型,通过多次迭 代,多次修正系数,使回归系数不断逼近非线性回归 模型的最佳回归系数,最后使原模型的残差平方和达 到最小。
信息分析
一元线性回归预测案例研究
例:x、y两变量的观察数据如下表所示,根据数据进行 回归预测。
信息分析
表4显示,常数(Constant)、居民户均收入(X2)具有统计意义, 而居民新结婚户数(X1)因显著性水平值(t=0.834>0.5)较高而 不具有统计意义。从表4中可以推出模型方程: Y=-20.771+1.387X2。若预计2006年该地区居民新婚户数为30.2千户, 居民户均收入62.5千元,根据模型方程不难推出2006年电冰箱销售 量Y=-20.771+1.387×62.5=65.92(千台)。

回归分析案例

回归分析案例

回归分析案例回归分析是统计学中一种重要的数据分析方法,它用于研究自变量和因变量之间的关系。

通过回归分析,我们可以了解自变量对因变量的影响程度,预测因变量的取值,并进行因果关系的推断。

在实际应用中,回归分析被广泛运用于经济学、社会学、医学、环境科学等领域,帮助研究人员解决各种实际问题。

下面,我们通过一个实际的案例来介绍回归分析的应用。

假设我们想要研究一个人的身高和体重之间的关系。

我们收集了一组数据,包括100个人的身高和体重信息。

现在,我们希望通过回归分析来探究身高和体重之间的关系。

首先,我们需要建立一个数学模型来描述身高和体重之间的关系。

在简单线性回归分析中,我们可以使用以下的数学模型来描述身高和体重之间的关系:\[体重 = β_0 + β_1 身高 + ε\]其中,体重是因变量,身高是自变量,β0和β1是回归系数,ε是误差项。

通过最小二乘法,我们可以估计出回归系数的取值,从而得到最优的拟合直线。

接下来,我们利用收集到的数据进行回归分析。

通过统计软件,我们可以得到回归系数的估计值,以及拟合直线的方程。

通过拟合直线,我们可以直观地观察身高和体重之间的关系。

同时,我们还可以利用回归方程进行预测,比如给定一个人的身高,我们可以利用回归方程来预测他的体重。

除了简单线性回归,我们还可以进行多元回归分析。

在多元回归分析中,我们可以考虑多个自变量对因变量的影响,从而更全面地了解变量之间的关系。

在实际应用中,回归分析还可以用于解决更复杂的问题,比如市场营销中的销售预测、金融领域中的股票价格预测、医学领域中的疾病风险评估等。

通过回归分析,我们可以从数据中挖掘出有用的信息,为决策提供科学依据。

总之,回归分析是一种强大的数据分析工具,它可以帮助我们了解变量之间的关系,预测未来的趋势,并进行因果关系的推断。

通过本文介绍的案例,希望读者能够对回归分析有一个初步的了解,并在实际应用中灵活运用回归分析方法,解决各种实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般线性回归分析案例
1、案例
为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。

这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。

表一血红蛋白与钙、铁、铜必需元素含量
(血红蛋白单位为g;钙、铁、铜元素单位为ug)
case y(g)ca fe cu
1 7.00 76.90 295.30 0.840
2 7.25 73.99 313.00 1.154
3 7.75 66.50 350.40 0.700
4 8.00 55.99 284.00 1.400
5 8.25 65.49 313.00 1.034
6 8.25 50.40 293.00 1.044
7 8.50 53.76 293.10 1.322
8 8.75 60.99 260.00 1.197
9 8.75 50.00 331.21 0.900
10 9.25 52.34 388.60 1.023
11 9.50 52.30 326.40 0.823
12 9.75 49.15 343.00 0.926
13 10.00 63.43 384.48 0.869
14 10.25 70.16 410.00 1.190
15 10.50 55.33 446.00 1.192
16 10.75 72.46 440.01 1.210
17 11.00 69.76 420.06 1.361
18 11.25 60.34 383.31 0.915
19 11.50 61.45 449.01 1.380
20 11.75 55.10 406.02 1.300
21 12.00 61.42 395.68 1.142
22 12.25 87.35 454.26 1.771
23 12.50 55.08 450.06 1.012
24 12.75 45.02 410.63 0.899
25 13.00 73.52 470.12 1.652
26 13.25 63.43 446.58 1.230
27 13.50 55.21 451.02 1.018
28 13.75 54.16 453.00 1.220
29 14.00 65.00 471.12 1.218
30 14.25 65.00 458.00 1.000
2、回归分析
R方为0.813,接近于1,说明总体回归效果较好。

++++
表4是用方差分析对整个回归方程做了显著性检验,其中F=37.743,对应的概率P值近似为0。

若显著性水平ᵅ为0.05,则因概率小于ᵅ,拒绝回归方程显著性检验的原假设,即回归系数不同时为0,解释变量全体与被解释变量存在显著的线性关系,选择线性模型具有合理性。

表5用方差分析对每个因变量做了偏回归分析,是关于回归系数及显著性检验的计算结果如下:
在表中,常数项的t的显著性概率0.364大于0.05,表示常数项与0没有显著性差异,它不应出现在方程中。

钙含量的t的显著性概率0.026小于0.05,表示钙含量的系数与0有显著性差异,钙含量应作为解释变量存在于方程中。

铁含量的t的显著性概率0.000小于0.05,表示钙含量的系数与0有显著性差异,钙含量应作为解释变量存在于方程中。

铜含量的t的显著性概率0.305大于0.05,表示铜含量的系数与0有显著性差异,铜含量应作为解释变量存在于方程中。

由此可见,钙含量和铁含量可以作为解释变量在方程中来解释血红蛋白含量的变化,而铜含量则应该被剔除。

将铜含量从解释变量中剔除再次做回归分析,的到如下分析结果:
自变量减少了一个“铜”含量后,R方由0.813变为0.805,由此可见,去掉铜元素含量后,线性回归方程中的自变量对因变量的影响变化不大;
表7 回归方差分析表(2)
表8 回归系数及显著性检验表(2)
表7 多重共线性检验的特征值及条件指数
a. 因变量: y(g)
表6中,最大特征值为2.969,其余依次快速减小。

第三列各个条件指数均不大,可认为多重共线性较弱。

图1:
图1是残差正态性的图形结果,可以看到参数围绕基准线仍存在一定规律性。

图2 回归方程标准化预测值与标准化残差散点图
图2表明,不存在明显的异方差现象。

最终的回归方程为:
Z=-0.184X+0.915Y
其中,Z表示儿童梅100毫升血中的血红蛋白的含量,单位为g;
X表示儿童每100毫升血中钙元素的含量,单位为ug;
Y表示儿童每100毫升血中铁元素的含量,单位为ug。

方程表明,铁元素含量与血红蛋白含量存在正相关,而钙元素含量与血红蛋白含量存在负相关性,由此,当人体内血红蛋白浓度偏低时,就需要补充铁元素,减少钙元素的摄入量,铜元素则没有显著性影响。

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

相关文档
最新文档