(优选)辐射度学与光度学基础
辐射度学与光度学基本知识
E、H
§1.2 辐射度学与光度学基本知识
对于光辐射的探测和计量,存在着两套体系:
辐射度量:只与辐射客体有关的量,基本量是辐射通量 (又称为辐射功率)或者辐射能. 基本单位 是瓦特(W)或者焦耳(J)。适用于整个电 磁波段。
光度量: 反映人眼对不同波长电磁波的视觉灵敏度, 基本量的是发光强度,基本单位是坎德拉 (cd)。只适用于可见光波段。
定义式
单位
辐射能 辐射通量
辐射出射度
辐射强度 辐射亮度 辐射照度
dQe= edt e(基本量) Me=de/dS Ie=de/d
Le=dIe/(dScos)
Ee=de/dA
J=Ws
W W/m2 W/sr
(W/sr)/m2
W/m2
光量 光通量 光出射度 发光强度 (光)亮度 (光)照度
dQv=v dt dv=Iv d Mv=dv/dS
回顾:
1.0
坎德拉定义中的 (1 的 光而言,就是1lm/sr, 即:1cd.
光视 效 率
0.8
V' 510nm 555V nm
0.6
0.4
暗视觉
0.2
明视觉
0.0
400
500
600
700
800
波 长 (nm)
§1.2 辐射度学与光度学基本知识 光通量(lm)与辐射通量(辐射功率,W)的换算:
= 555nm 的 单 色 光 视 效 率V=1, 为最大值.
§1.2 辐射度学与光度学基本知识
光视效率(视见函数):
V
K Km
K 683
(1 13)
1.0
暗视觉相对于明
视觉蓝移.
辐射度学和光度学基础课件
能源利用效率。
02
医学影像技术
在医学影像技术中,辐射度学的知识可以帮助我们理解影像的形成机制
和优化影像质量;同时,光度学的知识可以帮助我们设计更好的医用光
源和照明系统。
03
视觉科学
光度学的知识在视觉科学中有着广泛的应用,例如人眼的光觉响应、颜
色视觉等;而辐射度学的知识可以帮助我们理解视觉感知的物理基础。
辐射度和光度在照明设计 中的应用
照明设计的基本原则
功能性原则
照明设计应满足人们的 基本照明需求,提供足 够的亮度以适应不同的
活动和环境。
舒适性原则
照明设计应考虑人的视 觉舒适感,避免过强或 过弱的光线造成视觉疲
劳或不适。
经济性原则
照明设计应考虑成本和 能耗,合理选择高效、 节能的照明设备和控制
系统。
研究的范围不同
辐射度学的研究范围涵盖了整个电磁波段,而光度学主要关注可见 光波段。
应用的领域不同
辐射度学在能源、环境、气象等领域有广泛应用,而光度学在照明 、显示、摄影等领域有广泛应用。
辐射度学与光度学的应用领域
01
能源与环境监测
辐射度学的方法可以用于测量和监测环境中的电磁辐射能量,例如太阳
辐射、地球辐射等;光度学的知识可以用于设计合理的照明系统,提高
辐射度学主要研究电磁辐射的能量分布和传输,而光度学则关注光 辐射的度量、测量和应用。
两者有共同的基础概念
例如,辐射通量、辐射照度、辐射亮度等概念在两者中都有涉及。
两者在某些领域有交叉
例如,在照明工程和光环境设计中,光度学的知识和方法常常与辐 射度学的知识相结合。
辐射度学与光度学的区别
研究重点不同
辐射度学更注重电磁辐射的物理特性和传输规律,而光度学更注 重光辐射的视觉感知和应用。
辐射度学和光度学基础
第12章 辐射度学和光度学基础
§12-1 辐射度学的基本物理量 §12-2 光度学的基本物理量 §12-3 照度定律
辐射度学与光度学
辐射度学(Radiometry )是研究电磁辐射能测量的一 门科学. 辐射度量是用能量单位描述光辐射能的客观物理量.
光度学(Photometry )是照度Ee与辐出度Me混淆起来。虽然两者单位 相同,但定义不一样。辐照度是从物体表面接收辐射通 量的角度来定义的,辐出度是从面光源表面发射辐射的 角度来定义的
deIdeI0cos 余弦辐射体或朗伯体
沿其法线方向的辐射强度
余弦辐射体的辐射亮度
Le
dI e 0 dA
Le 0
可见:余弦辐射体的辐射亮度是均匀的,与方向角 无关。
余弦辐射体的辐射出射度
Me
de dA
Le0
六 辐射照度
在辐射接收面上的辐照度定义为照射在面元 dA上的辐射通量与该面元的面积之比。
单位:瓦特每平方米(W/m2)
10nm ~ 1mm,或频率在310 Hz~310 Hz范围内。 沿其法线方向的辐射强度
8nm的激光束,发散角为1mrad,发散角与立体角的关系为
,若波长63126.
11
余弦定律同理可用于光照度上
一般按辐射波长及人眼的生理视觉效应将光辐射分 8nm光波的光谱光效率 =0.
8nm的激光束,发散角为1mrad,发散角与立体角的关系为
与辐射度量体系不同,在光度单位体系中,被选作基本单位的不是光量或光通量,而是发光强度,其单位是坎德拉。 辐射能是以辐射形式发射或传输的电磁波(主要指紫外、可见光和红外辐射)能量。
光谱辐射度量与辐射度量之间满足
辐射度学(Radiometry )是研究电磁辐射能测量的一门科学.
辐射度学与光度学的基础知识课件
辐射度学的应用领域广泛,包括天文、气象、环保、 能源等领域。
详细描述
辐射度学的应用领域非常广泛。在天文领域,通过对天 体的辐射特性进行研究,可以深入了解天体的组成和演 化过程;在气象领域,通过对地球表面和大气的辐射特 性进行测量和计算,可以预测天气和气候变化;在环保 领域,可以利用辐射度学的方法监测环境污染和评估环 境质量;在能源领域,可以通过研究物质的辐射特性, 实现能源的高效利用和节能减排。此外,辐射度学还在 医学、农业等领域有着广泛的应用。
详细描述
光度量是用来描述光的特性的物理量。其中,光通量表示光的总量,发光强度表示光源在一定方向上 发射光的强度,照度表示光照在物体表面的强度,光色则涉及到人对光的视觉感知。
光度学的应用领域
总结词
光度学的应用领域广泛,包括照明设计、显 示技术、摄影和医学影像等。
详细描述
光度学在各个领域都有重要的应用价值。在 照明设计领域,光度学为提高照明质量和能 效提供了理论支持;在显示技术领域,光度 学帮助优化屏幕亮度和色彩表现;在摄影和 医学影像领域,光度学则有助于获取高质量 的图片和影像。
03
辐射度学与光度学的关系
辐射度学与光度学的联系来自1 2两者都是研究光和辐射的学科
辐射度学主要研究光和电磁辐射的能量和功率, 而光度学则关注光的质量和视觉感知。
共同的理论基础
两者都基于物理光学和电磁理论,研究光和辐射 的传播、吸收、散射和发射等特性。
3
交叉应用领域
在某些领域,如照明工程、光环境评估等,辐射 度学和光度学有交叉应用,相互补充。
04
辐射度学与光度学的应用 实例
辐射度学的应用实例
太阳辐射测量
辐射度学可以用于测量太阳辐射,包括紫外、可见和红外 波段的辐射能量,对于太阳能利用和气象观测具有重要意 义。
辐射度与光度学基础知识课件
辐射度学主要研究电磁波的发射、传播、吸收、散射和转换等过程,以及这些 过程中电磁波的能量分布和传输规律。它涉及到电磁波与物质相互作用的基本 规律,是光学、光谱学、热力学等多个学科的基础。
辐射度学单位
总结词
辐射度学中常用的单位包括瓦特、焦耳、坎德拉等,用于描述电磁辐射的能量、功率和亮度等物理量 。
照明工程中的辐射度和光度学的综合应用
在照明工程中,辐射度和光度学是相 辅相成的两个领域,综合应用可以更 好地满足实际需求。
综合应用还体现在照明设计过程中, 需要综合考虑光源的辐射特性和光照 效果,以及人类视觉感知的需求,以 实现最佳的照明效果。
通过结合辐射度和光度学的原理,可 以更精确地控制光源的辐射特性和光 照效果,提高照明质量和效率。
照明工程中的辐射度学应用
辐射度学是研究光辐射在空间分布、传输和度量的科学,在照明工程中有着广泛的 应用。
利用辐射度学原理,可以精确测量和控制光源的辐射特性,如光谱分布、光强空间 分布、辐射温度等,从而优化照明系统的性能。
辐射度学还用于研究光环境对人类视觉感知的影响,为照明设计提供科学依据,提 高照明质量和舒适度。
详细描述
辐射度学涉及一系列物理量,这些物理量用于描述电 磁波的各种特性。其中包括辐射能量(描述电磁波携 带的能量大小),辐射通量(描述单位时间内通过某 一面积的能量大小),辐射强度(描述光源在某一方 向上发射的光的强度),辐射亮度(描述物体表面反 射或发射光的亮度)。这些物理量在研究电磁波的发 射、传播、吸收、散射和转换等过程中具有重要意义 。
详细描述
流明是光通量的单位,表示单位时间内发出的光的总量。坎德拉是发光强度的单位,表示单位方向上单位立体角 内发出的光的强度。勒克斯是光照强度的单位,表示单位面积上单位立体角内发出的光的强度。这些单位在光度 学中具有重要地位,用于描述光辐射的度量和性质。
辐射度学与光度学基本知识(与“辐射”有关文档共11张)
当光光通通 量量密离度开的一概个念表可面以时应,用我于们任用何辐表出面度,无M(论ra是dia真nc实e的ex或ita虚nc拟e)的这。一词,辐出度有时也称辐射度(Radiosity)。 在 一光块子区离 域开 的光源 通后 量, 密下 度一与步 每为 秒如 钟何 光度 子量 从它 各们 个到 方达 向表 穿面 越。 该区域的速率成正比。 3光个通变量量密为度位(r置ad,ian另t 2fl个ux变)在量特为定方的向应。用场合还有一些其它名字。 环波境长中 45的0n辐m射对亮应度于可蓝看色成,是5450个nm变对量应的于函绿数色(若,包65含9n波m长对,应则于为红6色个。),称为辐射亮度分布(radiance distribution)。
3也个可变用量瓦为特位W置来,度另量2(个1W变=量1为J/方s) 向。
不太适合,而是用立体角(solid angle)来描述。立体角的度量 在立光体子 角离是开平光面源角后向,三下维一空步间为的如推何广度。量它们到达表面。
2例如辐,射在度波学长和为光5度5学0nm的波段处,每焦耳的光子数目大约为2.
• 波长450nm对应于蓝色,540nm对应于绿色,659nm对 应于红色。
• 色度学不处理颜色的感知本身,而是研究各种波长的感知 强度。例如,绿光比红光和篮光亮。
第2页,共11页。
辐射能量
• 在辐射度学中,辐射能量Q是基本的能量单位,用J(焦耳)来度 量。
• 每个光子有一定的辐射能量,其大小为Planck常数 (6.62620×10-34焦耳秒)乘以光速(2.998×108米/秒),再除以光 子的波长。
应用光学辐射度学和光度学基础
r2
即整个空间等于4 π球面度。
8
立体角是平面角向三维空间的推广。 在二维空间,2π角度覆盖整个单位 圆。
在三维空间, 4π的球面度立体角 覆盖整个单位球面。
9
第二节 辐射度学中的基本量
(1)辐射能 Qe ➢ 光辐射是一种能量的传播形式。 ➢度量辐射能的单位:焦耳(J)
10
(2)辐射通量 Φe ➢ 单位时间内发射、传输或接收的辐射能。
36
(二)、硅光电池
即常说的太阳能电池。 (三)、硅光二极管
利用P-N结单向导电的结型光电器件。 当有光照时,会产生电流。其特点是响应 频率非常高,理论上可以达到几个G
37
(四)、硅光三极管
结构与晶体三极管相似,但基极不接导线, 是一个较大的光接受面。与光电二极管相 比具有放大作用。响应频率不如二极管, 还与负载有关 RL=1KΩ 时,f=100kHz
2、光源照射到物体上所产生的客观效果,称为光 源的显色性。
34
光源的光谱能量分布情况是决定该光源色 表与显色性的重要因素。如果能量分布连 续而均与,则色表和显色性一定好,反之 则较差。 四、光的接收器
设计一个光学系统,其最终的目的是使接收 器接受到所需的信号。
人眼是光学系统最重要的接收器。
很多现代光学仪器采用光电探测器作为接收 器,将光信号转换为电信号。
但是波长在380nm,780nm以外区域的辐 射能,不管有多大功率的辐射通量进入人眼, 将是感觉不到的。
20
第四节 光度学中的基本量
(1)光通量( Φ )
标度可见光对人眼的视觉刺激程度的量。 光通量的单位:流明(lm)
光源发出555nm波长的光,如果功率为1W , 则其光通量为683lm
光电技术练习册-第1章-2015-9-11
第1章 辐射度学与光度学基础一、选择题(单选或多选)1. 为了描述显示器的每个局部面元在各个方向的辐射能力,最适合的辐射度量是( )A 辐照度B 辐强度C 辐出度D 辐亮度2. 已知某辐射源发出的功率为1W ,该波长对应的光谱光视效率为0.5,则该辐射源辐射的光通量为( )A 683lmB 341.5lmC 1276lmD 638lm3. 电磁波谱中可见光的波长范围为( )A 0.38~0.78umB 0.38~1umC 1~3umD 8~12um4. 下列选项中的参数与接收器有关的有( )A .曝光量 B.光通量 C.亮度 D.照度5. 100W 标准钨丝灯在0.2sr 范围内所发出的辐射通量为( )A. W 592.1B. lm 223.27C. W 184.3D. W 223.27二、判断题1. 辐射通量与光通量的单位是相同的。
( )2. 朗伯辐射体的辐射出射度等于他的辐射亮度。
( )3. 被照明物体表面的辐射照度和光源与物体表面的距离平方成反比。
( )4. 辐射出射度Me 与辐射照度Ee 的定义式都是:某点处面元的辐通量e d Φ除以改面元的面积dA的商,所以这两个物理量是具有相同的概念。
( )5. 在对具有一定量度和颜色的非黑体辐射体的温度标测中,亮温度与实际温度的偏差最小,色温度次之,辐射温度与实际温度的偏差最大。
( )6. 在弱辐射作用的情况下,半导体的光电导效应与入射辐射通量的关系是线性的。
( )三、计算题1. 试写出v Φ、v M 、v I 、v L 光度量之间的关系式,说明它们与辐射度量之间如何转换。
2. 波长为532nm (V (0.532um )=0.88)的绿光固体激光器输出功率为15W ,均匀的投射到0.22cm 的白色屏幕上。
问屏幕上的光照度为多少?若屏幕的反射系数为0.9,其光出射度为多少?3. 某半导体激光器发出波长为642nm 的激光束,其功率为100mW ,光斑发射角为0.6mrad ,光束直径为1.22mm 。
辐射度学与光度学的基础知识
• 辐射度学基础 • 光度学基础 • 辐射度学与光度学的关系 • 实际应用中的辐射度和光度问题 • 总结与展望
01
辐射度学基础
辐射度学的定义与概念
总结词
辐射度学是研究电磁辐射的发射、传 播、吸收、散射和转换等过程的科学。
详细描述
辐射度学主要关注电磁辐射的能量、 功率、辐射通量、辐射强度等物理量 的测量和计算,以及这些物理量在不 同介质和环境中的变化规律。
02
光度学基础
光度学的定义与概念
总结词
光度学是研究光辐射的度量、测量和应用的学科,它涉及到光辐射的定量描述和测量。
详细描述
光度学主要研究光辐射的属性、度量单位、测量方法和应用。它关注的是光辐射的能量、 功率和辐射通量等物理量的度量,以及这些物理量在不同媒介中的传播、散射和吸收等
行为。
光度量
1. 光通量
光度定律
总结词
光度定律是描述光辐射在不同媒介中传播时遵循的规律, 包括斯涅尔定律、反射定律和折射定律等。
1. 斯涅尔定律
也称为反射定律,它描述了光线在两种不同媒介的交界面 上的反射和折射行为,即入射角等于反射角,折射角与入 射角成正比。
2. 折射定律
当光线从一种媒介进入另一种媒介时,其传播方向会发生 变化,这个变化与两种媒介的折射率有关。折射定律描述 了折射光线与入射光线之间的关系。
光源的辐射度和光度性能
光谱分布
不同光源的光谱分布不同,这决定了它们在颜色 表现、显色指数等方面的性能。
光效
光效是衡量光源效率的指标,光效高的光源在相 同亮度下消耗的电能更少。
寿命与稳定性
光源的寿命和稳定性也是重要的性能指标,它们 决定了光源的使用和维护成本。
辐射度与光度学的基础知识
Xνλ——光度量;Xeλ——辐射量; Km是常数;V(λ)光谱光视效率。 5. 明视觉和暗视觉:人眼在环境亮度不同时对 颜色的视觉效率不同。 明视觉:光亮度大于几个cd/m2 暗视觉:光亮度小于0.01cd/m2
二、光度的基本物理量
1. 光通量
单位时间内光源发出的光能量(功率)
780nm
K m
注:
1. 光度量的定义和辐射度量的定义只一字之差,‚
2. 3. 4. 5. 辐射‛——“光‛。 下角标有e、λ、ν,辐射量在与其它量同用时 标e。 从表达式可直接说出定义及物理意义 从表达式可直接说出单位 出射度和照度的表达式相同、单位也相同,注 意一个是发射,一个是接收。
三个发射量的区别和关系
是辐射量对人眼视觉的刺激值。是主观的,不管辐射量大小 ,以看到为准。光谱光视效率是评定该刺激值的参数。 基本物理量是发光强度,单位坎德拉。一个光源发出频率 为540*1012Hz的单色辐射,若在一给定方向上的辐射强度
为1/683W/sr,则该光源在该方向上的发光强度为1cd。
一、光谱光视效能和光谱光视效率
光谱光视效能(K) ,描述某一波长的单色光辐射 通量产生多少相应的单色光通量。即光视效能K定 义为同一波长下测得的光通量与辐射通量的比值, 即
Φ ——在波长λ处的光通量 Φeλ ——在波长λ处的辐射通量 单位:流明/瓦特(lm/W)。
νλ
通过对标准光度观察者的实验测定,在辐射频率
5401012Hz(波长555nm)处,K有最大值,其
黑体 在物理学中,所谓黑体,是指这样 一种物体,在任何温度下,它将入射的任 何波长的电磁波全部吸收,没有一点反射, 而在相同温度下,它所发射出的热辐射比 任何其他物体都强。 光有多种颜色组成, 黑色吸收所有颜色,不反射任何颜色,即没 有光线进入眼睛时,称之为黑色。如果一个 物体能够全部吸收而不反射投射于其上的 辐射,就称它为绝对黑体,简称为黑体。
第六章辐射度学与光度学基础
第六章辐射度学与光度学基础辐射度学与光度学基础应用光学讲稿概述▲ 光学系统是一个传输辐射能量的系统▲ 能量传输能力的强弱,影响像的亮暗▲辐射度学:研究电磁波辐射的测试、计量、计算的学科▲光度学:在人眼视觉的基础上,研究可见光的测试、计量、计算的学科应用光学讲稿§6-1 立体角的意义和它在光度学中的应用一、立体角的意义和单位平面上的角:OA B1弧度AB AOB r应用光学讲稿空间上的角:立体角soΩ一个任意形状的封闭锥面所包含的空间称为立体角Ω=s r2r2,对应立体角为Ω=若在以r为半径的球面上截得的面积s= r2,则此立体角为1球面度。
整个空间球面面积为4πs =4 π 2 r应用光学讲稿二、立体角的计算假定一个圆锥面的半顶角为,求该圆锥所包含的立体角大小。
以r为半径作一圆球,假定在圆球上取一个d 对应的环带,环带宽度为rd ,环带半径为r sin ,所以环带长度为2 r sin ,环带总面积为ds rd 2 r sin 2 r 2 sin d d 它对应的立体角为ds 2 sin d 2 d cos 2 r 将上式积分得2 d cos 2 (1 cos )0或者4 sin22较小时,2应用光学讲稿§6-2 辐射度学中的基本量及其计量单位一、辐射通量e 单位时间内辐射体辐射的总能量-----辐射功率单位:瓦特(W)反映辐射强弱,是辐射体各波段辐射能量的积分Φeλ :光谱密集度曲线d e lim 0 d e e d 0应用光学讲稿二、辐射强度辐射体在某一指定方向上单位立体角范围内的辐射通量符号:Ied e Ie d单位:瓦每球面度(W/sr) 表示辐射体在不同方向上的辐射特性应用光学讲稿三、辐射出射度辐射体上某一点附近某一微元面积上辐射的总辐射通量符号:Med e Me dsd eAds单位:瓦每平方米(W/m2) 不管向哪个方向辐射,描述辐射体表面不同位置上单位面积的辐射特性应用光学讲稿四、辐射照度辐射照度与辐射出射度正好相反,不是发出辐射通量,而是被辐射体上某一点附近某一微元面积上接收的总辐射通量符号:d e Ee ds 单位:瓦每平方米(W/m2)Eed eA ds应用光学讲稿五、辐射亮度辐射体表面某点附近,在某一指定方向上单位立体角内单位投影面积上发出的辐射通量符号:LeIe Le dsn dsn ds cos单位:瓦每球面度每平方米(W/sr.m2) 描述了辐射体不同位置、不同方向上的辐射特性应用光学讲稿§6-3 人眼的视见函数辐射体发出电磁波,进入人眼,在可见光范围内,可以产生亮暗感觉;可见光范围内,人眼对不同波长光的视觉敏感度不同光度学中,为表示人眼对不同波长辐射的敏感度差别,定义了一个函数V ,称为视见函数,又称光谱光视效率。
辐射度学与光度学的基础知识课件
两者都基于物理光学和电磁波理论,研究光与物质的相互作用以及 光的传播、散射、吸收等特性。
交叉应用
在某些领域,如照明工程、光环境评估等,辐射度学与光度学的知 识是相互补充的。
辐射度学与光度学的区别
研究重点不同
辐射度学更注重光辐射的物理特 性和能量测量,而光度学则关注 光对人眼的视觉效应和光照度的
度量。
测量对象不同
辐射度学测量的是光辐射的能量和 功率,而光度学则测量光照度和亮 度等视觉感知相关的参数。
应用领域有差异
辐射度学在能源、环境监测等领域 有广泛应用,而光度学在照明设计、 视觉科学等领域更为常见。
辐射度学与光度学的应用领域
能源与环境监测
照明工程
辐射度学用于测量太阳辐射、红外辐射等 能源相关领域的光辐射参数,以评估能源 利用效率和环境影响。
仪器性能测试
利用光度学参数对光学仪 器进行性能测试和校准。
视觉科学
研究人眼对光的响应和视 觉感知,提高视觉舒适度 和视觉效率。
在辐射测量和检测技术中的应用
辐射度测量
测量光辐射的能量和功率,用于 太阳能利用、激光技术等领域。
辐射安全与防护
评估辐射对人体的影响,制定辐 射安全与防护措施。
检测技术
利用光度学原理发展各种检测技 术,如光谱分析、荧光分析等。
05 辐射度学与光度学的未来 发展
新的物理量和单位的发展
新的物理量
随着科技的发展,辐射度学与光度学 中可能会引入新的物理量,如光子能 量、光子流密度等,以更好地描述光 辐射和光传输过程中的特性。
新的单位
为了适应新的物理量,可能需要发展 新的单位,如光子能量单位“电子伏 特”等,以提供更准确、更一致的度 量标准。
辐射度和光度学基础
e de / d
若按光谱积分该函数,则可求得总的辐射通量值:
e e d
0
辐射度的基本物理量
前面介绍的几个重要的辐射量,都有与光谱辐射通量有相对应的关系, 如光谱辐照度Ee(λ) =dEe/dλ、光谱辐射出射度Me(λ)=dMe/dλ等, 其总辐射度量的积分形式也类似,我们将其列于表1-1中。
dI e d 2 e Le dS cos d dS cos
Lλ,b,N(λ,T)为黑体在辐射面法线方向的光谱辐射亮度。如果把ε’λ对半 球空间取平均值,就用“半球”来表示此平均值。
cos ' , , , T L ,b,N , T d ' , , , T L ,b,N , T d 0 ' , , T 0 T 4 cos L ,b,N , T d
第一章 辐射度和光度学基础
§1-1
辐射度量与光度学量
§1-2辐射度学与光度学中的基本定律
§1-3 辐射能的传输基础
§1-1 辐射度量与光度学量-引言
辐射度学(radiometry)或称辐射测量,是测量电磁波所传 递的能量(电磁辐射能)或测量与这一能量特征有关的其它 物理量的科学技术。人类生活在电磁辐射的环境中,被天然 的或人工的电磁辐射所包围,因此,在测量和控制这种辐射 能方面会有很多要求。在整个电磁频谱范围内,不同的频谱 段,应采用不同的辐射能测量方法。辐射度学量表示辐射能 的大小,基本量是辐射功率或辐射通量,单位是瓦特(W)。 辐射度学适用于整个电磁波谱,主要用于X光、紫外光、红外 光以及其他非可见的电磁辐射。所涉及的论题非常广泛,包 括辐射能的基本概念、辐射能的传输、变换以及仪器的辐射 度学校准或标定。 光度学适用于波长在0.38μm~0.78μm范围内的电磁辐射- 可见光波段,它使用的参量称为光度学(photometry)量。 以人的视觉习惯为基础建立。辐射度学量是用能量单位描述 光辐射能的客观物理量。光度学量描述光辐射能为人眼接受 所引起的视觉刺激大小的强度,是生理量。光度学量的基本 量是光通量,单位是流明(lm)。
【优选】辐射度学与光度学的基础知识PPT资料
小的,两者在研究方法和概念上基本相同,它们 第2讲辐射度学与光度学的基础知识
第2讲辐射度学与光度学的基础知识
的基本物理量也是一一对应的。 λ处的单位波长间隔
单位时间内发射、传输或接收的辐射能,单位为W(瓦),1W = 1J/s(焦耳每秒) 如图所示,点源 S1、S2、S3 的辐射强度均为 I ,距 x 点的距离均为 d ,求 x 点的照度? 【广义】“光”是指光辐射,波长:~1000 m 一只白炽灯,假设各向发光均匀,悬挂在离地面m的高处,用照度计测得正下方地面上的照度为30lx,求该灯的光通量?
I
dA cos
l2
dA
I
cos
l2
dΩ n
lθ
x
dA
A
面源在接收面上产生的照度?《教材》P37 图2-8
第2讲辐射度学与光度学的基 础知识
光的概念
电磁波谱 ⒈高频区:宇宙射线、γ 射线、x 射线 ⒉长波区:长电振荡、无线电波、微波 ⒊光谱区:紫外线、可见光、红外线 【广义】“光”是指光辐射,波长:~1000 m 【狭义】“光”仅指可见光,波长:~ m 波粒二象性 波动性:λ·ν= c (λ′·ν=υ) 粒子性: E = hν P = hν/ c = h /λ
e 4Ie
Ie(,)
d
d
辐射度学的基本辐射量(4)
辐射亮度 Le 辐射源单位表观面积向单位立体角内发射的
辐射通量,单位为W/sr·m2(瓦每球面度平方米)
Le
dIe
dS cos
d 2e
ddS cos
光谱辐射量
辐射源发射的能量往往是由很多波长 的辐射所组成的,我们更关心能量的光谱 分布。 光谱辐射量(辐射量的光谱密度) 含义:单位波长间隔内的辐射量;
辐射度学和光度学基础
立体角的大小定义为:Ω=S/r 2 其中:Ω为立体角的大小 S为球面上的面积 r为球体的半径。
立体角的单位是“球面度”,用符号sr表示。 注意:上述公式计算立体角大小时,面积s可以是任意形
状的,如圆形,正方形,异形等。 球面的立体角: Ω=4πr2/r2=4π≈12.57球面度(sr)
一、辐射度学和pp光t课件度学基本物理量
辐射度学和光度学基础
ppt课件
1
主要内容
一、辐射度学和光度学基本物理量 二、视见函数(联系两者) 三、辐射度学和光度学基本物理量的关系 四、黑体辐射(应用,色度学)
ppt课件
2
1.1 电磁波谱
可见光定义波段:380~780nm(大部分定义)
一、辐射度学和pp光t课件度学基本物理量
3
1.2 研究范围
的光能量,Φv=dQ/dt,流明(lm) 3、其它5个量都直接与光通量相联系。光能
量、光强度、光亮度、光出射度、光照度。
一、辐射度学和pp光t课件度学基本物理量
12
1.10 联系辐射度学和光度学的坎德拉
1cd= 1/683 W/sr——坎德拉定义 1cd=1lm/sr——流明定义 555nm单色波长条件下
6
1.5 基本辐射度学物理量的核心量
辐射功率(辐射通量) 1、共7个物理量 2、辐射功率(辐射通量):单位时间的辐射
能量,Φe=dQ/dt,瓦(W) 3、其它6个量除辐射能量密度外,5个量都直
接与辐射功率相联系。辐射能量、辐射强 度、辐射亮度、辐射出射度、辐射照度。
一、辐射度学和pp光t课件度学 光通量Φv 若称光功率则为W 发光强度Iv
光亮度Lv
光出射度Mv
1.8 基本光度学物理量
辐射度与光度学的基础知识
辐射度与光度学的基础知识目录一、辐射度学基础知识 (3)1. 辐射度概念及原理 (4)1.1 辐射度的定义 (5)1.2 辐射度的物理量及其单位 (5)1.3 辐射源的类型与特点 (6)2. 辐射的传播与转换 (7)2.1 辐射的传播方式 (8)2.2 辐射能的转换与传输 (10)2.3 辐射强度的衰减规律 (11)二、光度学基础知识 (12)1. 光度学概述 (13)1.1 光度学的定义与目的 (14)1.2 光学系统的基本组成 (15)1.3 光度学与辐射度学的关系 (16)2. 光学量的测量与计算 (17)2.1 光照度及其测量 (18)2.2 亮度及其计算 (19)2.3 色温与显色指数 (20)三、辐射度与光度在照明设计中的应用 (21)1. 照明设计基本原理 (22)1.1 照明设计的基本要求 (23)1.2 照明设计的步骤与方法 (24)1.3 照明设计的注意事项 (25)2. 辐射度与光度在照明设计中的应用实例 (26)2.1 室内照明设计 (27)2.2 室外照明设计 (28)2.3 特殊场合照明设计 (30)四、辐射安全与防护 (32)1. 辐射安全基础知识 (33)1.1 辐射的种类与特点 (35)1.2 辐射对人体的影响 (36)1.3 辐射安全标准与规范 (37)2. 辐射防护措施及方法 (38)2.1 时间防护 (39)2.2 距离防护 (40)2.3 屏蔽防护 (41)2.4 个人剂量监测与健康管理 (42)五、实验及案例分析 (43)1. 实验教程 (45)1.1 实验一 (46)1.2 实验二 (47)1.3 实验三 (48)2. 案例分析 (49)2.1 案例一 (50)2.2 案例二 (51)一、辐射度学基础知识辐射源与辐射类型:辐射源是发出辐射能量的物体或点。
辐射可以是电磁辐射,如可见光、红外线和紫外线等;也可以是粒子辐射,如电子和光子等。
在光度学中,主要关注的是电磁辐射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)计算确定光源的位置 光源的位置应使它发出的光束(光锥角为u)经聚光镜后(光锥角 为u′),恰能在聚光镜前方12m处生成直径为2m的圆面积。根据 给定条件,可求出聚光镜的像方光锥角u′:
由高斯公式
1 1 1 在空气中 l l f
乘h : h h h tgu tgu h
l l f
f
tgu tgu h f
由上述光束变换分析,可求得灯泡A的位置:
(2)求光源经聚光镜成像前后的照明立体角由孔径角与立体角 之间的转换式,可求光源A对聚光镜构成的立体角为
光源像A′对圆屏所构成的立体角为u′
(3)计算光源在聚光镜前后的发光强度 卤钨灯发出的总光通量为
假定卤钨灯可近似视为各向均匀发光的点光源,它在聚光镜前的 发光强度为
(优选)辐射度学与光度学基 础
4πr2
(点源的辐射强度)
(面源的辐射强度)
60×15=900lm
[例] 采用功率为250W、发光效率为30lm/W的卤钨灯作为 光源,通过一个焦距与口径均为100mm的聚光镜去照明前方12m 处的圆屏,屏的直径为2m,求聚光后的发光强度以及圆屏上的平 均光照度。若用该卤钨灯直接照射该屏,其平均光照度应为多大? (假定该卤钨灯可视为各向均匀发光的点光源) 解:该照明系统如图所示。
(5)对比光源直接照明圆屏(不加聚光镜)的效果: 光源对圆屏所构成的光锥角α为
对应的立体角为 被照圆屏上所接受的光通量为
圆屏上的平均照度为:
上述计算与比较表明,在照明系统中加入聚光镜后,可使被照明 平面上的照度得到显著提高(本例照度增强近40倍),因而体现 了照明系统中聚光镜的重要作用。
余弦辐射体
由于光传递过程中能量是守恒的,故dΦ1=dΦ2,相应得到
2.不同介质分界面上光亮度的传递 一束光射向两个不同透明介质n、n′分界面上时将同时发生反 射和折射,各参量如下图所示,若不考虑介质吸收及散射,则 入射光能dΦ= 反射光能dΦ″+折射光能dΦ′ 投射在介质分界面上的微面元 之上。
以入射角i投射在介质分界面上的微面元dS之上,反射角、折射 角分别用i″、i′表示, 设入射光、反射光、折射光的光亮度分别为L、L″、L′,各自 所对应的立体角分别为dΩ、dΩ″、dΩ′,则根据立体角公 式有
1.透明介质分界面的反射损失 1)按照折射定律和反射定律,当光照射到两个透明介质分界面上 (折射率分别为n、n′)时将同时发生反射及折射, 2)由于透射元件主要是利用折射光进行能量传输或成像,故而分
界面上的反射光能就构成系统光能损失的一个很重要的因素, 3)分界面上的反射能量可以通过反射率ρ进行计算求取。 4) 电磁理论的基本知识,反射率ρ可表示为反射光通量Φ″与入
光源发出的总光通量中能通过聚光镜的部分为
忽略经聚光镜的光能损失,即经聚光镜后光束的立体角变为ω′, 但光通量不变,应有
因而可求出经聚光镜后的发光强度为
计算表明,光源经聚光镜后,虽光通量未变,但由于ω′大大减 小,光能重新分配,故 I′大大增强。
(4)计算被照圆屏上的平均照度 被照明的圆面积为:
圆面积上的平均光照度为
6.7光学系统中光通量与光亮度的传递
1、在介绍光度学基本概念的基础上,研究光学系统中光能的传递 与变化规律。
2、光学系统可以视为光能的传递系统,我们除关心最终像面处 (或接收器处)的光能情况外,还常常关心光学系统中间过程光 能的传递规律。
3、光能在光学系统中的传递与变化规律,可以通过两个量来表征, 即光通量与光亮度。
张的立体角为dΩ2。
5)若光能量在传递过程中没有光能损失(不考虑介质吸收、散
射等因素),即dS1 发出的光能量全部传递到dS2 上 (或dS2 发出的光能量全部传递到dS1 上), 6)则由dS1 辐射出的到达dS2 上的所有光通量为由 L d源自得ds cosid
相应地由dS2 辐射出的到达dS1 上的所有光通量为
n2
6.8光学系统的光能损失
任何一个实际的光学系统都不可能完全透明, 射入系统的光能量Φ永远要大于射出系统的光能量Φ′, 即光学系统的透过率τ=Φ′/Φ<1, 这意味着在系统传递过程中不可避免地存在一定的光能损失。 造成光能损失的因素是多方面的,主要体现在透明介质分界面的 反射损失、反射面的光能损失和透明介质材料的吸收损失。
6.7.1 光束在均匀透明的同种介质中的传播 注意:光束在同种均匀透明介质传播过程中的亮度变化规律,可
借助于元光管概念来研究。
1.单一无损介质中光束光亮度的传递) 如图:
1)假设任意两个微面元dS1、dS2,两面元之间的距离为r, 2)面元各自法线方向与r之间的夹角分别为i1、i2, 3)dS1 上的光亮度为L1,dS2 上的光亮度为L2, 4)dS2 对dS1 所张的立体角为dΩ1,dS1 对dS2 所
入射光、反射光及折 射光的光通量分别为
1)反射光的光亮度传递) 根据反射定律i=i″,故sini=sini″, cosi=cosi″,di=di″,由上边式子可得 dΩ=dΩ″,则
ρ为n、n′介质分界面上的反射率,故有
即反射光光亮度等于入射光光亮度与介质分界面的反射率之积。
2)折射光的光亮度传递 对折射定律公式两边进行微分有
nsin i nsin i
将折射定律nsini=n′sini′与微分式相乘,有
进一步整理得到
又由于dΦ′=dΦ-dΦ″, 则透射率
d d d 1
d d
表明,折射光束的光亮度与介质分界面的透射率及两边介质的折 射率有关。 若折射前后光能没有损失即ρ=0,τ=1,则式又可以转化为
即折射前后光亮度虽然发生改变, 但是 L 值保持不变。
4、光通量的传递规律比较简单。如果不存在传递过程中的拦光、 吸收、反射等损失,则由能量守恒定律可知,从系统出射的光 通量应等于进入系统的光通量,即在传递过程中,光通量 应保持不变;
5、如果存在损失,令透过系统数为τ,则应有Φ′=τΦ。有关 光能在光学系统传递过程中的损失计算,将在下一节中介绍。
以下主要讨论光亮度在光学系统中的传递情况,按光束在均 匀透明介质中的传播与在两种介质分界面上的折射和反射三种情 况分别加以研究。