八年级上册数学 立方根教案

合集下载

立方根数学教案

立方根数学教案

立方根数学教案标题:立方根数学教案一、教学目标:1. 理解立方根的定义,掌握立方根的基本性质。

2. 能够正确计算一个数的立方根,解决与立方根有关的实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

二、教学重点和难点:重点:理解立方根的定义,掌握立方根的基本性质。

难点:理解和运用立方根的概念解决实际问题。

三、教学过程:1. 引入新课教师可以通过生活中的实例引入新课,比如“一个正方体的体积为27立方米,求其边长是多少?”这样的问题可以引导学生思考并引出立方根的概念。

2. 新课讲解(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作$\sqrt[3]{a}$。

(2)基本性质:①正数有一个正的立方根;②负数有一个负的立方根;③零的立方根是零。

3. 练习巩固通过一系列的练习题,让学生熟悉立方根的计算方法,并掌握如何用立方根解决问题。

例如:“求-8的立方根”,“已知一个正方体的体积为64立方米,求其边长”。

4. 课堂小结回顾本节课学习的主要内容,强调立方根的定义和基本性质,以及如何计算立方根。

5. 作业布置设计一些与立方根相关的题目作为课后作业,以便学生进一步理解和掌握所学知识。

四、教学反思:在教学过程中,要注意引导学生主动思考,提高他们的逻辑思维能力和空间想象能力。

同时,要注重理论联系实际,让学生在解决实际问题的过程中加深对立方根的理解。

五、拓展阅读:对于有兴趣的学生,可以推荐他们阅读一些关于立方根的扩展知识,如立方根的历史、应用等,以拓宽他们的视野。

六、教学评估:通过课堂练习、课后作业和测验等方式,对学生的学习情况进行评估,了解他们对立方根的理解程度和应用能力。

冀教版数学八年级上册14.2《立方根》教学设计

冀教版数学八年级上册14.2《立方根》教学设计

冀教版数学八年级上册14.2《立方根》教学设计一. 教材分析冀教版数学八年级上册14.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上进行学习的内容。

本节课主要让学生了解立方根的概念,学会求一个数的立方根,并理解立方根与平方根之间的关系。

教材通过引入生活中的实例,激发学生的学习兴趣,引导学生探究立方根的概念,进而总结出立方根的性质和运算法则。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。

但八年级的学生对抽象概念的理解和掌握仍有一定难度,因此,在教学过程中,需要教师通过生动的实例和具体的教学手段,帮助学生理解和掌握立方根的概念和性质。

三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求一个数的立方根,理解立方根与平方根之间的关系。

2.过程与方法:通过探究立方根的概念,培养学生观察、分析、归纳的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:立方根的概念及其性质。

2.难点:立方根的运算法则和立方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过引入生活中的实例,激发学生的学习兴趣,引导学生探究立方根的概念。

2.启发式教学法:在教学过程中,引导学生观察、分析、归纳,培养学生的思维能力。

3.小组合作学习:学生进行小组讨论,培养学生的团队合作意识和交流能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.教学素材:准备一些与立方根相关的实际问题,用于巩固和拓展学生的知识。

3.板书设计:设计清晰、简洁的板书,便于学生理解和记忆。

七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、石灰沉淀等,引出立方根的概念,激发学生的学习兴趣。

2.呈现(10分钟)展示立方根的定义,引导学生观察、分析,总结立方根的性质和运算法则。

3.操练(10分钟)让学生进行一些立方根的计算练习,巩固所学知识。

《立方根》优质教案

《立方根》优质教案

《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。

本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。

二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。

2. 能够运用立方根解决实际问题。

3. 培养学生的逻辑思维能力和创新精神。

三、教学难点与重点1. 立方根的概念和性质。

2. 立方根的运算方法。

3. 立方根在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、尺子、圆规、三角板、计算器。

五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。

2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。

教师给出立方根的定义,并解释立方根的性质。

3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。

”学生运用立方根的知识,解决问题并得出答案。

六、板书设计1. 立方根的定义。

2. 立方根的性质。

3. 立方根的运算方法。

4. 立方根在实际问题中的应用。

七、作业设计1. 题目:已知一个数的立方是27,求这个数。

答案:3。

2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。

答案:4米。

八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。

2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。

重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。

《立方根》示范公开课教学设计【北师大版八年级数学上册】

《立方根》示范公开课教学设计【北师大版八年级数学上册】

《立方根》示范公开课教学设计【北师大版八年级数学上册】立方根是什么?介绍一个疑问引出一个数学概念。

让学生自己思考和尝试,激发兴趣。

现在,我将为大家设计一堂关于立方根的示范公开课。

本次公开课适用于北师大版八年级数学上册。

一、导入部分(Introduction):1. 引入问题(引起学生思考的问题):- 你们都知道平方根,那么立方根又是什么呢?有什么特点与应用?- 请思考并尝试回答这个问题。

2. 提示思路和启发思考:- 鼓励学生自由思考,并互相讨论。

- 提醒学生使用已学知识和技巧来解答问题。

二、探究部分(Exploration):1. 实验环节(实践操作):- 给每个学生准备一个实验板,上面有一组自然数。

- 要求学生通过尝试和计算,找到这组数的立方根。

- 引导学生记录实验过程和结果。

2. 分组合作讨论:- 将学生分成小组,让他们分享他们的实验结果和思路。

- 鼓励学生互相交流,并从他人的解答中学习和借鉴。

三、概念解释与归纳(Concept Explanation and Summary):1. 引导学生总结实验结果:- 在小组讨论的基础上,引导学生思考立方根的定义和特点。

- 引入立方根的符号表示方式。

2. 教师给出概念解释和相关应用:- 教师向学生解释立方根的定义、数学符号,及其在实际生活中的应用。

- 如空间体积、几何形状等方面。

四、数学公式的引入(Introduction of Mathematical Formula):1. 引入立方根的数学公式:- 教师向学生解释立方根的数学表示方式和计算方法。

- 通过示意图和实例演算来帮助学生理解和记忆公式。

2. 练习与讨论:- 给学生足够的时间来练习使用立方根的数学公式。

- 鼓励学生互相讨论,并帮助他们解决遇到的问题。

五、应用拓展(Application Extension):1. 实际问题的引入:- 提供一些实际问题,让学生运用立方根来解决。

- 鼓励学生思考和提问,激发他们对立方根的应用兴趣。

立方根的计算优秀教案

立方根的计算优秀教案

立方根的计算优秀教案介绍本教案旨在教授学生如何计算一个数字的立方根。

立方根是指一个数字的立方等于该数字本身的平方根。

本教案将使用简单的数学公式和步骤来帮助学生理解并计算立方根。

目标通过本教案,学生将能够:1. 理解立方根的概念;2. 运用简单的数学公式计算立方根;3. 培养对数学的兴趣和探索精神。

教学步骤本教案将分为以下几个步骤:第一步:引入立方根的概念(10分钟)- 向学生介绍立方根的概念和定义;- 解释立方根与平方根的区别;- 提供示例数字,让学生思考如何计算其立方根。

第二步:运用数学公式计算立方根(20分钟)- 介绍计算立方根的数学公式;- 演示如何使用该公式计算立方根;- 让学生进行几个练题,指导他们按照步骤计算立方根。

第三步:练与应用(15分钟)- 提供一系列数字,要求学生计算每个数字的立方根;- 引导学生思考如何在实际情境中运用立方根的计算。

第四步:复和巩固(10分钟)- 对学生进行立方根计算的复;- 检查学生的理解程度,并解答他们的问题。

教学资源- 纸和笔;- 演示文稿或白板;- 练题。

评估方式教师可以通过以下方式对学生的研究情况进行评估:- 观察学生在课堂上的参与度和回答问题的能力;- 批改学生完成的练题;- 给学生提供反馈和建议。

扩展研究对于学生来说,了解其他数学运算的计算方法也很重要。

教师可以鼓励学生自主研究如何计算其他数学运算,如平方、开方等。

此外,教师还可以引导学生进行更复杂的数学问题的解决,以提高他们的数学思维能力。

结论通过本教案,学生将能够掌握和运用计算立方根的方法,培养对数学的兴趣和探索精神。

教师可以根据学生的学习情况适当调整教学步骤和练习内容,以促进学生的学习成果。

初中教学设计:立方根教案设计

初中教学设计:立方根教案设计

初中教学设计:立方根教案设计一、教学目标:1. 知识与技能:(1)理解立方根的概念,掌握求一个数的立方根的方法。

(2)能够运用立方根解决实际问题。

2. 过程与方法:(1)通过观察、实验、探究等环节,引导学生发现立方根的性质。

(2)培养学生的运算能力、逻辑思维能力及解决实际问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

二、教学重点与难点:1. 教学重点:(1)立方根的概念及求法。

(2)运用立方根解决实际问题。

2. 教学难点:立方根在实际问题中的应用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究立方根的性质。

2. 利用多媒体辅助教学,直观展示立方根的求解过程。

3. 运用实例分析法,让学生感受立方根在实际问题中的应用。

四、教学准备:1. 教师准备:立方根的相关教学资源,如课件、例题、习题等。

2. 学生准备:预习立方根相关知识,了解立方根的基本概念。

五、教学过程:1. 导入新课:(1)复习立方体的相关知识,引导学生思考立方体的体积与边长的关系。

(2)提问:如果已知一个立方体的体积,如何求它的边长?2. 探究立方根:(1)引导学生观察、实验,发现立方根的性质。

(2)总结立方根的定义及求法。

3. 运用立方根解决实际问题:(1)出示实例,让学生尝试运用立方根解决问题。

(2)分组讨论,分享解题过程及心得。

4. 练习与巩固:(1)出示练习题,让学生独立完成。

(2)讲解练习题,总结解题方法。

5. 课堂小结:回顾本节课所学内容,引导学生总结立方根的概念、性质及应用。

6. 布置作业:(1)巩固立方根的基本概念、性质。

(2)运用立方根解决实际问题。

六、教学拓展:1. 引导学生思考:立方根有哪些性质?2. 探讨立方根的运算规律,如:立方根的乘法、除法、幂运算等。

3. 引导学生发现立方根在数学中的其他应用,如:立体图形的体积计算、物质的溶解度等。

七、课堂互动:1. 提问:立方根在实际生活中有哪些应用?2. 学生分享实例,教师点评并总结。

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册教案新版北师大版:2.3立方根教学目标1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点) 教学过程一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=0;(3)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质 【类型一】立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根. 【类型二】立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4.∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27,把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根. 【类型三】立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r.解析:将公式变形为r 3=3V 4π,从而求r. 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r 约为3cm. 方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100.解:(1)-3343=-7;(2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.教学反思本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.。

第6讲立方根(教案)

第6讲立方根(教案)
3.重点难点解析:在讲授过程中,我会特别强调立方根的定义和计算方法这两个重点。对于难点部分,如负数和分数的立方根,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与立方根相关的实际问题,如不同形状立方体的体积计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量和计算立方体模型(如骰子)的体积,演示立方根的基本原理。
第6讲立方根(教案)
一、教学内容
第6讲立方根
本讲内容依据人教版《数学》八年级上册教材第十七章“立方根”,主要包括以下知识点:
1.立方根的定义:了解立方根的概念,掌握立方根的表示方法。
2.立方根的性质:探讨立方根的符号、大小及其与原数的关系。
3.立方根的计算:学会计算正数、负数及分数的立方根。
4.立方根的应用:解决实际问题,如体积、密度等与立方根有关的计算。
-立方根的应用:将立方根应用于解决实际问题,如计算体积、密度等,强调数学与生活的联系。
举例:讲解立方根定义时,可以通过实际物体的体积计算引入,如一个边长为2cm的正方体,其体积为2^3=8cm^3,那么体积为8cm^3的立方体的边长就是2cm,这里的“2”就是8的立方根。
2.教学难点
-立方根的符号判断:学生容易在判断负数立方根的符号时出错,需要明确讲解符号判断的规则。
在实践活动中,学生们通过实际操作来计算立方体的体积,这个环节反馈良好。学生们通过动手操作,对立方根有了更直观的感受。但在实验操作过程中,我也发现了一些学生对于测量和计算过程中的细节处理不够严谨,这可能会导致最终结果的误差。因此,我打算在以后的课堂上,加强学生们的数据分析和处理能力,提高他们的实验操作技能。

八年级数学上册第2章《立方根》参考教案(北师大版)

八年级数学上册第2章《立方根》参考教案(北师大版)

2.3 立方根教学目标:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点:立方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:Ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?Ⅱ.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第44页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a的平方根表示为±a,立方根表示为3a.下面我再系统地总结一下:[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a .又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 Ⅲ.课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x cm ,得x 3=8×33,解得x =6.即改正方体的棱长是6cm.(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对?-4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是±8.Ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍? 解:设原正方体的棱长为a ,后来的正方体的棱长为b ,得na 3=b 3∴3333n a b =∴b =a n n a 333=. 即后来的棱长变为原来的3n 倍.Ⅴ.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.Ⅵ.课后作业习题2.5.Ⅶ.活动与探究1.求下列各式中的x .(1)8x 3+27=0;(2)(x -1)3-0.343=0;(3)81(x +1)4=16;(4)32x 5-1=0.板书设计:能让学生用类推的方法得出立方根的相关结论。

人教版数学八年级上册13.2《立方根》教学设计

人教版数学八年级上册13.2《立方根》教学设计

人教版数学八年级上册13.2《立方根》教学设计一. 教材分析《立方根》是人教版数学八年级上册第13.2节的内容,主要介绍立方根的概念、性质和运算法则。

通过本节课的学习,使学生理解立方根的概念,掌握立方根的性质和运算法则,能够熟练运用立方根解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对数的运算有一定的了解。

但学生对立方根的概念和性质可能较为陌生,需要通过实例和讲解使其理解和掌握。

此外,学生可能对解决实际问题中涉及的立方根运算有一定的困难,需要教师在课堂上进行引导和解答。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质和运算法则;能够运用立方根解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,引导学生发现立方根的性质和运算法则;培养学生的逻辑思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:立方根的概念、性质和运算法则。

2.难点:立方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生观察、实验、探究,发现立方根的性质和运算法则。

3.练习法:通过丰富的练习题,巩固所学知识,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示立方根的概念、性质和运算法则。

2.练习题:准备一些有关立方根的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些立方体模型,用于直观展示立方根的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如冰淇淋制作、土壤湿度测量等,引导学生思考涉及到的数学问题。

通过提问,引入立方根的概念。

2.呈现(15分钟)讲解立方根的概念,引导学生观察立方体模型,使其理解立方根的直观意义。

通过PPT展示立方根的性质和运算法则,让学生初步掌握。

2.3~2.4 立方根与估算教案 2022-2023学年北师大版八年级上册 数学

2.3~2.4 立方根与估算教案 2022-2023学年北师大版八年级上册 数学

2.3~2.4 立方根与估算教案一、教学目标1.理解立方根的概念,能够计算一个数字的立方根;2.掌握使用牛顿迭代法估算立方根的方法;3.能够在实际问题中应用立方根和估算的方法。

二、教学重点1.理解立方根的概念;2.掌握计算立方根的方法;3.掌握使用牛顿迭代法估算立方根的方法。

三、教学内容3.1 立方根的概念立方根是指一个数字的立方等于另一个数字,这个立方根就是原来数字的立方根。

比如,数字 2 的立方根就是,因为 2^3 = 8。

我们用符号∛表示立方根。

3.2 计算立方根的方法我们可以使用开方运算来计算立方根。

•对于一个正整数n,我们可以使用n的二分之一次方来计算n的立方根。

比如,对于 8 的立方根,我们可以计算:∛8 = 8^(1/3) = 2。

•对于一个非整数n,我们可以使用近似的方法来计算立方根。

可以使用计算器或者电脑上的计算软件来进行计算。

3.3 牛顿迭代法估算立方根牛顿迭代法是一种逐步逼近的方法,可以用来估算立方根。

具体步骤如下:1.假设要估算的数字为x;2.选取一个初始猜测值y;3.通过迭代计算公式 y = (y + x/y^2)/2 来逐步逼近立方根;4.当迭代结果y趋于稳定时,停止计算,此时y就是x的近似立方根。

四、教学步骤4.1 导入首先,为了引起学生对本课的兴趣,可以通过一个问题导入。

比如:假设一个惊天大新闻,有人发现了一个神秘的宝藏,但宝藏的密码是一个数字的立方根,如果无法计算立方根,就无法打开宝藏。

让学生思考,他们会如何计算这个立方根。

4.2 理解立方根的概念在导入之后,可以通过简单的例子和图示来引导学生理解立方根的概念。

可以给出一些数字,让学生计算它们的立方根,并解释计算过程。

4.3 计算立方根的方法在学生理解了立方根的概念之后,可以介绍计算立方根的方法。

首先解释整数的立方根计算方法,然后再解释非整数的近似计算方法。

4.4 牛顿迭代法估算立方根在讲解完计算立方根的方法之后,引导学生了解牛顿迭代法估算立方根的原理和步骤。

北师版八年级数学上册第二章 实数3 立方根

北师版八年级数学上册第二章 实数3 立方根

(1)-125;
解:因为(-5)3=-125,
所以-125 的立方根是-5,即3 -125=-5.
10
(2)2 ;
27
先将带分数化为假分数,
10 64
4 3 64
然后再求其立方根.
因为2 = ,而( ) = ,
27 27
3
27
10
4
10 4
3
所以2 的立方根是 ,即 2 = .
27
3
27 3
知1-练

= 3 ;
2


(5)( -8) 3.


1
- =-
8

( -8) 3 = -8.
1
2

1
=- ;
2
感悟新知
5-1.求下列各式的值:
知3-练
3
(1)-

1
解:-
- ;
8
3
(2)
(3)


1+
91

125
24×45×200 .
1 1
1
- =--2= ;
8

2
91
1+

125
3
3
216 6
27 ;
解:
(2)



27 =
知3-练

33 =3;
1 6
-( )
10
1 6
1
1
- ( ) = [- ( ) 2]3 = -

10
10
100
求负数的立方根时,先将负
号移到根号外,再计算,这
样不易出错 .

北师大版八年级数学上册:2.3《立方根》教案2

北师大版八年级数学上册:2.3《立方根》教案2

北师大版八年级数学上册:2.3《立方根》教案2一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。

本节内容是在学生已经掌握了有理数的乘方、实数的概念等知识的基础上进行学习的。

通过本节课的学习,使学生理解立方根的概念,会正确地计算立方根,培养学生的逻辑思维能力。

二. 学情分析学生在七年级时已经学习过平方根的概念,对于算术平方根、平方根等概念有一定的了解。

但是,对于立方根的概念和计算方法还不够熟悉。

因此,在教学过程中,教师需要通过实例和练习,帮助学生理解和掌握立方根的概念和计算方法。

三. 教学目标1.知识与技能:使学生理解立方根的概念,会正确地计算立方根。

2.过程与方法:通过实例和练习,培养学生的逻辑思维能力。

3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:立方根的概念和计算方法。

2.难点:立方根的计算方法。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法,引导学生通过自主学习、合作交流,掌握立方根的概念和计算方法。

六. 教学准备1.教学课件:制作教学课件,包括立方根的定义、计算方法、实例等。

2.练习题:准备一些关于立方根的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一个正方体,引导学生思考正方体的体积是多少。

通过这个实例,激发学生的学习兴趣,引出立方根的概念。

2.呈现(15分钟)介绍立方根的定义,展示立方根的计算方法。

通过PPT和实物模型的展示,使学生直观地理解立方根的概念和计算方法。

3.操练(10分钟)让学生独立完成一些关于立方根的计算题。

教师在旁边辅导,解答学生的疑问。

4.巩固(10分钟)让学生分组讨论,总结立方根的计算方法。

教师选取一些学生的总结,进行点评和讲解。

5.拓展(10分钟)引导学生思考:立方根有哪些性质?如何判断一个数是否有立方根?通过这些问题,拓展学生的知识面。

6.小结(5分钟)对本节课的内容进行总结,强调立方根的概念和计算方法。

初中数学八年级上册苏科版4.2立方根教学设计

初中数学八年级上册苏科版4.2立方根教学设计
2.提高运算能力:
(1)计算以下式子的值:√[3]{27} + √[3]{64} - √[3]{-8}。
(2)一个长方体的长、宽、高分别为2cm、3cm和4cm,求其体积的立方根。
3.应用题:
(1)某城市的空气质量监测站测得一个空气样本的PM2.5浓度为64mg/m³,若要使PM2.5浓度降低到原来的1/8,空气质量监测站应采取哪些措施?
(2)一个正方体木块的体积为64cm³,现将木块切割成一个最大的正四面体,求该正四面体的体积。
4.思考题:
(1)立方根在生活中的应用有哪些?请举例说明。
(2)立方根与平方根有什么区别和联系?请从定义、性质、计算方法等方面进行分析。
作业要求:
1.请同学们认真完成作业,注意书写规范,保持解答过程的简洁。
难点:如何引导学生将立方根与实际情境相结合,提高问题分析和解决能力。
(二)教学设想
1.创设情境,导入新课:通过提出与立方根相关的实际问题,激发学生的好奇心,引导他们思考立方根的概念和运算方法。
2.自主探究,合作交流:给学生提供充足的探索空间,鼓励他们自主发现立方根的定义和性质。在此基础上,组织学生进行小组讨论,分享学习心得,共同解决疑问。
c.各小组汇报讨论成果,分享学习心得,教师点评并总结。
(四)课堂练习
1.教学内容:设计有针对性的练习题,帮助学生巩固立方根的知识。
2.教学过程:
a.教师设计不同难度的练习题,包括立方根的计算、应用题等。
b.学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
c.教师挑选部分练习题进行讲解,分析解题思路和方法,提高学生的解题能力。
五、作业布置
为了巩固学生对立方根知识的掌握,提高他们的运算技巧和解决问题的能力,特布置以下作业:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册教案吧斗 Assistant teacher 为 梦 想 奋2.3立方根1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=0;(3)若正方体的棱长为a,体积为8,根据正方体的体积公式得a3=8,那么a叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质【类型一】立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.【类型二】立方根与平方根的综合问题已知x-2的平方根是±2,2x+y +7的立方根是3,求x2+y2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x-2=4,2x+y+7=27,从而解出x,y,最后代入x2+y2求其算术平方根即可.解:∵x-2的平方根是±2,∴x-2=4.∴x=6.∵2x+y+7的立方根是3,∴2x +y+7=27,把x=6代入解得y=8,∴x2+y2=62+82=100.∴x2+y2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x,y的值,再根据算术平方根的定义求出x2+y2的算术平方根.【类型三】立方根的实际应用已知球的体积公式是V=43πr3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm3,求这个小皮球的半径r.解析:将公式变形为r3=3V4π,从而求r.解:由V=43πr3,得r3=3V4π,∴r=33V4π.∵V=113.04cm3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100.解:(1)-3343=-7;(2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.2.3 立方根一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为334R =v ,R 为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法. 2议一议:(1)正数有几个立方根? (2)0有几个立方根 (3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数. (3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根: (1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-.解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--;(2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=;(3)因为833827233==)(,所以833的立方根是23,即238333=;(4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-. 例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339.解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9.反馈练习1.求下列各数的立方根:().1656464125.03333333;;-;;-2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究 想一想:(1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢?(2)3a -与3a -有何关系?目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根; (3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根; 负数没有平方根,但却有一个立方根; (4)灵活运用公式:(3a )3=a ,a a =33,3a -=3a -;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性. 内容2:回顾引例某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生能力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值. 2.求下列各式中的x .()()--=+=-=x x x x 3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。

相关文档
最新文档