PWM整流器简介
PWM整流器分类介绍

工作原理:
• 在系统瞬时功率不变的前提下,将三相静止坐标系下 的整流桥相电压变换到两相静止坐标系下(即3/2变 换),用一个模为2Uo/3的空间电压矢量在复平面上表 示出来。 • 由于三相VSR开关是双电平控制,电压矢量只有2*2*2 = 8种,其中Uo (0 ,0,0)、U7 (1, 1,1) 为零矢量, 其余6个非零矢量对称均匀分布在复平面上。在每个开 关周期中对任何给定空间电压矢量U均可用相邻两个有 效开关矢量和零矢量来等效。 • 在一个载波周期内,开关管的导通总是以零矢量开始 并以零矢量结束。
•
因此,为了实现整流器输出直流电流的恒定和输入端 接近单位功率因数,三相电流型PWM整流器的控制实际 上是一个双环控制系统。
• 外环是直流电流控制环,其目的一般是保持 的恒定。 在直流电流环中,采样的直流电流与给定值进行比较, 产生的误差经过PI调节后,输出作为整流器的网侧电 流峰值指令, ,将 与同步信号(单位幅值正弦波) 相乘,作为网侧电流指令信号 ,由 及 组成交流 电流控制环,其目的是要求网侧电流 跟踪给定电 流 ,也即实现了网侧电流对网侧电压的相位跟踪。
3 .PWM整流器的分类
• (1)按输出滤波方式分为:电压型和电流型; 电流型PWM整流器输出端采用串联滤波电感以维持输出电 流低纹波,具有近似电流源的特性。 电流型PWM整流器又称为Buck型整流器,如图2-1所示。交 流侧由L, C组成二阶低通滤波器,以滤除交流侧电流中的 开关谐波;直流侧接大电感,使直流侧电流近似为平滑的直 流。开关器件由可控器件与二极管串联组成扩以提高器件 的反向阻断能力。与电压型PWM整流器相似,电流型PWM整 流器具有四象限运行的能力.
• 以下将详细介绍: • (1)基于虚拟磁链的电压型PWM整流器直 接功率控制:
PWM整流器控制策略研究与实现

PWM整流器控制策略研究与实现一、本文概述随着电力电子技术的快速发展,脉冲宽度调制(PWM)整流器在电力系统中扮演着日益重要的角色。
PWM整流器以其高效、可靠和灵活的特性,在电能质量提升、能源节约和环保等方面具有显著优势。
因此,研究和实现PWM整流器的控制策略,对于提高电力系统的稳定性和效率具有重要意义。
本文旨在深入研究和探讨PWM整流器的控制策略,包括传统的控制方法以及新兴的控制策略。
我们将概述PWM整流器的基本原理和工作特性,为后续的控制策略研究提供理论基础。
我们将详细介绍传统的PWM整流器控制方法,如电压控制型PWM整流器和电流控制型PWM 整流器,并分析其优缺点。
在此基础上,我们将进一步探索新兴的控制策略,如基于预测控制的PWM整流器、基于智能算法的PWM整流器等,以期在提高PWM整流器性能、优化系统效率和增强系统稳定性方面取得突破。
本文将通过具体的实验和仿真研究,验证所提出控制策略的有效性和可行性。
通过对比实验数据和分析结果,我们将评估不同控制策略在实际应用中的表现,为PWM整流器的设计和优化提供有力支持。
本文的研究成果将对PWM整流器的进一步发展和应用推广具有重要的指导意义。
二、PWM整流器控制技术基础脉冲宽度调制(PWM)整流器控制技术是现代电力电子领域中的一种重要技术,其核心在于通过控制开关管的导通与关断时间,实现对整流器输出电压或电流的精确控制。
PWM整流器控制技术的基础在于对整流器工作原理、PWM调制原理以及控制策略的理解与掌握。
PWM整流器的工作原理基于电力电子变换器的基本思想,通过控制开关管的通断,实现对整流器输出电压或电流的调节。
与传统的线性整流器相比,PWM整流器具有更高的效率、更好的动态响应能力以及更强的抗干扰能力。
PWM调制原理是PWM整流器控制技术的核心。
PWM调制通过改变开关管在一个周期内的导通时间(即脉冲宽度),从而实现对整流器输出电压或电流的精确控制。
PWM调制具有简单、易实现、调节范围宽等优点,因此在电力电子领域得到了广泛应用。
PWM整流器是什么?及PWM整流器控制原理

PWM整流器是什么?及PWM整流器控制原理电子元器件是推动国民经济发展的重要因素之一,然而在这个电子科技技术日新月异的时代,消费者对电子类的产品需求更是呈现出的多元化发展趋势,同时产品对电子元器件的性能有了更高的要求。
而作为被广泛应用的PWM整流器也不例外。
那么什么是PWM整流器?及PWM整流器控制原理是什么?华强北IC代购网为你一一解答。
PWM整流器是什么随着功率半导体开关器件技术的进步,电力电子变流装置得到飞速的发展,从而衍生出了以脉宽调制(PWM)为基础的各类变流装置,例如变频器、逆变电源、高频开关电源等。
经过几十年的研究与发展,PWM整流器技术已日趋成熟。
根据其能量是否可双向流动从而派生出可逆PWM整流器和不可逆PWM整流器;而其拓扑结构从最初的单向、三相电路发展到多相组合以及多电平拓扑电路;在控制开关方面,软开关调制逐渐开始代替单纯的硬开关调制;其功率等级从千瓦级发展到兆瓦级。
PWM整流器基本控制原理PWM整流器的控制目标有两个:一是使直流侧输出电压稳定;二是使交流侧输入功率因数为1或可控。
为了方便大家查阅,华强北IC代购网对PWM整流器基本控制原理归纳出以下几点:1、直接电流控制依据PWM整流器的动态方程,直接电流可对瞬时电流的波形进行高精度的控制,具有很好的动态性能,并且能够有效的防止过载和实现过流保护。
另一方面,直接电流控制对PWM整流器的控制都是采用双向闭环控制,通过直流母线电压的调节得到交流电流的电值,从而达到减小误差和产生调制的作用。
优点:良好的动态性能、高精度、低误差。
2、间接电流控制间接电流控制也成为幅相控制,通过控制整流桥交流侧击波电压的幅度值达到控制输入PWM整流器电流的目的。
与直接电流控制不一样,间接电流控制是通过开环实现对输入电流进行控制。
优点:成本低、结构简单;缺点:较大电流超调、电流震荡剧烈。
3、预测电流控制预测电流控制其本质就是采用模型误差反馈校正,根据PWM整流器实际电流的误差和电路参数等信息,计算出合适的电压矢量。
pwm镇流器工作原理

pwm镇流器工作原理
PWM镇流器(Pulse Width Modulation Rectifier)是一种通过
改变开关元件(如晶体管)的导通时间比例,从而实现对电流或电压的控制的电路。
PWM镇流器的主要工作原理如下:
1. 输入电压通过绕组产生交流电压。
将输入电压与变压器绕组相连接,通过绕组感应电磁感应产生交变电压。
2. 交流电压通过整流电路转换为直流电压。
在PWM镇流器中,通常采用全桥式整流电路,将交流电压转换为直流电压。
3. 控制器控制开关元件的导通比例。
PWM镇流器通过控制开
关元件(如晶体管)的导通时间比例,来调整输出电流或电压的大小。
控制器通常采用微处理器或DSP芯片,通过PWM
信号控制开关元件的导通时间。
4. 开关元件控制电流流向。
开关元件根据控制器输出的PWM
信号的高低电平,控制导通或断开电流的通路,从而控制电流流向。
当开关元件导通时,电流通过开关元件流入负载;当开关元件断开时,电流通过恢复二极管流入负载。
通过以上工作原理,PWM镇流器可以实现对输入电流或电压
的精确控制,从而满足不同负载的需求。
PWM整流器PI参数设计

PWM整流器PI参数设计一、本文概述随着电力电子技术的快速发展,脉冲宽度调制(PWM)整流器在电力系统中得到了广泛应用。
PWM整流器以其高效、稳定和可控的特点,成为现代电能质量管理和电机驱动领域的重要组成部分。
PI参数设计作为PWM整流器控制策略中的关键环节,对整流器的性能和稳定性起着至关重要的作用。
本文旨在探讨PWM整流器PI参数设计的基本原理、方法及其在实际应用中的优化策略。
本文将简要介绍PWM整流器的基本原理及其在现代电力系统中的应用背景。
接着,重点分析PI参数设计在PWM整流器控制中的重要性,并详细阐述PI参数设计的基本原理和方法,包括比例系数和积分系数的选取原则、参数调整策略等。
还将探讨PI参数设计过程中需要考虑的关键因素,如系统稳定性、动态响应速度以及抗干扰能力等。
本文将结合实际应用案例,分析PI参数设计在实际应用中的优化策略,为PWM整流器的设计与应用提供有益的参考。
通过本文的研究,旨在为相关领域的研究人员和工程师提供PWM整流器PI参数设计的理论支持和实践指导,推动PWM整流器技术的进一步发展。
二、PWM整流器的基本原理PWM整流器,即脉冲宽度调制整流器,是一种先进的电力电子装置,其基本原理是通过对输入电流的脉冲宽度进行调制,实现输入电流波形与电网电压波形的同步,并使其接近正弦波,从而实现高功率因数整流。
PWM整流器通常采用三相桥式电路结构,包括六个开关管,每个开关管由一个绝缘栅双极晶体管(IGBT)或其他类型的全控型器件组成。
通过对这些开关管进行适当的控制,可以实现对输入电流的精确控制。
PWM整流器的工作原理可以分为两个阶段:整流阶段和逆变阶段。
在整流阶段,PWM整流器将输入的交流电转换为直流电,同时实现对输入电流的精确控制。
在逆变阶段,PWM整流器将直流电逆变为交流电,以供给负载使用。
为了实现输入电流的高功率因数,PWM整流器需要采用适当的控制策略。
其中,PI控制是一种常见的控制策略,它通过对输入电流的误差进行积分和比例运算,生成控制信号,从而实现对输入电流的精确控制。
第7章PWM整流器

u AB U d
id
方向为负
id负方向电流,可能的通路是T1和T4导通或T2和T3导通。
在T1和T4导通时,
id 经T4、T1流向电源 us , is
方向为正
uAB -Ud
dis 在模式二和模式三时都有通路的电压方程: us L = U d dt
当PWM整流器采取单极倍频正弦脉宽调制时(参见图5.9), T1~T4脉冲驱动序列如图7.5a,在区段1驱动T1、T3,有正向 i s 经D1、T3使AB端短路,电感电流上升,电感储能增加(模 式一)。区段2时T1、T4驱动,正向 i s 经D1、D4流向负载, T1、T4受反向电压,虽被驱动但不能导通(模式三)。区段3 驱动T2和T4,但是D1与D4导通AB端短路(模式一),如此进 行得到AB两端电压波形如图7.5b,图7.5c为交流侧电流波形, 调节驱动脉冲的宽度,可以调节 u AB 基波分量的幅值, iS 也随 之改变,直流侧的输出平均电压 U d 也随驱动脉冲宽度而改变。
器得到电流的幅值信号 I g
, I g iT 得到电流 iL
的给定信号
i g 是幅值为 I g 的正弦半波。 实测电感电流 iL 得反馈信号i f
经滞环控制器比较产生开关管 T的驱动脉冲,使 iL 跟踪 i g 变化 在U g U f 时PI调节器输出 增加 I g ,经滞环控制使 iL 幅值提高,在 T导通时电感有 较大电流,电感L储能增加。 在T关断时 ,ud 与较高电感电 动势共同给电容C充电,使电 容电压和输出电压U o 增加
小
结
本章介绍了单相不控整流器功率因数校正 和PWM可控整流器,单相桥式不控整流器嵌 入Boost升压电路后可以实现网侧单位功率 因数控制,改善电网质量,单相不控整流器 功率因数校正已在LED光源中大量使用。 PWM整流器采用高频PWM调制,可以实 现电能双向流动,既可以整流也可以逆变, 与晶闸管整流器相比可以改善交流侧谐波, 提高功率因数,是重要的电能变换和控制技 术,已广泛应用在光伏发电、风力发电和电 网无功补偿,潮流控制等方面。
PWM整流器分类介绍

1.PWM产生的背景
• 传统的整流方式通常采用二极管不可控整流方式或者 晶闸管相控整流方式。传统的整流器存在如下缺点:
• (1)整流器从电网吸取畸变的电流,造成电网的谐波 污染; • (2)由于整流器件结构的单向性,直流侧能量无法回 馈电网; • (3)整流电路在深控状态下网侧功率因数低; • (4)由于整流器件的不可控或不完全可控,系统动态 响应慢;
• 以下将详细介绍: • (1)基于虚拟磁链的电压型PWM整流器直 接功率控制:
(2)基于电压定向的电压型PWM整流器 控制:
• 如果U在复平面上匀速旋转,就对应得到了三相对称 的正弦量。受到开关频率和矢量组合限制, U的等效 矢量只能以某一步进速度旋转因此矢量端点的运动轨 迹是一个多边形准圆轨迹,PWM开关频率越高,步进 间隔越小,多边形准圆轨迹就越接近于圆形。
• 特点:
• 这种高功率变换器主要损耗是开关损耗,因此,优化 开关逻辑,降低开关损耗成为SVPWM技术的关键.
2 国际,国内研究现状
• 从20世纪80年代后期开始,高功率因数PWM整流技术就己经 成为国内外研究的热点。目前开发出的新型高功率因数PWM 整流器可以以多种形式应用于电力系统。 • (1)中小功率的整流器主要应用于高精度、要求动态响应 快的AC/DC转换,如充电电源; • (2)中大功率的整流器主要应用在传动和UPS领域; • 产品如许继电源公司研制的30~100kVA三相输出和30~50 kVA单相输出的大功率UPS; • 在传动领域,富士电机公司研制出了新型双PWM交流调速 系统:大功率的整流器可以应用于柔性交流输电系统(FACT S)和新型静止无功发生器(AVSG)等领域。
4.系统的控制策略
• 从瞬态电流的控制角度上根据是否直接检测瞬态输入 电流作为反馈控制电流可分为:直接和间接电流控制。 • (1)间接电流控制(Indirect Current Control)又称 为幅相控制,系统电流控制是建立在稳态矢量关系基 础上的,通过对整流器交流侧电压基波分量的幅值和 相位进行控制,间接实现对网侧电流的控制。 • 优点:不需要电流互感器,控制简单,易于实现。
pwm整流器及其控制策略的研究

pwm整流器及其控制策略的研究一、引言PWM整流器是一种电力电子器件,广泛应用于直流电源的设计,同时也可用于交流电源的变换。
PWM整流器通过高频开关控制电源输出电压波形的占空比,使得电源输出的直流电压更加平滑稳定,同时也能够减小输出电压的波纹。
二、PWM整流器的结构PWM整流器的基本结构由功率电子器件、控制电路和滤波电路等三个部分组成,其中:1. 功率电子器件:主要有IGBT、MOSFET、GTO等器件。
2. 控制电路:控制器通过对功率电子器件的控制信号进行调节,控制输出直流电压的大小和波形。
3. 滤波电路:根据输出直流电压的需求,选择合适的电容和电感进行滤波。
三、PWM整流器的控制策略1. 均值电流模式控制(Average Current Mode Control):该控制策略通过控制电感电流的平均值,来控制输出电压和电流。
该控制策略的优点在于可控制电流的安稳度,但其缺点在于其输出电压的稳定性不如其他控制策略。
2. 直流辅助模式控制(DCM Control):该控制策略将直流辅助电压加入到PWM波形的最低点,以减小输出电压的波动,并提高输出电压的质量。
3. 峰值电流模式控制(Peak Current Mode Control):该控制策略通过对电感电流的峰值进行控制,使得输出电压稳定性更高、响应更快。
但是,该控制策略需要进行稳定性分析,以确保控制系统的稳定性。
4. 滑模模式控制(Sliding Mode Control):该控制策略通过反馈控制的形式,使得输出电压和电流更加稳定。
该控制策略要求控制系统的响应速度较快,且具有较好的响应精度。
四、PWM整流器的优点和局限性1. 优点:a) 可以控制输出电压和电流,输出直流电压更加平滑稳定。
b) 所需的器件数量和功率损耗小,节约了电力资源。
c) 具有短路保护、过温保护等多种保护功能,大大增强了电源供应的可靠性。
2. 局限性:a) 控制系统复杂度较高,需要对控制策略进行稳定性分析和优化等操作。
PWM整流器及其控制策略的研究

PWM整流器及其控制策略的研究一、概述PWM整流器是现代电力电子系统中不可或缺的一部分,它是一种能够将交流电转换为直流电的电力电子装置。
其主要作用是将交流电源中的电能转换为直流电源,以供电力电子系统中的各种负载使用。
PWM整流器的基本原理是利用开关管的开关控制,将交流电源中的电能转换为直流电源。
在PWM整流器中,开关管的开关频率非常高,一般在几千赫兹到几十千赫兹之间,这样可以有效地减小开关管的损耗,提高整流器的效率。
同时,PWM整流器还可以通过控制开关管的占空比来调节输出电压和电流,从而实现对负载的精确控制。
在PWM整流器的控制策略中,最常用的是基于电流控制的方法。
这种方法主要是通过对电流进行反馈控制,来实现对整流器输出电压和电流的精确控制。
在实际应用中,电流控制方法可以分为两种,一种是基于平均电流控制的方法,另一种是基于瞬时电流控制的方法。
还有其他控制策略,如基于电压控制的方法、基于功率控制的方法等。
这些方法各有优缺点,需要根据具体的应用场景来选择合适的控制策略。
随着电力电子技术的发展,PWM整流器在新能源、电力牵引、电力电子变换等领域的应用越来越广泛。
其具有高效率、低谐波、快速响应等优点,但其控制策略的设计是整个系统性能的关键。
对PWM整流器及其控制策略进行研究具有重要意义。
1. PWM整流器概述PWM(脉冲宽度调制)整流器是一种先进的电力电子装置,其主要功能是将交流(AC)电源转换为直流(DC)电源。
与传统的线性整流器相比,PWM整流器具有更高的效率和更好的动态性能。
这种整流器利用PWM技术,通过快速开关电力电子开关(如IGBT或MOSFET)来控制电流的波形,从而实现对输入电流的有效控制。
PWM整流器主要由三相桥式电路、滤波器和控制电路组成。
三相桥式电路负责将AC电源转换为DC电源,滤波器则用于滤除输出电压中的高频谐波,而控制电路则负责根据输入电压和负载条件调整PWM 信号的占空比,从而实现对输出电压和电流的精确控制。
三相电压型PWM整流器控制技术综述

三相电压型PWM整流器控制技术综述一、本文概述随着电力电子技术的不断发展,三相电压型PWM整流器作为一种高效、节能的电能转换装置,在电力系统中得到了广泛应用。
该类整流器采用脉宽调制(PWM)技术,通过控制开关管的通断,实现对输入电流波形的精确控制,从而满足电网对谐波抑制、功率因数校正等要求。
本文旨在对三相电压型PWM整流器控制技术进行综述,分析其基本原理、研究现状和发展趋势,为相关领域的研究和实践提供参考。
本文首先介绍了三相电压型PWM整流器的基本结构和工作原理,包括其主电路拓扑、PWM控制技术以及电流控制策略等。
在此基础上,综述了当前国内外在三相电压型PWM整流器控制技术研究方面的主要成果和进展,包括调制策略优化、电流控制算法改进、系统稳定性分析等方面。
本文还对三相电压型PWM整流器在实际应用中所面临的问题和挑战进行了分析和讨论,如电网电压波动、负载变化等因素对整流器性能的影响。
本文展望了三相电压型PWM整流器控制技术的发展趋势,提出了未来研究的方向和重点,包括高效率、高可靠性、智能化控制等方面。
通过对三相电压型PWM整流器控制技术的综述和分析,本文旨在为相关领域的研究和实践提供有益的参考和借鉴。
二、三相电压型整流器的基本原理三相电压型PWM整流器是一种高效、可控的电力电子设备,它采用脉宽调制(PWM)技术,实现对交流电源的高效整流,将交流电转换为直流电。
整流器主要由三相桥式电路、PWM控制器、滤波电路等部分组成。
三相桥式电路是整流器的核心部分,由六个开关管(通常是IGBT 或MOSFET)组成,每两个开关管连接在一起形成一个桥臂,共三个桥臂。
通过控制开关管的通断,可以实现将三相交流电源整流为直流电源。
PWM控制器是整流器的控制核心,它根据输入电压、电流等信号,生成相应的PWM控制信号,控制开关管的通断时间和顺序,从而实现对输出电压、电流等参数的精确控制。
PWM控制器通常采用数字信号处理器(DSP)或微控制器(MCU)等实现,具有高精度、快速响应等特点。
PWM整流器及其控制策略的研究

PWM整流器及其控制策略的研究随着电力电子技术的发展,PWM整流器在新能源、电力牵引、电力电子变换等领域的应用越来越广泛。
PWM整流器具有高效率、低谐波、快速响应等优点,但其控制策略的设计是整个系统性能的关键。
本文将对PWM整流器的控制策略进行详细的研究和分析。
PWM整流器采用全控型器件,通过脉冲宽度调制(PWM)控制整流器输入电流的幅值和相位,实现高功率因数和低谐波电流的目标。
其电路结构包括三相电压型PWM整流器、三相电流型PWM整流器以及交-直-交PWM整流器等。
开关控制策略通过控制开关管的通断时间来实现电流的控制。
该策略具有实现简单、动态响应快等优点,但开关的通断会造成较大的功耗损失,且在负载突变时响应速度较慢。
PWM控制策略通过调节脉冲宽度实现对电流的控制。
该策略具有谐波含量低、控制精度高等优点,且在负载突变时响应速度快。
但PWM控制需要较高的采样精度和计算能力,且在实际应用中需要考量的参数较多。
滑模控制策略通过将系统状态引导至设定的滑模面上实现电流的控制。
该策略具有对参数变化和外部扰动不敏感、无需精确的系统模型等优点,且可以实现无静差跟踪。
但在实际应用中,滑模控制的计算实现较为复杂,且在实际系统中应用难度较大。
为了验证上述控制策略的效果,我们设计了一个基于电压型PWM整流器的实验系统。
实验中,我们采用了MATLAB/Simulink进行系统建模和仿真,并使用高性能DSP实现了实时控制。
实验结果表明,PWM控制策略在稳态和动态性能上都优于开关控制策略和滑模控制策略。
具体来说,PWM控制策略在负载突变时的响应速度较快,且可以实现更高的系统效率。
本文对PWM整流器的控制策略进行了详细的研究。
通过对比分析开关控制策略、PWM控制策略和滑模控制策略的优缺点和应用场景,发现PWM控制策略在许多方面都表现出优越的性能。
在实验设计和结果分析中,我们验证了PWM控制策略的优点。
展望未来,PWM整流器控制策略的研究将更加深入。
PWM整流器简介

模式1(100)
模式2(010)
三相半桥整流器PWM分析
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式3(110)
模式4(001)
三相半桥整流器PWM分析
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式5(101)
三相半桥整流器PWM分析
• 开关模式 三相半桥PWM整流器有三个桥臂,为了进 行PWM控制,需对三个桥臂施加幅值、频 率相等,相位互差120°的三相对称正弦波 调制信号。 每相桥臂有2种开关模式,即上桥臂导通或 下桥臂导通,因此三相共有8种开关模式。
三相半桥整流器PWM分析
• 开关函数
三相半桥整流器PWM分析
E:输入电压矢量 VL:电感电压矢量 V:整流器交流侧电压矢量 I:输入电流矢量
PWM整流器工作原理
• 四象限运行
(a)
(b)
(c)
(a):正电阻特性运行 (b):纯电感特性运行 (c):纯电容特性运行 (d):负电阻特性运行
(d)
PWM整流器工作原理
• 四象限运行 通过控制整流器交流侧电压,就可以控制 输入电流,实现四象限运行。
• IGBT参数设计 与三相逆变器一致 • LCL和母线电容参数设计
PWM整流器简介
硬件部 2011-11-23
PWM整流器分类
半桥 单相 电压型 PWM整流器 电流型 三相 全桥 全桥 半桥
PWM整流器拓扑结构
单相半桥
单相全桥
PWM整流器拓扑结构
三相半桥
PWM整流器拓扑结构
三相全桥
pwm整流器工作原理

pwm整流器工作原理
PWM整流器是一种电子设备,用于将交流电信号转换成直流
电信号。
它基于脉冲宽度调制(PWM)的原理工作。
工作原理如下:
1. 输入信号:PWM整流器的输入是交流电信号,通常为
50Hz或60Hz的正弦波。
2. 整流:通过使用扫描开关和滤波电容,交流电信号被整流成脉冲信号。
3. PWM调制:脉冲信号的宽度通过PWM调制技术进行控制。
PWM调制器根据需要生成一个高频的方波信号,并与整流得
到的脉冲信号进行比较。
4. 控制器反馈:PWM整流器的控制器根据PWM调制器输出
的方波信号与脉冲信号的比较结果,对脉宽进行调整。
5. 输出滤波:调整后的脉冲信号通过输出滤波电路进行滤波,以去除高频噪音。
6. 输出电压:最终输出的信号是直流电信号,它的波形与PWM调制信号的调制比例成正比。
整个过程中,PWM整流器的控制器不断地监测输出电压,并
做出相应的调整,以使输出电压稳定在预设的数值。
这种控制
方式允许PWM整流器在输入电压和负载变化时保持较稳定的输出电压。
总的来说,PWM整流器通过对输入交流电信号进行整流、PWM调制和控制器反馈等步骤,将其转换成稳定的直流电信号。
pwm整流器等效数学方程

pwm整流器等效数学方程PWM(Pulse Width Modulation)是脉宽调制技术,通过控制信号的脉冲宽度来调节输出电压或电流的平均值。
PWM整流器是一种常用的电子器件,可以将交流电转换为直流电。
PWM整流器的基本原理是通过开关器件,如晶体管或MOSFET,以高频脉冲的形式控制电流的传导时间。
这些开关器件在导通状态下,允许电流流过,而在非导通状态下,阻止电流流动。
通过改变脉冲的宽度和频率,可以调节输出电压的大小。
脉宽调制技术的数学方程主要涉及脉冲宽度和频率的关系,以及输出电压与输入电压的转换。
1. 脉冲宽度与占空比:脉冲宽度即脉冲的持续时间,通常用占空比(Duty Cycle)来表示。
占空比定义为脉冲宽度与周期的比值。
占空比可以通过以下公式计算:占空比(D)= (脉冲宽度(T_on)/ 脉冲周期(T)) x 100%2. 脉冲频率与周期:脉冲频率表示单位时间内脉冲的个数。
周期(T)表示一个完整脉冲的时间。
频率与周期之间的关系为:频率(f)= 1 / 周期(T)3. 输出电压平均值计算:输出电压的平均值主要取决于脉冲宽度和周期。
平均输出电压(Vout_average)= 输入电压(Vin) x 占空比(Duty Cycle)4. 输出电流计算:输出电流的平均值也可以通过脉冲宽度和周期计算得到。
平均输出电流(Iout_average)= 输入电流(Iin) x 占空比(Duty Cycle)5. 效率计算:PWM整流器的效率是指输出功率与输入功率之间的比值。
效率(η)= 输出功率 / 输入功率上述方程给出了PWM整流器的数学计算基础。
通过调整占空比、周期和输入电压,可以实现对输出电压和电流的精确控制。
通过这些方程,工程师可以进行PWM整流器的设计、分析和优化。
需要注意的是,实际的PWM整流器设计还涉及到一些非线性因素,如开关器件的失效电压和开关损耗等,这些因素需要进一步的考虑和优化,以提高整流器的效率和可靠性。
PWM整流器

三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、三相PWM整流器的数学模型
随着PWM整流器技术的发展,已设计出多种PWM整流器。尽 管种类很多,但基本的分类方法就是将PWM整流器分类成电压 源型和电流源型两大类。 相对于电流源型PWM整流器而言,电压源型PWM整流器有较 快的响应速度,且易于实现,所以目前PWM整流器一般采用电 压源型PWM整流电路。 如图2-5所示的三相VSR三线六开关主电路拓扑结构。为了论述 方便,以下把这种整流器简称三相VSR。
二、PWM整流器研究现状
现在对控制技术的研究与发展是决定PWM整流器发展的关 键因素,为了使网侧电流波形能够很好地跟踪电压波形,网侧 电流的控制显得十分重要。 电压型PWM整流器网侧电流控制策略分为两类:一类是间接 电流控制策略;另一类是目前占主要地位的直接电流控制策略 。 间接电流控制实际上就是所谓的幅相电流控制。这种控制方 案稳定性不好,电流动态响应慢,对系统参数变化敏感,因此 它已逐步被直接电流控制策略所代替。 直接电流控制相对于间接电流控制有着快速电流响应和好的 鲁棒性。具体包括:基于静止坐标的P式。 在此基础上近些年还新提出了包括无电网电压传感器、基于 虚拟磁链定向以及结合这两种方法的控制方式。
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三、PWM整流器的基本原理
三相pwm整流器工作原理

三相pwm整流器工作原理三相PWM整流器是一种常见的电力电子器件,用于将交流电转换为直流电。
它的工作原理是通过PWM技术对三相交流电进行控制,实现对输出直流电的调节和控制。
我们需要了解什么是PWM技术。
PWM全称为Pulse Width Modulation,即脉宽调制技术。
它利用了脉冲信号的高低电平和脉冲宽度之间的关系,通过改变脉冲的宽度来控制输出电压或电流的大小。
在三相PWM整流器中,PWM技术被应用于控制交流电的整流过程。
三相PWM整流器由三个桥式整流电路组成,分别对应着三相交流电的三个相。
每个桥式整流电路由两个开关管组成,分别为上桥臂和下桥臂。
开关管的导通与非导通控制由PWM信号来实现,通过改变开关管的导通时间来控制输出直流电的大小。
在工作过程中,三相交流电经过三个桥式整流电路后,经过滤波电路得到了平滑的直流电。
PWM控制器会对三个桥式整流电路中的开关管进行控制,根据输入的控制信号和反馈信号来调整开关管的导通时间,从而控制输出直流电的电压和电流。
具体地说,PWM控制器会根据输入的控制信号生成相应的PWM 信号。
PWM信号的频率通常很高,一般在几十kHz或者更高,这样可以减小输出的脉动电压。
而PWM信号的占空比则决定了开关管导通的时间比例。
占空比越大,开关管导通的时间越长,输出直流电的电压和电流越大;占空比越小,开关管导通的时间越短,输出直流电的电压和电流越小。
三相PWM整流器的优势在于其输出电压和电流的可调性和稳定性。
通过控制PWM信号的占空比,可以精确地控制输出直流电的大小,满足各种应用场景的需求。
而且,PWM技术可以提供较高的效率,减少能量的损耗。
总结起来,三相PWM整流器通过PWM技术对三相交流电进行控制,实现了对输出直流电的调节和控制。
它由三个桥式整流电路组成,通过改变开关管的导通时间来控制输出直流电的大小。
通过控制PWM信号的频率和占空比,可以精确地控制输出直流电的电压和电流。
PWM整流技术综述

PWM整流技术综述摘要:PWM整流器以其优越的性能和潜在的优势得到了广泛地应用。
本文介绍了各种PWM方法及在PWM整流器中的实现和应用,并就目前PWM整流技术在主电路结构及其控制策略方面的研究现状进行了综述。
关键词:PWM;整流器;电压源型;电流源型0引言PWM技术从最初追求电压波形正弦,到电流波形正弦,再到磁通的正弦,取得了突飞猛进的发展。
而PWM整流器具有输入电流正弦,谐波含量低,功率因数高及双向能量流动,体积小及重量轻等特点,在功率因数补偿,电能回馈,有源滤波等领域得到越来越广泛的应用。
按是否具有能量回馈功能,PWM整流器可分为无能量回馈整流器和有能量回馈整流器;按主电路拓扑结构和外特性分,PWM整流器可分为电压源型和电流源型高频整流器。
近年来,为了提高PWM整流器性能,在控制策略上有不少现代控制方法和技术在整流器中的应用研究,如基于Lya—Punov稳定理论的控制策略;基于现代控制理论的模糊控制、滑模变结构控制策略和基于人工神经网络理论的控制策略等。
本文从整流器的主电路拓扑结构和控制策略着手,对该项技术进行了综述。
1PWM整流器主电路拓扑结构和工作原理PWM整流器按其主电路拓扑结构分为单开关与多开关型;根据输入电源相数分为单相和三相PWM整流电路;按电路结构和特性分为电压源型和电流源型。
由于单相PWM整流器功率小,应用少,下面只介绍目前在实际应用广泛的三相PWM整流器。
1.1无能量回馈功能的整流器无能量回馈型单管三相PWM整流电路如图1所示,(a)为boost型,(b)为buck型,其最大的优点是简单、经济。
由于仅有一个可控元件,要使三相电流均为正弦波且与电压同相位是十分困难的,一般这种电路只工作在DCM方式(不连续电流模式),这时每相电流峰值和每相电压成正比,每相电流峰值为正弦,由于电流不连续,自然形成零电流开通。
开关管在关断时,要关断三相电流,所以关断损耗大,并且随着输出功率增大,输入电流的峰值迅速增加,电流应力问题更加突出。
pwm整流器的工作状态

pwm整流器的工作状态PWM(脉宽调制)整流器是一种电力电子装置,用于将交流电转换为直流电。
它通过调节输入电压的脉冲宽度来控制输出电压的大小。
本文将逐步介绍PWM整流器的工作状态及原理,并详细解释如何实现整流功能。
第一步:PWM整流器的基本原理PWM整流器是一种利用半导体开关元件(如晶体管或MOSFET)的工作周期性和具有连续导通时间来控制电流或电压的装置。
其基本原理可分为两个部分:脉宽调制和整流功能。
脉宽调制(PWM)是一种通过调节周期性脉冲的宽度来控制平均输出电压或电流的技术。
传统电力系统中,直流电源常用于工业设备和电子设备。
然而,交流电源具有更高的传输效率和便利性,因此需要将交流电转换为直流电以供电子设备使用。
这就是PWM整流器的作用。
整流是指将交流电的负半周期通过有源开关控制为直流电的过程。
在PWM整流器中,半导体开关元件根据输入信号的脉冲宽度来切换通断状态,从而控制电流流过负载。
在负半周期的导通状态下,开关元件导通,负载电流流过,并由滤波电容存储电能;而在负半周期的断开状态下,开关元件截断,电容释放储存的电能,从而保持直流输出电压。
第二步:PWM整流器的工作步骤PWM整流器的工作步骤可分为以下几个阶段:输入滤波、输入整流、PWM 调制、输出滤波和输出稳压。
1. 输入滤波:首先,将输入的交流电经过电感和滤波电容进行滤波。
电感和滤波电容用于去除交流电中的高频噪音,并将其转换为平稳的直流电流。
2. 输入整流:滤波后的交流电通过整流电路,交流电被转换为脉冲电流。
整流电路通常采用桥式整流电路,该电路由四个二极管构成,使得负半周期的电流变为正半周期的电流。
这样,输出的脉冲电流将用于后续的PWM调制。
3. PWM调制:PWM调制器控制半导体开关元件(如晶体管或MOSFET)的导通状态和通断周期。
通常,PWM调制器通过比较器将输入信号与一个锯齿波进行比较,产生脉冲宽度调制信号。
脉冲宽度与输入信号的功率需求成正比。
PWM整流器

Cdd utdcsaiasbibscicudcR LeL
id ciasaibsbicsc
四、三相PWM整流器数学模型
LdditaRiaea(vaNvNO)
vaN udcsa
Ld ditaRiaea(udcsavN0) 三相平衡则
Ri
u
C
du dc dt
3 2 (i s
i
s
)
u dc RL
四、三相PWM整流器数学模型
三相VSR在同步旋转坐标系下的数学模型
根据同步旋转变换矩阵,把两相静止坐标系变换到两相 同步旋转坐标系:
L
diq dt
Ri q
Li d
ud
L
did dt
ed
Ri d
Li q u q
四、三相PWM整流器数学模型
Ldik
dt
Rik
ek
udcsk
1 3
sj
ja,b,c
Cddudtc
iksk
ka,b,c
udc RL
R
0
0
( sa
1 3
k a ,b,c
sk
)
Z X A X B EA
0
R
0
( sb
1 3
k a ,b,c
sk
)
0
0
R
(sc
1 3
直流侧电容可滤除直流电流中高次谐波分量,直流分量流 向负载侧,减少直流侧纹波,从而使交流侧电流正弦化,提高 功率因数。
三、PWM整流器工作原理
这说明PWM整流电路可实现能量正反两方向流动,即 既可以运行在整流状态,从交流侧向直流侧输送能量;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v jN (t ) s j vdc
idc (t ) ia (t )sa ib (t )sb ic (t )sc
三相半桥整流器PWM分析
• 直流侧电流波形
三相半桥整流器PWM分析
• 直流侧电压 由于直流侧电压idc(t)为PWM波形,因而直 流侧电压必然脉动,直流侧电容一方面旁 路了idc(t)的谐波分量,另一方面抑制了直流 电压的波动。直流回路的方程为
PWM整流器简介
硬件部 2011-11-23
PWM整流器分类
半桥 单相 电压型 PWM整流器 电流型 三相 全桥 全桥 半桥
PWM整流器拓扑结构
单相半桥
单相全桥
PWM整流器拓扑结构
三相半桥
PWM整流器拓扑结构
三相全桥
PWM整流器工作原理
• 交流侧矢量关系
E V VL VL LI
• IGBT参数设计 与三相逆变器一致 • LCL和母线电容参数设计
三相PWM整流的交流侧相电压在调制过程中取值±1/3vdc,±2/3vdc, 0
三相半桥整流器PWM分析
• 交流侧电压波形
三相半桥整流器PWM分析
• 电感两端电压
vLj (t ) e j (t ) v j 0 (t )
j=a, b, c
三相半桥整流器PWM分析
• 输入电流 输入电流为电感电压的积分
dvdc (t ) vdc (t ) idc (t ) C dt RL
三相半桥整流器PWM分析
• 直流侧电压波形 直流侧电流到直流侧电压的传递函数为一 阶惯性环节,惯性时间常数RLC取值越大, 直流侧电压脉动越小,波形如下
Vdc ( s) RL I dc ( s) 1 RLC
三相半桥整流器电路设计
i j (t ) 1 1 v ( t ) dt [e j (t ) v j 0 (t )]dt Lj L L
j=a, b, c
三相半桥整流器PWM分析
• 直流侧电流 以单位功率因数,整流状态为例,由交、 直流侧功率平衡关系得
j a ,b , c
i (t )v
j
jN
(t ) idc (t )vdc
三相半桥整流器PWM分析
v a0 (t ) vb0 (t ) vc0 (t ) 0 vaN (t ) vbN (t ) vcN (t ) vN 0 (t ) 3 v jN (t ) s j vdc j=a, b, c 2 s a s b sc v a 0 (t ) vdc 3
模式6(011)
三相半桥整流器PWM分析
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式7(111)
模式8(000)
三相半桥整流器PWM分析
• 交流侧电压
电压方程:
v a 0 (t ) vaN (t ) vN 0 (t ) v b 0 (t ) vbN (t ) vN 0 (t ) v c 0 (t ) vcN (t ) vN 0 (t )
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式1(100)
模式2(010)
三相半桥整流器PWM分析
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式3(110)
模式4(001)
三相半桥整流器PWM分析
• 不同开关模式的电流回路(ia>0,ib<0,ic>0)
模式5(101)
E:输入电压矢量 VL:电感电压矢量 V:整流器交流侧电压矢量 I:输入电流矢量
PWM整流器工作原理
• 四象限运行
(a)
(b)
(c)
(a):正电阻特性运行 (b):纯电感特性运行 (c):纯电容特性运行 Байду номын сангаасd):负电阻特性运行
(d)
PWM整流器工作原理
• 四象限运行 通过控制整流器交流侧电压,就可以控制 输入电流,实现四象限运行。
三相半桥整流器PWM分析
• 开关模式 三相半桥PWM整流器有三个桥臂,为了进 行PWM控制,需对三个桥臂施加幅值、频 率相等,相位互差120°的三相对称正弦波 调制信号。 每相桥臂有2种开关模式,即上桥臂导通或 下桥臂导通,因此三相共有8种开关模式。
三相半桥整流器PWM分析
• 开关函数
三相半桥整流器PWM分析