二项式定理的应用—赋值法

合集下载

2025年新人教版高考数学一轮复习讲义 第十章 §10.2 二项式定理

2025年新人教版高考数学一轮复习讲义  第十章 §10.2 二项式定理
因为(x-2y)8 的展开式中含 x6y2 的项为 C28x6(-2y)2=112x6y2, 所以(x-2y)8的展开式中x6y2的系数为112.
(2)已知x-
a
5
x
的展开式中
x5
的系数为
A,x2
的系数为
B,若
A+B=11,
则 a=__±_1___.
x-
a
5
x
的展开式的通项为
Tk+1=Ck5x5-k-
axk=
(
a)k
C5k
5
x
3 2
k
.
由 5-32k=5,得 k=0, 由 5-32k=2,得 k=2, 所以 A=C05×(-a)0=1,B=C25×(-a)2=10a2,
则由1+10a2=11,解得a=±1.
命题点2 形如(a+b)m(c+d)n(m,n∈N*)的展开式 例 2 (1)(2022·新高考全国Ⅰ)1-yx(x+y)8 的展开式中 x2y6 的系数为 __-__2_8__(用数字作答).
2025年新人教版高考数学一轮复习讲义
第十章
§10.2 二项式定理
课标要求
能用多项式运算法则和计数原理证明二项式定理,会用二项式定理 解决与二项展开式有关的简单问题.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.二项式定理
二项式定理 (a+b)n= C0nan+C1nan-1b1+…+Cknan-kbk+…+Cnnbn (n∈N*)
微拓展
③有 1 个因式出一个 2x,2 个因式各出一个-3x2,剩余 2 个因式各出 一个 1,这样的方式有 C15C24种,对应的项为 C15×2x×C24×(-3x2)2; 所以含 x5 的项的系数为 C55×25+C35×23×C12×(-3)+C15×2×C42× (-3)2=92.

二项式定理难点赋值法-带答案

二项式定理难点赋值法-带答案
【详解】
因为 a0 , a2 , a4 , a6 , a8 为正, a1 , a3 , a5 , a7 , a9 为负,
令 x 1 ,得 1 39 a0 a1 a2 a3 a8 a9 49 ,
a0 a1 a9 a0 a1 a2 a3 a8 a9 49
故选:B. 【点睛】 本题主要考查了二项式的系数,还考查了运算求解的能力,属于基础题. 8.A
C51 21 2 C50 5 15,即 a5 15 .
故答案为:(1) 160;(2)15
【点睛】 本小题主要考查二项式定理的运用,考查乘法分配律,属于基础题. 12.121 【解析】 【分析】
在所给的等式中令 x 1 , y 1,令 x 1, y 1可得 2 个等式,再根据所得的 2 个等式即
【点睛】
本题考查了二项式定理的应用,取 x 1 和 x 2 是解题的关键.
9.A 【解析】 【分析】 将(1+x)5 变成﹣[(﹣2)+(1﹣x)]5 后,用通项公式可求得. 【详解】 ∵(1+x)5=﹣[﹣2+(1﹣x)]5,
通项T5r1 C5r 2 5r 1 x r ,
a3=﹣ C53 (﹣2)2=﹣40,
故选:A. 【点睛】 本题考查二项式定理的应用,属于基础题. 10.ACD 【解析】 【分析】
根据题意,可把 a0 a1 x 1 a2(x 1)2 a3(x 1)3 a9(x 1)9 视作-1+2(x 1)的
二项展开式,从而可以根据二项展开式的通项公式和赋值法,即可判断正误. 【详解】 对任意实数 x,
试题分析:因为 x3 [2 (x 2)]3 a0 a1(x 2) a2 (x 2)2 a3(x 2)3 ,所以 a2 C32 21 6 ,故选择 B.

二项式定理的常见题型及解法特全版

二项式定理的常见题型及解法特全版

Cxy
3 7
4
4
,和第 5 项
C
二、通项公式的应用
1 .确定二项式中的有关元素
例 4.已知 (
a x 9 9 ) 的展开式中 x 3 的系数为 ,常数 a 的值为 x 2 4
r 3 r 9
解: Tr 1 令
r 9 a x C ( ) 9r ( ) r C9r (1) r 2 2 a 9r x 2 x 2
9 令 18 3x 9, 则 r 3 ,从而可以得到 x 的系数为:
C
3 9
1 21 21 ( ) 3 , 填 2 2 2
(备用题) : (05 年山东卷)已知 (3x
1
3
x
2
) n , n N 的展开式中各项系数和为 128,则展
开式中
1 的系数是( x3

1 的展开式中没有 常数项, 且 2≤n≤8, n N* , .. 3 x
n
分析:本小题主要考查二项式定理中求特定项问题。依题 ( x
1 n ) 对 n N * , 2 剟n 3 x
8 中,
只有 n 5 时,其展开式既不出现常数项,也不会出现与 x 、 x 2 乘积为常数的项。故填 5。 (备用题) (05 年湖北卷) (
C
1
5
11
(1) 5 462
(2) 一般的系数最大或最小问题 例 12.求 ( x
2 x
4
) 8 展开式中系数最大的项;
解:记第 r 项系数为 Tr ,设第 k 项系数最大,则有
Tk Tk 1 Tk Tk 1
又 Tr
C
r 1 8
.2 r 1 ,那么有

二项式定理

二项式定理

二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。

专题39 二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题39  二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。

二项式定理-人教版高中数学

二项式定理-人教版高中数学

知识图谱-二项式定理通项及其应用赋值法二项式定理应用第04讲_二项式定理错题回顾二项式定理知识精讲一.二项式定理对于任何正整数,都有这个公式所表示的定理叫作二项式定理,等号右边的多项式叫做的二项式展开式,其中各项系数叫作二项式系数.二.二项展开式的通项二项式展开式的第项,叫做二项式展开式的通项;它体现了二项式展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定的项及系数方面有广泛的应用.三.二项式系数的性质1.对称性:与首末两端“等距离”的两个二项式系数相等,即2.增减性与最大值:二项式系数,当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当是偶数时,中间一项的二项式系数取得最大值;当是奇数时,中间两项的二项式系数、相等,且同时取得最大值.3.各二项式系数和:;4.四.杨辉三角上面的二项式系数表称为“杨辉三角”或“贾宪三角”.类似这样的表,早在我国南宋数学家杨辉年所著的《详解九章算法》一书里就已出现,它反映了我国古代劳动人民的智慧和才能.在欧洲一般认为这是帕斯卡在(Pascal)于年发现的,称这个图形为“帕斯卡三角形”.观察杨辉三角形,可以看出二项式的前三条性质.五.二项式定理应用1.近似运算当的绝对值与1相比很小且不大时,常用近似公式,因为这时展开式的最后一部分很小,可以忽略不计.类似地,有.但使用这两个公式时应注意的条件,以及对计算精度的要求.要求选取展开式中保留的项,以最后一项小数位符合要求即可,少了不合要求,多了无用,且增加麻烦。

2.整除与余数问题(1)解决这类问题,必须构造一个与题目条件有关的二项式,如求除以的余数,进行如下变化,,它的展开式除末项外,其余均含有这个因数,因此除以的余数与除以的余数相同;而,的展开式中除最末项外,其余各项均含有这个因数,故除以的余数为,从而除以的余数也为;(2)用二项式定理处理整除问题,通常把被除数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了;(3)注意余数的范围(为余数,,是余数),利用二项式定理变形后,若剩余部分是负数,要注意转换.3.证明不等式(1)用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证;(2)应用时注意巧妙地构造二项式;(3)证明不等式时,应注意运用放缩法,即对结论不构成影响的若干项可以去掉.三点剖析一.注意事项1.二项式定理中,是不能交换的,即与是有区别的,前者展开式第项为,后者展开式第项为;2.二项式系数是组合数,它与二项展开式某一项的系数不一定相等,要注意区分“二项式系数”与“二项展开式某一项的系数”这两个概念,如展开式第项的二项式系数是,该项系数为;3.通项公式中,是第项,不是第项;4.近似运算中使用的是,在用此公式进行近似运算时,在开始中各项的取舍要根据问题对精度的要求来确定,具体选几项每个题目都可能不一样,有时可选择使用比更精确的公式。

高考数学一轮复习---二项式定理知识点与题型复习

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

二项式定理的应用

二项式定理的应用

二项式定理的应用1.利用赋值法进行求有关系数和。

二项式定理表示一个恒等式,对于任意的a,b,该等式都成立。

利用赋值法(即通过对a、b取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。

设(1)令x=0,则(2)令x=1,则(3)令x=-1,则(4)(5)2.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。

①;②;()如:求证:1. 若,则_________.(用数字作答)【解析】令,则,,即.2.求证:对任何非负整数n,33n-26n-1可被676整除。

【思路点拨】注意到262=676,33n=27n=(26+1)n,用二项展开式去证明.当n=0时,原式=0,可被676整除.当n=1时,原式=0,也可被676整除.当n≥2时,原式.每一项都含262这个因数,故可被262=676整除综上所述,对一切非负整数n,33n-26n-1可被676整除.【总结升华】证明的关键在于将被除式进行恰当的变形,使其能写成二项式的形式,展开后的每一项中都会有除式这个因式,就可证得整除或求出余数.3.求证:3n>(n+2)·2n-1(n∈N+,且n>2).【思路点拨】利用二项式定理3n=(2+1)n展开证明.【解析】因为n∈N+,且n>2,所以3n=(2+1)n展开至少有四项.,所以3n>(n+2)·2n-1.概率要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a.试验可以在相同的情形下重复进行.b.试验的所有可能结果是明确可知的,并且不止一个.c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。

二项式定理十五大考点

二项式定理十五大考点

二项式定理十五大考点二项式定理可是高中数学里超有趣的一个部分呢,它的考点也是多种多样的。

一、二项式展开式的通项公式。

这可是二项式定理的核心内容哦。

通项公式就是T_r + 1=C_n^r a^n - rb^r。

这里的n是二项式的指数,r呢,表示第几项(要注意这里是从0开始计数的哦)。

比如说(a + b)^5,当我们要求第3项的时候,n = 5,r = 2(因为第3项对应的r是2),然后代入通项公式就能求出这一项啦。

这个公式就像是一把万能钥匙,能帮我们打开二项式展开式中每一项的大门呢。

二、二项式系数与项的系数。

这两个概念可不能混淆哦。

二项式系数就是C_n^r,它只跟n和r有关,就像是一个固定的身份标识。

而项的系数呢,是包括前面的符号以及数字的,是在二项式展开式中该项实际的系数。

比如说在(2x - 3y)^4的展开式中,某一项的二项式系数是C_4^2,但是这一项的系数可就不是单纯的C_4^2啦,要把2和- 3这些数字也考虑进去计算才行呢。

这就像二项式系数是一个人的名字,项的系数是这个人穿上了各种衣服鞋子之后的整体形象。

三、二项式展开式的性质。

1. 对称性。

二项式展开式的系数是对称的哦。

比如说(a + b)^n,与首末两端“等距离”的两项的二项式系数相等。

就像照镜子一样,两边是对称的呢。

这让我们在计算一些系数的时候,如果知道了前面的系数,后面对称位置的系数就不用再重新计算啦,多方便呀。

2. 增减性与最大值。

当n是偶数的时候,中间一项(也就是第(n)/(2)+ 1项)的二项式系数最大;当n是奇数的时候,中间两项(第(n + 1)/(2)项和第(n + 3)/(2)项)的二项式系数相等且最大。

这就像是在一群小伙伴里找最突出的那个或者那几个,很有趣吧。

四、求特定项。

1. 求常数项。

我们就根据通项公式,令a和b的指数满足一定条件来求出常数项。

比如在(x+(1)/(x))^6中,我们要让x的指数和(1)/(x)的指数相互抵消,也就是令6 - 2r = 0(这里a=x,b = (1)/(x),根据通项公式得到x的指数为6 - r,(1)/(x)的指数为r,相乘为x^6 - 2r),解得r = 3,然后再代入通项公式求出常数项。

赋值法在二项式定理中的应用

赋值法在二项式定理中的应用

赋值法在二项式定理中的应用赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的.实际上赋值法所体现的是从一般到特殊的转化思想,在高考题中屡见不鲜,特别是在二项式定理中的应用尤为明显,现以例说明.一、用赋值法解决二项式系数的有关问题利用二项式定理的展开式与所求问题进行类比转换,实现从一般到特殊的转化,用来证明或求值.思路设法从已知等式中求出n.(1+2)n = 729,即3n = 36,解得n = 6.注意:所求式子中缺少一项,不能直接等于26.二、用赋值法解决项的系数的有关问题例2 (1997年上海高考题)(3x+1)n(n∈N*)展开式中各项系数和为256,求x2的系数.设(3x+1)n = a0x n+a1x n-1+a2x n-2+…+a n.①由题意:a0+a1+a2+…+a n = 256.在①式中令x = 1得4n = a0+a1+a2+…+a n = 256,解得n = 4.a3)2-(a1+a3)2 =[ ] A.1B.-1C.0D.2解(a0+a2+a3)2-(a1+a3)2= (a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4).上式左边中的两个式子分别是所给展开式中x取1和-1时的表达式.故选A.三、综合应用在综合应用中要求学生能严格区别二项式系数与项的系数,注意项的系数的符号与式子的结构,灵活应用其他相关知识解题.例4若(1-3x)9 = a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9| = ________.解由二项式的展开式可知a0,a2,…,a8为正,a1,a3,…,a9为负,于是|a0|+|a1|+|a2|+…+|a9| = a0-a1+a2-a3+…+a8-a9.在所给的展开式中,令x = -1得|a0|+|a1|+|a2|+…+|a9|= a0-a1+a2-a3+…+a8-a9 = [1-3(-1)]9 = 49.例5 (1+x)+(1+x)2+…+(1+x)n = b0+b1x+b2x2+…b n x n,且b0+b1+b2+…+b n = 62,则n = ________.解在(1+x)+(1+x)2+…+(1+x)n = b0+b1x+b2x2+…+b n x n中,令x = 1,得2+22+23+…+2n = b0+b1+b2+…+b n = 62,赋值法是由一般到特殊的一种处理方法,在其他章节中也有广泛应用,望同学们在学习中能举一反三.。

二项式定理中的赋值技巧

二项式定理中的赋值技巧

ʏ河南省许昌市建安区第一高级中学 丁书珍ʏ河南省鄢陵县第二高级中学 刘俊霞在二项式定理的求值问题中,尤其是求解二项展开式的系数和等问题时,我们常常采用赋值法求解㊂即对二项展开式中的相关字母进行赋值,进而得以求解二项式系数及与之相关的综合问题,在选择性必修三课本中就给出了用法,让我们走进课本,从课本入手,了解赋值法在二项式定理中的应用,以便同学们正确掌握二项式定理中的赋值技巧㊂已知(1+x )n=C 0n+C 1nx +C 2nx 2+ +C n n x n,令x =1,得2n=C 0n +C 1n +C 2n+ +C nn ㊂这就是说,(a +b )n的展开式的各二项式系数的和等于2n㊂例1 求证:在(a +b )n 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和㊂解析:奇数项的二项式系数的和为C 0n +C 2n +C 4n + ;偶数项的二项式系数的和为C 1n+C 3n+C 5n + ㊂由于(a +b )n =C 0n a n +C 1na n -1b +C 2n a n -2b 2+ +C n nb n 中的a ,b 可以取任意实数,因此我们可以通过对a ,b 适当赋值来得到上述两个系数和㊂在展开式(a +b )n=C 0na n+C 1na n -1b +C 2na n -2b 2+ +C n nb n中,令a =1,b =-1,得(1-1)n=C 0n-C 1n+C 2n+ +(-1)kC k n++(-1)n C n n ㊂即(C 0n +C 2n +C 4n + )-(C 1n +C 3n +C 5n + )=0㊂因此,C 0n +C 2n +C 4n + =C 1n +C 3n +C 5n + ㊂故在(a +b )n 的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和㊂点评:实际上,a ,b 既可以取实数,也可以取多项式㊂我们可以根据具体问题的需要灵活选取a ,b 的值㊂例2 已知(3x -1)8=a 8x 8+a 7x 7+ +a 1x +a 0,求下列各式的值:(1)a 8+a 7+ +a 1+a 0;(2)|a 8|+|a 7|+|a 6|+ +|a 0|;(3)a 1+a 3+a 5+a 7㊂解析:(1)令x =1,得a 8+a 7+ +a 1+a 0=(3-1)8=28=256㊂(2)因为|a 8|+|a 7|+|a 6|+ +|a 0|=a 8-a 7+ -a 1+a 0,所以令x =-1,得:|a 8|+|a 7|+|a 6|+ +|a 0|=a 8-a 7+ -a 1+a 0=(-3-1)8=48=65536㊂(3)由(1)和(2)知:a 8+a 7+ +a 1+a 0=(3-1)8=28,a 8-a 7+ -a 1+a 0=(-3-1)8=216㊂则a 1+a 3+a 5+a 7=28-2162=27-215=-32640㊂点评:赋值法是求二项展开式系数和及有关问题的常用方法,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项㊂同时,要注意问题的实质及变形,如求各项系数的绝对值的和时,要先根据绝对值里面数的符号赋值求解㊂同时注意这类问题的变形写法,如:|a 8|+|a 7|+|a 6|+ +|a 0|=a 8-a 7+ -a 1+a 0=(a 8+a 6+a 4+ )-(a 7+a 5+a 3+ )等㊂对于比较繁杂式子的求值问题,22 解题篇 经典题突破方法 高二数学 2024年3月要先观察式子的特点,结合所学知识如因式分解等,对式子进行因式分解,再赋值求解㊂例3 已知(2-3x )100=a 0+a 1x +a 2x 2+ +a 100x 100,求下列各式的值:(1)a 0;(2)a 1+a 2+a 3+a 4+ +a 100;(3)a 2+a 4+ +a 100;(4)(a 0+a 2+ +a 100)2-(a 1+a 3+ +a 99)2㊂解析:(1)令x =0,可得a 0=2100㊂(2)令x =1,可得a 0+a 1+a 2+a 3+a 4+ +a 100=(2-3)100㊂所以a 1+a 2+a 3+a 4+ +a 100=(2-3)100-2100㊂(3)令x =-1,可得a 0-a 1+a 2-a 3+a 4+ +a 100=(2+3)100㊂结合(2)可得:a 0+a 1+a 2+a 3+a 4+ +a 100=(2-3)100,a 0-a 1+a 2-a 3+a 4+ +a 100=(2+3)100㊂则a 0+a 2+a 4+ +a 100=(2-3)100+(2+3)1002㊂由(1)知a 0=2100㊂所以a 2+a 4++a 100=(2-3)100+(2+3)1002-2100㊂(4)由(2)知a 0+a 1+a 2+a 3+a 4+ +a 100=(2-3)100㊂由(3)知a 0-a 1+a 2-a 3+a 4+ +a 100=(2+3)100㊂则(a 0+a 2+ +a 100)2-(a 1+a 3+ +a 99)2=(a 0+a 1+a 2+a 3+a 4+ +a 100)㊃(a 0-a 1+a 2-a 3+a 4+ +a 100)=(2-3)100㊃(2+3)100=1㊂点评:一般地,对于多项式f (x )=a 0+a 1x +a 2x 2+ a nx n,各项系数和为f (1),奇次项系数和为f (1)-f (-1)2,偶次项系数和为f (1)+f (-1)2,a 0=f (0)㊂例4 已知(2x +1)n=a 0+a 1x +a 2x 2+ +a nx n的展开式中的各项系数和为243,求a 1+2a 2+3a 3+ +n a n 值㊂解析:令x =1,可得a 0+a 1+a 2+a 3+a 4+ +a n =3n=243㊂解得n =5㊂对(2x +1)n =a 0+a 1x +a 2x 2+ +a nx n求导,可得:2n (2x +1)n -1=a 1+2a 2x +3a 3x 2+ +n a nx n -1㊂令x =1,可得:a 1+2a 2+3a 3+ +n a n =2n ㊃3n -1=2ˑ5ˑ34=810㊂点评:观察问题中的式子,我们发现,a n前面的系数是原式x n的幂指数,先借助于求导可以实现数由指数位置向系数位置的转化,再对求导所得结果赋值即可得到该类型题的答案㊂例5 (1)若(1+m x )6=a 0+a 1x +a 2x 2+ +a 6x 6,且a 0+a 1+a 2+ +a 6=64,则求实数m 的值㊂(2)已知C 4n =C 6n ,设(3x -4)n=a 0+a 1(x -1)+a 2(x -1)2+ +a n (x -1)n,求a 1+a 2+ +a n ㊂解析:(1)令x =1,可得(1+m )6=a 0+a 1+a 2+ +a 6=64㊂则1+m =2或1+m =-2㊂解得m =1或m =-3㊂(2)因为C 4n =C 6n ,所以n =10㊂则(3x -4)10=a 0+a 1(x -1)+a 2(x -1)2+ +a 10(x -1)10㊂令x -1=0,即x =1,可得a 0=(3-4)10=1㊂令x -1=1,即x =2,可得a 0+a 1+a 2+ +a 10=(6-4)10=210㊂故a 1+a 2+ +a 10=210-1㊂点评:在与二项式定理有关的赋值求值问题中,首先要观察需要求值问题与原题中条件之间的关系,从展开式入手,通过比较,正确找出需要赋的值,才能求出正确的答案㊂(责任编辑 徐利杰)32解题篇 经典题突破方法 高二数学 2024年3月。

特殊思维巧赋值,妙解二项式定理

特殊思维巧赋值,妙解二项式定理

ʏ江苏省扬州市邗江区第一中学 陈 力赋值法普遍适用于恒等式问题,是解决数学问题的一种重要方法㊂赋值法是通过给恒等式中的变量赋予恰当的数值或代数式后,借助数学运算与逻辑推理,最后得出结论的一种解题方法㊂而对于二项式定理问题,赋值法也是解决问题的一种基本技巧策略,经常要对二项式定理中的相关字母进行特殊赋值处理,从而得以求解相应的二项式定理及其综合问题㊂下面举例说明赋值法在解决二项式定理问题中的具体应用,供同学们复习时参考㊂一㊁参数值的求解例1 若(x +2+m )2023=a 0+a 1(x +1)+a 2(x +1)2+ +a 2023(x +1)2023,且(a 0+a 2+ +a 2022)2-(a 1+a 3+ +a 2023)2=32023,则实数m 的值为㊂解析:令x +1=1,即x =0,可得(2+m )2023=a 0+a 1+a 2+ +a 2023;令x +1=-1,即x =-2,可得m 2023=a 0-a 1+a 2-a 3+ +a 2022-a 2023㊂又因为(a 0+a 2+ +a 2022)2-(a 1+a 3+ +a 2023)2=(a 0+a 1+a 2+ +a 2023)(a 0-a 1+a 2-a 3+ +a 2022-a 2023)=32023,所以(2+m )2023㊃m 2023=32023,即m (2+m )=3,解得m =-3或m =1㊂故填-3或1㊂点评:在解决含参的二项式定理问题时,利用二项关系式的特征把相应各展开式中含有幂运算的关系式整体转化为1或-1来进行特殊赋值处理,进而利用二项式定理来构建对应的方程或关系式,合理结合条件加以转化与应用,从而优化过程,简化运算㊂二㊁部分系数和的求解例2 若(2x -1)4=a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 0+a 2+a 4=()㊂A.40 B .41C .-40 D .-41解析:令x =1,可得14=1=a 4+a 3+a 2+a 1+a 0;令x =-1,可得(-3)4=81=a 4-a 3+a 2-a 1+a 0㊂以上两式对应相加,则有2(a 4+a 2+a 0)=82,解得a 4+a 2+a 0=41㊂故选B ㊂点评:在解决一些二项展开式中奇数项之和㊁偶数项之和等问题时,结合奇偶项系数的特征加以特殊赋值处理,通过1与-1的赋值来建立对应的方程,利用对应的关系式的结构特征进行相加㊁相减或因式分解等运算加以变换与应用,实现部分系数和的求值㊂三㊁各项系数和的求解例3 在x 2-3xn的展开式中,二项式系数的和是16,则展开式中各项系数的和为( )㊂A.16 B .32 C .1 D .-32解析:因为二项式系数的和是16,所以得2n=16,解得n =4㊂令x =1,可得展开式中各项系数的和为(-2)4=16㊂故选A ㊂点评:涉及二项展开式中各二项式系数和的问题,往往通过二项式定理,借助变量的特殊赋值来处理(一般是变量为1,或整个涉及变量的关系式为1等)㊂解决问题时,要结合二项展开式的含参情况及关系式的结构特征,加以合理赋值与应用㊂四㊁组合数的求解例4 已知在(2x -1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C 1n +C 2n +C 3n + +C nn 的值为()㊂A.28B .28-1C .27D .27-1解析:依题可设(2x -1)n =a 0+a 1x +41 解题篇 创新题追根溯源 高考数学 2023年12月a2x2+ +a n x n,且奇次项的系数和为A,偶次项的系数和为B㊂则有A=a1+a3+a5+a7+ ;B=a0+a2+a4+a6+ ㊂由已知可得B-A=38㊂令x=-1,可得a0-a1+a2-a3+ + a n(-1)n=(-3)n,即(a0+a2+a4+a6+ ) -(a1+a3+a5+a7+ )=(-3)n,亦即B -A=(-3)n㊂所以(-3)n=38=(-3)8,解得n=8㊂由二项式系数的性质可得C1n+C2n+C3n + +C n n=2n-C0n=28-1㊂故选B㊂点评:涉及组合数的代数式的化简或求解问题,往往离不开二项式系数的基本性质及应用㊂在具体的解题过程中,要注意对二项式系数的基本性质的熟练掌握,以及借助二项式定理加以赋值处理的技巧与策略㊂五㊁恒等式的证明例5(教材习题 选择性必修第三册第35页习题6.3拓广探索栏目第10题)求证:2n-C1nˑ2n-1+C2nˑ2n-2+ + (-1)n-1C n-1nˑ2+(-1)n=1㊂证明:构造二项展开式(a+b)n=C0n a n+ C1n a n-1b1+C2n a n-2b2+ +C n n b n(nɪN*)㊂结合恒等式的结构特征,令a=2,b= -1,可得C0n㊃2n+C1n㊃2n-1㊃(-1)1+C2n㊃2n-2㊃(-1)2+ +C n n(-1)n=(2-1)n=1㊂所以2n-C1nˑ2n-1+C2nˑ2n-2+ + (-1)n-1C n-1nˑ2+(-1)n=1成立㊂点评:在解决一些涉及组合数的恒等式的化简㊁求值或证明问题时,通常借助构造一个二项展开式,利用二项式定理对相应的参数加以特殊赋值处理,结合关系式的变形与转化得以解决㊂在解决此类问题时,要注意结合组合数的恒等式的结构特征,选取合理的特殊值加以赋值处理㊂六㊁综合问题的应用例6(多选题)若(1-2x)2024=a0+ a1x+a2x2+ +a2024x2024,则下列结论正确的是()㊂A.a0+a1+a2+ +a2024=1B.a0+a2+a4+ +a2024=1+320242C.a12+a222+a323+ +a202422024=0D.a1+2a2+3a3+ +2024a2024= 4048解析:令x=1,可得a0+a1+a2+ + a2024=(-1)2024=1 ①,则选项A正确㊂令x=-1,可得a0-a1+a2-a3+ + a2024=32024 ②㊂由①+②,可得2(a0+a2+a4+ + a2024)=1+32024,所以a0+a2+a4+ +a2024=1+320242,则选项B正确㊂令x=0,可得a0=12024=1㊂令x=12,可得a0+a12+a222+a323+ + a202422024=0 ③㊂把a0=1代入③式,可得a12+a222+a323+ +a202422024=-1,则选项C错误㊂二项式的两边对x求导,可得-4048㊃(1-2x)2023=a1+2a2x+3a3x2+ + 2024a2024x2023,再令x=1,可得a1+2a2+ 3a3+ +2024a2024=4048,则选项D正确㊂故选A B D㊂点评:在解决一些涉及二项式定理的综合问题时,往往综合赋值法㊁求导法等多种技巧方法来分析与解决问题㊂解决问题时,注意挖掘二项式定理的内在特征,结合所求关系式的结构特征加以联系与联想,寻找合适的思维方法加以切入与应用㊂其实,二项式定理是一个恒等式,对一切满足二项式定理的变量的允许值都能成立㊂而借助特殊值进行巧妙赋值处理(经常令变量的值为1,-1或0等),可以使得问题的解决更加直接,分析处理起来更加简单快捷㊂在实际处理问题时,有时可以一次赋值即可解决问题,有时可能要进行多次赋值处理才能圆满解决㊂(责任编辑王福华)51解题篇创新题追根溯源高考数学2023年12月。

2020高考数学10.2 二项式定理

2020高考数学10.2 二项式定理
1.二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步 根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要 注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数 项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所 求的项. 2.求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论 求解.
2.二项展开式形式上的特点
(1)项数为n+1.
(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.
(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到0,字母b按升 幂排列,从第一项起,次数由零逐项增1直到n.
(4)二项式系数为 C0n , C1n ,…, Cnn1 , Cnn .
解析 设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)
则各项系数的和为a0+a1+…+a10,
奇数项系数的和为a0+a2+…+a10,
偶数项系数的和为a1+a3+a5+…+a9.
由于(*)是恒等式,故可用“赋值法”求出相关的系数的和.
(1)二项式系数的和为 C100 + C110 +…+ C1100 =210. (2)令x=y=1,各项系数的和为(2-3)10=(-1)10=1.
二 二项式系数的性质及应用
例2
(2018河北邯郸二模,9)在

x

3 x
n

的展开式中,各项系数和与二项
式系数和之比为64,则x3的系数为 ( )
A.15 B.45 C.135 D.405

二项式定理

二项式定理
8
课堂互动讲练
(2)通项公式 Tr+1=C8r· ( 2 x)
8- r
2 r · (- 2) x
r r 8- r = C8 · (- 2) · x -2r,
8- r 3 令 - 2r= ,则 r=1, 2 2 3 3 故展开式中含 x 的项为 T2=-16x . 2 2 (3)由 n= 8 知第 5 项二项式系数最大, 此时 T5=1120x .
课堂互动讲练
2 2 3 T3= C5 x (3x2)2= 90x6, 3 22 3 2 2 2 3 T4= C5 x (3x ) = 270x . 3 3
2 (2)展开式的通项公式为 Tr+1= C5 3 · x 3 (5+2r).
r r
假 设 Tr +
2
课堂互动讲练
【误区警示】 这类带有减号的 二项展开式最容易出现的问题就是忽 视了(-1)r这个因素,导致最后结果产 生符号的差异,出现错误.
课堂互动讲练
互动探究
1. ( x+ 1 4 x )n 展开式中各项系数的和
为 256. 求(1)n 的值; (2)展开式中所有有理项.
课堂互动讲练
解: (1)由题意 2n= 256,∴n=8. 1 r r 8- r (2)通项公式 Tr+ 1= C8 ( x ) 4 = x r 16- 3r C8 x , 4 16- 3r 3r 又 = 4- ,其中 0≤r≤8, 4 4
第3课时
二项式定理
基础知识梳理
1.二项式定理 n 1 n- 1 r 公式 (a+ b)n= C0 a + C a b +…+ C n n n n- r r n n a b +…+Cn b (n∈N+),所表示的定理叫 做二项式定理.

赋值法在高中数学中的应用

赋值法在高中数学中的应用

赋值法在高中数学中的应用康乐一中倾转莉(一)判断函数的奇偶性例1 已知函数y=f(x)(x∈R,x≠0),对任意非零实数x1x2都有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性。

(二)讨论函数的单调性例2.设f(x)定义于实数集R上,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)= f(x)f(y),求证f(x)在R上为增函数。

(三)求函数的值域例3 已知函数f(x)在定义域x∈R+上是增函数,且满足f(xy)=f(x)+f(y)(x、y∈R+),求f(x)的值域。

(四)判断函数的周期性例4 函数f (x )定义域为R ,对任意实数a 、b ∈R ,有f (a +b )=2f (a )f (b ),且存在c >0,使02=⎪⎭⎫⎝⎛c f ,求证f (x )是周期函数。

(五)求函数的解析式例5 设对满足| x |≠1的所有实数x ,函数f (x )满足x x x f x x f =⎪⎭⎫⎝⎛-++⎪⎭⎫⎝⎛+-1313,求f (x )的解析式。

有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

二. 赋值法在二项式定理中的应用在二项式定理(a+b)n =0n C a n +1n C a n-1b+…1-n n C ab n-1+n n C b n (n ∈N)中,给a,b 赋予一些特殊值,或者在(1+x)n =1+1n C x+…1-n n C x n-1+n n C x n 中给x 一些特殊值,可以得到相应的系数,所以“赋值法”在二项式定理求系数和中最常见。

例题6: 在10)32(y x -的展开式中,求:①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关..点评:要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来,.定理:对于101()()()n n n f x a x a a x a a -=-+-++,令1,x a -=即1x a =+可得各项系数的和012n a a a a ++++的值;令1,x a -=-即1x a =-,可得奇数项系数和与偶数项和的关系三.赋值法在算法中的应用赋值是算法中的难点之一, 理解赋值对于理解算法是非常重要的。

二项式定理易错点及赋值法妙用-高考文科数学热点专题

二项式定理易错点及赋值法妙用-高考文科数学热点专题

专题30 二项式定理易错点及赋值法妙用一.【学习目标】1.能用计数原理证明二项式定理;熟练掌握二项展开式的通项公式.2.会用二项式定理解决与二项展开式有关的简单问题.二.方法归纳1.运用二项式定理一定要牢记通项T r+1=C r n a n-r b r,注意(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项是不相同的,我们一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同概念,前者只指C r n,而后者是指字母外的部分.2.求二项展开式中指定的项,通常是先根据已知条件求r,再求T r+1,有时还需先求n,再求r,才能求出T r+1.3.有些三项展开式问题可以通过变形,变成二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.4.对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.5.近似计算首先要观察精确度,然后选取展开式中的若干项.6.用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”,“消去法”配合整除的有关知识来解决.三.【典例分析及训练】(一)求常数项例1.若二项式展开式中的第5项是常数,则自然数的值为()A.10B.12C.13D.14【答案】B【解析】因为二项式展开式中的第5项是,因为第5项是常数,所以,即.故选B练习1.若展开式的常数项为60,则值为()A.B.C.D.【答案】D【解析】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D练习2.已知(1+x+x2)的展开式中没有常数项,n∈N+,且2≤n≤8,则n=()A.2 B.3 C.4 D.5【答案】D(二)求特殊项例2.的展开式中的系数是A.-5B.10C.-15D.25【答案】A【解析】,的通项公式为,其中r=0,1,2,3的通项公式为,其中r=0,1,2,3,4,5∴展开式中的系数是,故选:A【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.练习1.的展开式中的系数是( )A.90 B.C.15 D.【解析】,而的二项式系数满足因而的系数为,故选B。

二项式定理

二项式定理

(2)∵Tr+1=34C20rx20-ryr(r=0,1,2,„,20)系数为有理数, ∴r=0,4,8,12,16,20,共 6 项.
[答案] (1)-5 (2)6
r
a 1.(2010· 陕西高考)(x+x)5(x∈R)展开式中 x3 的系数为 10,则实数 a 等于( ) C.1 D.2
解析:A-B=(3-1)7=27=128.
答案:128
5 .已知 (1 - 2x)7 = a0 + a1x + a2x2 +„+ a7x7 ,那么 a1 + a2 + a3
+„+a7=________.
解析:令x=1,则a0+a1+a2+„+a7=-1,
又令x=0,则得a0=1,
所以a1+a2+a3+„+a7=-1-1=-2. 答案:-2
解析:二项式系数之和 2 =64,则
2k n k 6-k 1 n=6,Tk+1=C6 · x ·k=C6kx6-
x
,当 6-2k=0 时,即 k=3 时为常数项,T3+1=C63=20.
答案:B
4.设A=37+C7235+C7433+C763 ,B=C7136+C7334+C7532+
1,则A-B=________.
解得 n=8 或 n=-3(舍去). (1)令 x=1 得各项系数的和为(1-2)8=1.
(2)通项公式 Tr+1=C8 · ( x)
r
8-r
8-r 2 r r r · (-x2) =C8 · (-2) · x 2 -2r,
3 3 8-r 3 令 2 -2r=2,则 r=1,故展开式中含 x2的项为 T2=-16x2.
二项式定理
1.能用计数原理证明二项式定理.
2.会用二项式定理解决与二项展开式有关的简单

1.3.1二项式定理(2)

1.3.1二项式定理(2)

(n ∈ N )
(2)二项展开式的通项 二项展开式的通项: 二项展开式的通项

Tk +1 = C a
k n
n− k
b
k
(注意,它是第k+1项) 注意,它是第 注意 项 (3)区别二项式系数, (3)区别二项式系数,项的系数 区别二项式系数 (4)掌握用通项公式求二项式系数, (4)掌握用通项公式求二项式系数,项的系数及项 掌握用通项公式求二项式系数 (5)二项式定理简单应用 二项式定理简单应用. 二项式定理简单应用
0 n
r
+ C + C + L + C = (1 + 1) = 2n
1 n 2 n n n n
运用二项式定理可以在头脑里迅速地展开一些式 从而能解决些问题.这节课我们来做一些练习. 子,从而能解决些问题.这节课我们来做一些练习.
普通高中课程数学选修2-3] 1.2 排列与组合 普通高中课程数学选修 3 [普通高中课程数学选修
故存在常数项且为第7项 故存在常数项且为第 项,
6 6 8
1 常数项T7 = ( −1) ⋅ C ⋅ 2
8− 6
⋅x =7
0
4. 9192除以 除以100的余数是_____ 的余数是_____ 的余数是
0 1 91 92 91 分 析 : 92 = (90 + 1)92 = C 92 90 92 + C 92 90 91 + L + C 92 90 + C 92
由此可见,除后两项外均能被 由此可见,除后两项外均能被100整除 整除 91 92 C 92 90 + C 92 = 8281 = 82 × 100 + 81
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档