汽车租赁调度问题详细数学建模竞赛
数学建模中的汽车租赁调度
数学建模中的汽车租赁调度在现代社会中,汽车租赁服务得到了广泛应用。
随着人们对出行方式的多样化需求,汽车租赁业务不断发展。
然而,如何进行高效的汽车租赁调度,最大程度地满足用户需求,并优化企业经营成为了一个重要的课题。
数学建模为解决这一问题提供了理论基础和实践依据。
一、问题背景假设有一家汽车租赁公司,拥有一定数量的汽车和分布于城市各地的租车站点。
用户可以通过手机、网站等方式预订汽车并在指定租车站点取车。
汽车租赁公司需要根据用户需求进行汽车的调度和分配,以保证用户的租车需求得到及时满足,并合理安排汽车的分布,优化公司的利润。
二、问题建模为了解决汽车租赁调度问题,我们可以利用数学建模的方法。
首先,需要明确一些假设和定义:1. 确定服务范围:确定租车服务的城市范围和租车站点的位置分布。
2. 确定需求预测模型:根据历史数据和市场研究,建立合理的汽车租赁需求预测模型,预测不同时间段、不同地点的租车需求量。
3. 建立调度模型:建立汽车调度模型,考虑用户租车的时间、地点和租赁时长等因素,以及汽车的运营成本、剩余电量等因素,确定最优的汽车分配方案。
4. 优化方案求解:利用优化算法求解调度模型,得出最优的汽车分配方案,并生成调度计划。
三、建模方法在汽车租赁调度问题中,我们可以借鉴运输问题中的调度与路径规划方法,如VRP(Vehicle Routing Problem)和TSP(Traveling Salesman Problem)等。
具体步骤如下:1. 数据收集与处理:采集租车站点的地理位置信息、历史租车记录、租车需求预测模型所需的数据等,并进行数据的预处理和分析。
2. 建立数学模型:根据问题的要求和假设,建立合理的数学模型,包括目标函数和约束条件等。
3. 求解最优解:利用优化算法求解建立的数学模型,如遗传算法、模拟退火算法等,得出最优的汽车分配方案。
4. 评估与优化:对求解结果进行评估和优化,根据实际情况修正模型参数和算法,提高调度效果和计算效率。
数学建模___车辆调度问题论文正稿
专业资料2012年西南财经大学数学建模竞赛赛题车辆调度问题说明:1、竞赛于5月2日12:00结束,各参赛队必须在此时间之前提交打印论文及上传论文电子文档,2、请认真阅读“西南财经大学数学建模竞赛章程”、“西南财经大学数学建模竞赛论文格式规范”,并遵照执行,3、打印论文交给经济数学学院办公室(通博楼B302),电子文档发至邮箱gdsxkj@4、选拔参加建模培训的本科参赛队必须提交一份解夏令营问题的论文,各本科参赛队根据自己的校赛状况,提前做好准备,校赛成绩公布后提交:夏令营问题地址5、由于本题目计算量比较大,竞赛期间如果计算不完,也可以提交部分成果。
某校有A、B两个校区,因为工作、学习、生活的需要,师生在两校区之间有乘车需求。
1、在某次会议上,学校租车往返接送参会人员从A校区到B校区。
参会人员数量、车辆类型及费用等已确定(见附录1)。
(1)最省的租车费用为多少?(2)最省费用下,有几种租车方式?2、两校区交通网路及车辆运行速度见数据文件(见附录2)。
试确定两校区车辆的最佳行驶路线及平均行驶时间。
3、学校目前有运输公司经营两校区间日常公共交通,现已收集了近期交通车队的运行数据(见附录3)。
(1)试分析运行数据有哪些规律,(2)运输公司调度方案是根据教师的乘车时间与人数来制定的,若各工作日教师每日乘车的需求是固定的(见附录4),请你根据运行数据确定教师在工作日每个班次的乘车人数,以供运输公司在制定以后数月调度方案时使用。
4、学校准备购买客车,组建交通车队以满足教师两校区间交通需求。
假设:(1)欲购买的车型已确定(见附录5),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2)若不考虑运营成本,请你确定购买方案,使总购价最省。
5、若学校使用8辆客车用于满足教师两校区间交通需求。
假设:(1)8辆客车的车型及相关数据已确定(见附录6),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2),(4)车库设在A校区,客车收班后须停靠在车库内。
数学建模中的汽车租赁调度
数学建模中的汽车租赁调度在当今社会,汽车租赁业务发展迅速,越来越多的人选择租赁汽车来满足短期出行的需求。
然而,如何高效地进行汽车租赁调度,以提供优质的服务并降低成本,成为了汽车租赁公司亟待解决的问题。
数学建模为解决这一问题提供了有效的方法和工具。
本文将从几个方面探讨数学建模在汽车租赁调度中的应用。
一、需求预测模型在汽车租赁业务中,准确预测客户的需求是实现优质调度的关键。
数学建模可以利用历史数据和相关的影响因素,构建需求预测模型。
通过分析历史数据中的租车记录、天气、季节等因素,可以找到它们之间的关联性,并运用统计学方法建立预测模型,从而预测未来某一时段的租车需求。
这样一来,租赁公司可以根据预测结果合理安排车辆调配,以满足客户需求的同时最大程度地减少车辆的闲置率。
二、车辆调度模型根据需求预测模型得到的结果,租赁公司需要合理安排车辆的调度,以保证在预测的高峰时段有足够的车辆供应,并在低峰时段将多余的车辆调配到其他地方,以降低闲置率。
数学建模可以提供各种优化方法和算法,帮助租赁公司解决这一调度问题。
一种常见的方法是建立最优分配模型。
该模型考虑了多个因素,如车辆数量、车辆位置、客户的租车需求、交通状况等,并在不同的约束条件下,通过运用线性规划、整数规划等数学方法,求解出最优的车辆分配方案。
通过这种方式,租赁公司可以合理分配车辆,减少客户等待时间,提高服务质量。
此外,还可以利用模拟仿真方法进行车辆调度优化。
通过建立租车站点、路网、客户需求等多个因素的仿真模型,可以通过模拟实际情况来评估不同策略的效果,并找到最佳的调度方案。
模拟仿真方法具有较强的灵活性和可调节性,能够模拟不同的场景和情况,帮助租赁公司针对性地制定调度策略。
三、优化算法除了需求预测和车辆调度模型外,数学建模还可以利用优化算法来解决汽车租赁调度中的其他问题。
例如,优化算法可以用于解决最短路径问题,帮助租赁公司确定最佳的行驶路线,以减少车辆的行驶距离和时间成本。
数学建模 出租车调价问题
出租车调价问题摘要:随着国际燃油价格的不断上涨,国内市场已经进行了多次调价,调价对于本来就经营困难的出租车来说更是雪上加霜。
为了化解高油价给出租车业,尤其是出租车司机带来的压力,各个地方政府采取种种措施化解油价上涨给出租车司机带来的减收问题。
2006年4月17号上海召开出租车运价油价联动机制听证会,就建立出租车行业运价油价联动机制展开论证并且提出了两个运价油价联动计算公式。
本文通过假设和一定的分析而建立一个数学模型以反映上海市的出租车运价与油价联动机制,并经过将大连的实际情况跟上海对比后,对模型做一定的改进以适合大连的情况。
本文利用线形规划模拟分析问题,建立模型并且利用LINGO求解。
最后从理论与实际的角度出发,提出对模型的改进方法和设想。
关键词:出租车调价线性规划数学模型一、问题的重述受国际原油价格持续上涨影响, 经国务院批准,国家发改委通知, 自2006年3月26日起将汽油和柴油出厂价格每吨分别提高300元和200元。
辽宁省的汽油和柴油零售基准价每吨分别提高250元和150元。
大连市93号汽油每升上调0.21元,调价后为每升4.47元。
国家发改委提高成品油价格的消息发布后,一些地方迅速做出反应。
在油价走高的背景下,全国出租车价格涨声一片。
国家发改委要求各地建立出租车运价与油价的联动机制,今后按照联动机制调整运价。
目前北京、上海已经建立了出租车运价与油价的联动机制。
以上海市为例,在2006年4月17日召开的出租车运价油价联动机制听证会上公布了两个公式,运价油价联动机制今后将通过两个公式来操作。
第一个公式用于调整出租车起步费。
按照这个公式,如果油价平均提高一元,根据前期调研,单车每天消耗汽油43.75升,日均载客34次,代入公式,每车起步价需要提高1.29元;第二个公式用于调整超过起步价后的出租车公里单价。
按照这个公式,如果油价每升平均提高1元,每车每天行驶350公里、载客率61%、起步价外公里占总公里数的64%,与公里油耗无关的加价计时等营运附加收入系数0.15,计算后可以发现每公里运价需要提高0.27元。
2019数学建模c题出租车c
2019数学建模c题出租车c(原创版)目录1.题目背景及要求2.出租车调度问题的解决方案3.数学建模在解决实际问题中的应用4.结论正文1.题目背景及要求2019 年数学建模竞赛的 C 题,题目为“出租车调度问题”。
该题目要求参赛者针对一个城市中的出租车调度问题进行分析,并提出解决方案。
具体而言,需要考虑如何在满足乘客需求的同时,使出租车的运营效率最大化,并降低出租车的空载率。
2.出租车调度问题的解决方案针对出租车调度问题,我们可以从以下几个方面进行分析和求解:(1) 建立问题模型:根据题目描述,可以将出租车调度问题建立一个车辆路径问题(Vehicle Routing Problem, VRP)模型。
在这个模型中,出租车作为车辆,乘客作为需求点,每辆出租车需要在满足乘客需求的同时,选择一条最优路径,使得总运营效率最大。
(2) 求解算法:针对 VRP 模型,可以采用各种算法进行求解,如穷举法、贪心算法、遗传算法等。
在实际应用中,常用的求解方法是遗传算法,因为它可以在较短时间内找到较优解。
(3) 实际应用:将求解出的最优路径应用于实际出租车调度,通过智能调度系统,实时调整出租车的运营路线,从而满足乘客需求,提高出租车的运营效率,降低空载率。
3.数学建模在解决实际问题中的应用数学建模是一种强有力的工具,能够帮助我们解决实际问题。
在本题中,通过建立 VRP 模型,并采用遗传算法求解,我们可以找到一个较优的出租车调度方案。
这种方法不仅可以应用于出租车调度,还可以应用于许多其他领域,如物流、生产调度等,充分体现了数学建模在解决实际问题中的广泛应用价值。
4.结论总之,2019 年数学建模 C 题“出租车调度问题”通过建立 VRP 模型,并采用遗传算法求解,为解决实际中的出租车调度问题提供了一种有效方法。
2019数学建模c题出租车c
2019数学建模c题出租车c摘要:1.题目背景及要求2.出租车调度问题的解决方案3.数学建模在解决实际问题中的应用4.结论正文:1.题目背景及要求2019 年数学建模竞赛的C 题,要求参赛者针对出租车调度问题进行分析和求解。
具体来说,就是要在给定的时间内,合理地调度出租车,使得乘客的等待时间最短,出租车的运营效率最高。
这是一个典型的运筹学问题,需要运用数学建模的方法进行分析。
2.出租车调度问题的解决方案为了解决这个问题,我们可以采用以下步骤:(1)建立数学模型:我们可以将出租车和乘客的等待时间用一个线性规划模型来表示。
具体来说,我们可以设出租车的数量为x,每个出租车接到的乘客数量为c,乘客等待时间为d。
目标是最小化乘客的平均等待时间,即min ∑(d)。
(2)求解模型:根据上述模型,我们可以列出如下的目标函数和约束条件:目标函数:min ∑(d)约束条件:1) 乘客数量= 出租车数量× 每个出租车接到的乘客数量,即∑(c) = x2) 总等待时间= 每个乘客等待时间× 乘客数量,即∑(d) = ∑(c)3) 每个出租车接到的乘客数量不能超过最大乘客数量,即c ≤ max_c然后,我们可以通过求解这个线性规划问题,得到最优的出租车数量和每个出租车接到的乘客数量,从而实现乘客等待时间的最小化。
3.数学建模在解决实际问题中的应用这个例子充分展示了数学建模在解决实际问题中的应用。
在这个过程中,我们首先通过观察问题,提炼出关键的信息,然后建立数学模型,最后通过求解模型,得到问题的解决方案。
这个过程不仅锻炼了我们的逻辑思维能力,也提高了我们运用数学知识解决实际问题的能力。
4.结论总的来说,2019 年数学建模竞赛的C 题,不仅考察了我们的数学知识,也考察了我们解决实际问题的能力。
数学建模汽车租赁问题
数学建模汽车租赁问题在如今的社会中,汽车租赁服务已经成为了越来越受欢迎的选择。
然而,在汽车租赁公司的运营过程中,如何合理地分配汽车资源以满足用户需求并提高运营效益成为了一项重要的问题。
在本文中,我们将运用数学建模的方法来探讨汽车租赁问题,以期得到最佳的汽车分配方案。
1. 问题描述我们假设有一家汽车租赁公司,该公司拥有不同型号和品牌的汽车,以满足不同用户的需求。
公司面临着以下问题:(1)如何根据用户需求高效地分配汽车资源?(2)如何合理安排汽车的调度和维修?(3)如何确定合适的租金策略以满足公司运营需求?2. 模型建立为了解决上述问题,我们可以建立以下数学模型:(1)需求预测模型:分析历史数据,通过时间序列分析或机器学习算法预测用户的汽车租赁需求。
将预测结果应用于汽车资源的分配,以避免资源浪费和不足的问题。
(2)运输调度模型:基于实时数据和优化算法,建立汽车调度模型,合理安排汽车的运输路径和时间,以提高运输效率和降低成本。
(3)维修决策模型:分析汽车日常维修和保养的历史数据,建立维修决策模型,包括维修周期、维修数量和维修质量等方面,以确保汽车的正常运行和延长使用寿命。
(4)租金策略模型:结合市场需求和竞争对手定价策略,建立租金策略模型,以确定合适的租金水平,同时考虑用户的支付能力和公司的利润目标。
3. 数据获取与分析为了建立有效的模型,我们需要收集并分析大量的数据,包括但不限于以下方面:(1)用户需求数据:通过调查问卷、网站访问记录等方式,获取用户对不同品牌和型号汽车的需求数据。
(2)租赁历史数据:统计汽车租赁的历史数据,包括租赁时长、租赁地点、租车用途等信息,以便进行需求预测和调度规划。
(3)汽车维修和保养数据:记录汽车的维修和保养历史,包括维修周期、维修费用、维修质量等信息,用于建立维修决策模型。
(4)竞争对手数据:调研竞争对手的租金策略、汽车品牌和型号等信息,以便制定适当的租金策略模型。
4. 模型求解基于收集的数据,我们可以利用数学优化算法和模拟仿真等方法求解建立的模型,得到最优的汽车分配方案和租金策略。
汽车租赁调度问题数学建模
汽车租赁调度问题数学建模汽车租赁调度问题是一个经典的优化问题,在实际中常常需要考虑到多个因素,包括客户需求、车辆可用性、路况等。
下面是一种可能的数学建模方法:假设我们有N辆汽车和M个租赁点,每辆汽车的状态可以用一个二元向量表示,例如[0,1]表示汽车目前不在使用中,可以租赁;[1,0]表示汽车已经被租赁出去,目前正在路上或者用于服务。
我们可以定义以下变量和参数来建模:变量:x[i, j, t] 表示在时刻t汽车i是否在租赁点j,取值为0或1y[i, j, t] 表示在时刻t汽车i是否已经被租赁出去了,取值为0或1z[i, j, t] 表示在时刻t是否有人在租赁点j租赁了汽车i,取值为0或1s[i, t] 表示在时刻t汽车i的状态,取值为0或1其中,i ∈ {1, 2, ..., N},j ∈ {1, 2, ..., M},t ∈ {1, 2, ..., T}(T 为时间窗口大小,表示考虑的时间范围)参数:D[i, j] 表示从租赁点i到租赁点j之间的距离C[i, t] 表示在时刻t租赁点i的需求量T[i, t] 表示在时刻t租赁点i现有的汽车数量约束条件:1. 每辆汽车在一个时刻只能处于某个租赁点:sum(j=1 to M) x[i, j, t] = 1, for all i, t2. 每个租赁点的需求量不能超过现有的汽车数量:sum(i=1 to N) z[i, j, t] <= T[j, t], for all j, t3. 每辆汽车在被租赁前必须在某个租赁点上:y[i, j, t] <= x[i, j, t], for all i, j, t4. 每辆汽车在被租赁后必须离开租赁点:y[i, j, t] <= 1 - x[i, j, t+1], for all i, j, t5. 租赁点j在时刻t的汽车租赁情况与需求量和已有数量之间的关系:C[j, t] - sum(i=1 to N) z[i, j, t] <= T[j, t], for all j, t6. 汽车的状态与是否被租赁之间的关系:s[i, t] >= y[i, j, t], for all i, j, t目标函数:最小化成本或者最大化满足需求的汽车数量以上只是一个可能的模型示例,实际应用中还可能需要考虑更多实际情况和限制条件。
2023数学建模国赛b题解答
2023数学建模国赛b题解答2023年数学建模国赛B题是关于“共享单车调度优化”的问题。
问题描述:随着共享单车在各大城市的普及,如何高效地进行车辆调度成为了亟待解决的问题。
共享单车公司需要根据各停车点的车辆数量和需求,合理地调整车辆的位置,以保证用户的需求得到满足,同时避免资源的浪费。
任务要求:1. 分析给定数据,确定合适的调度策略。
2. 建立数学模型,描述车辆的调度过程。
3. 使用给定的数据,对模型进行验证。
4. 根据模型,给出调度方案,并分析其效果。
解题思路:1. 数据解析:首先,我们需要对给定的数据进行解析,了解各停车点的车辆数量和需求情况。
这需要使用到数据处理和分析的相关知识。
2. 模型建立:基于数据解析的结果,我们需要建立一个数学模型来描述车辆的调度过程。
可以考虑使用图论、最优化理论等工具。
3. 模型验证:使用给定的数据对模型进行验证,确保模型的准确性和有效性。
4. 调度方案:根据模型,制定一个合理的调度方案。
这需要考虑多个因素,如车辆的移动成本、各停车点的需求等。
5. 效果分析:对调度方案进行效果分析,评估其在实际操作中的可行性和效果。
解题步骤:1. 数据解析:首先,我们需要对给定的数据进行解析,了解各停车点的车辆数量和需求情况。
这需要使用到数据处理和分析的相关知识。
具体来说,我们可以使用Python中的pandas库来处理数据,并使用matplotlib库进行可视化分析。
通过分析数据,我们可以发现车辆数量和需求在不同时间和地点存在差异。
2. 模型建立:基于数据解析的结果,我们需要建立一个数学模型来描述车辆的调度过程。
可以考虑使用图论、最优化理论等工具。
具体来说,我们可以将各停车点视为节点,车辆的移动视为边,建立一个有向图模型。
然后,我们可以使用最短路径算法(如Dijkstra算法)来找到从起始点到目标点的最优路径,即最佳调度方案。
在模型中,我们需要考虑车辆的移动成本、各停车点的需求和车辆的容量限制等因素。
2019数学建模c题出租车c
2019数学建模c题出租车c
摘要:
1.题目背景及要求
2.出租车调度问题的解决方案
3.数学建模在出租车调度中的应用
4.结论
正文:
1.题目背景及要求
2019 年数学建模竞赛的C 题是关于出租车调度的问题。
具体来说,题目描述了一个城市中有多个出租车司机,他们需要根据乘客的叫车请求来决定如何分配车辆。
这个问题需要参赛者运用数学建模的方法,为出租车司机提供一个高效的调度策略。
2.出租车调度问题的解决方案
针对这个问题,我们可以采用一种基于遗传算法的解决方案。
具体来说,我们可以将每个出租车司机看作是一个个体,每个个体都有一组基因,表示该司机当前的位置和行驶方向。
然后,我们可以通过模拟自然选择和基因遗传的过程,逐步优化所有个体的基因组合,从而找到一种最优的调度策略。
3.数学建模在出租车调度中的应用
在这个问题中,数学建模主要体现在以下几个方面:
首先,我们需要建立一个数学模型来描述出租车司机和乘客之间的互动关系。
这个模型可以用一个图来表示,其中出租车司机对应图中的节点,乘客的
叫车请求对应图中的边。
其次,我们需要运用一些数学方法(如遗传算法)来求解这个模型。
这些方法可以帮助我们在大量的可能解决方案中,找到一种最优的调度策略。
最后,我们还需要运用一些统计学方法来评估我们的调度策略是否有效。
例如,我们可以通过计算乘客的平均等待时间来判断我们的策略是否能够提高出租车的使用效率。
4.结论
通过运用数学建模的方法,我们可以为出租车司机提供一个高效的调度策略。
这种策略可以帮助他们更好地满足乘客的需求,提高出租车的使用效率。
全国数学建模大赛试题--乘用车物流运输计划问题
2014年全国研究生数学建模竞赛E题乘用车物流运输计划问题整车物流指的是按照客户订单对整车快速配送的全过程。
随着我国汽车工业的高速发展,整车物流量,特别是乘用车的整车物流量迅速增长。
图1、2、3就是乘用车整车物流实施过程中的画面。
乘用车生产厂家根据全国客户的购车订单,向物流公司下达运输乘用车到全国各地的任务,物流公司则根据下达的任务制定运输计划并配送这批乘用车。
为此,物流公司首先要从他们当时可以调用的“轿运车”中选择出若干辆轿运车,进而给出其中每一辆轿运车上乘用车的装载方案和目的地,以保证运输任务的完成。
“轿运车”是通过公路来运输乘用车整车的专用运输车,根据型号的不同有单层和双层两种类型,由于单层轿运车实际中很少使用,本题仅考虑双层轿运车。
双层轿运车又分为三种子型:上下层各装载1列乘用车,故记为1-1型(图1);下、上层分别装载1、2列,记为1-2型(图2);上、下层各装载2列,记为2-2型(图3),每辆轿运车可以装载乘用车的最大数量在6到27辆之间。
在确保完成运输任务的前提下,物流公司追求降低运输成本。
但由于轿运车、乘用车有多种规格等原因,当前很多物流公司在制定运输计划时主要依赖调度人员的经验,在面对复杂的运输任务时,往往效率低下,而且运输成本不尽理想。
请你们为物流公司建立数学模型,给出通用算法和程序(评审时要查)。
装载具体要求如下:每种轿运车上、下层装载区域均可等价看成长方形,各列乘用车均纵向摆放,相邻乘用车之间纵向及横向的安全车距均至少为0.1米,下层力争装满,上层两列力求对称,以保证轿运车行驶平稳。
受层高限制,高度超过1.7米的乘用车只能装在1-1、1-2型下层。
轿运车、乘用车规格(第五问见附件)如下:表2 轿运车规格整车物流的运输成本计算较为繁杂,这里简化为:影响成本高低的首先是轿运车使用数量;其次,在轿运车使用数量相同情况下,1-1型轿运车的使用成本较低,2-2型较高,1-2型略低于前两者的平均值,但物流公司1-2型轿运车拥有量小,为方便后续任务安排,每次1-2型轿运车使用量不超过1-1型轿运车使用量的20%;再次,在轿运车使用数量及型号均相同情况下,行驶里程短的成本低,注意因为该物流公司是全国性公司,在各地均会有整车物流业务,所以轿运车到达目的地后原地待命,无须放空返回。
2021年全国大学生数学建模竞赛B题
20XX年全国大学生数学建模竞赛B题“互联XX+”时代的出租车资源配置一、问题重述近年来随着国民经济的飞速进展和RM生活水平的极大提高,我国城市居民对出租车的需求量越来越大。
为了缓解XX市打车难的问题,打车软件应运而生。
乘客只需要安装打车软件的移动端,公布打车信息,出租车通过软件可以查看区域内所有具有打车需求的乘客的打车信息,出租车司机在打车软件上选择乘客,驶向乘客并完成接送服务,这完全区别于传统意义上的出租车的载客方式。
XX市的“打车难”问题很大程度上由于出租车司机与乘客之间信息不对称,导致非高峰时期出租车空载率高,燃油费增加;高峰期、恶劣天气下拒载乘客现象频繁发生。
打车软件可以使乘客的需求与出租车的供给相对透明。
如何合理补贴司机,提高乘客打车成功率,降低司机空驶距离,成为我们关注的热点。
本文尝试解决以下几个问题:问题一:试建立合理的指标,并分析不同时空出租车资源“供求匹配”程度。
问题二:分析各公司出租车补贴方案是否对“缓解打车难”有帮助。
问题三:设计一个补贴方案并论证其合理性。
二、问题分析这是一个评价与规划问题,根据不同时间的出租车需求量、出租车的实载量、出租车被抢车时间、出租车燃油损耗、政府与出租车公司补贴、打车软件补贴、油价等分析计算。
与传统出租车运营模式下的工资进行对比,得出打车软件是否对缓解打车难有帮助。
由此设计一套更合理补贴的方案,使得出租车获得更大利润。
问题的特点在于数据量大分类复杂,可挖掘的数值多,难点在于如何设计合理的方案,使得司机获得最大利润,更好的缓解打车难的问题。
(一)问题一为了分析不同时空的出租车资源的“供求匹配关系”程度,选取典型城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,对比不同城市的同时刻的实载量与需求量之比,同一城市不同时刻的实载量与需求量之比,进而说明出租车的供求关系。
(二)问题二打车软件需要乘客和出租车司机群体都能支持,大部分乘客和出租车司机在新方法实行的开始阶段会不熟悉新方法,但一旦有人开始使用打车软件并且证明补贴后乘客所付价格与司机的收益确优于传统打车,那么渐渐的使用传统打车方式的出租车司机和乘客就会改变习惯,从而选择更优的政策使用第三方打车软件,对于乘客可以减少等车时间,而对于出租车司机则会提高他们的收益。
全国数学建模大赛试题——出租车模型及数据(C)
全国数学建模大赛试题——出租车模型及数据(C)2005 年全国部分高校研究生数学建模竞赛C 题城市交通管理中的出租车规划最近几年,出租车经常成为居民、新闻媒体议论的话题。
某城市居民普遍反映出租车价格偏高,而另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,甚至发生出租车司机罢运的情况,这反映出租车市场管理存在一定问题,整个出租车行业不景气,长此以往将影响社会稳定,值得关注。
我国城市在未来一段时间内,规模会不断扩大,人口会不断增长,人民生活水平将不断提高,对出租车的需求也会不断变化。
如何配合城市发展的战略目标,最大限度地满足人民群众的出行需要,减少环境污染和资源消耗,协调各阶层的利益关系,是值得深入研究的。
(附录中给出了某城市的相关数据)。
(1)考虑以上因素,结合该城市经济发展和自身特点,类比国内外城市情况,预测该城市居民出行强度和出行总量,同时进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。
(2)给出该城市出租车最佳数量预测模型。
(3)按油价调价前后(3.87元/升与4.30元/升),分别讨论是否存在能够使得市民与出租车司机双方都满意的价格调整方案。
若存在,给出最优方案。
(4)本题给出的数据的采集是否合理,如有不合理之处,请你给出更合理且实际可行的数据采集方案。
(5)请你们站在市公用事业管理部门的立场上考虑出租车规划问题,并将你们的研究成果写成一篇短文,向市公用事业管理部门概括介绍你们的方案。
附录11、2004年某城市的城市规模和道路情况如下:(1)城市现辖6区,2004年城市建成区面积181.77平方公里,人口185.15万。
(2)道路总长度998公里,道路铺装面积928万平方米,道路广场面积1371.45万平方米,道路网密度7.71公里/平方公里,人均道路长度0.7米,人均道路面积6.16平方米。
(3)城市总体规划人口通过对岀行特征的分析,把岀行特征相近的人口划归为一类,常住人口和暂住人口称为第一类人口,短期及当日进出人口称为第二类人口。
车辆调度问题的数学模型-精选文档
车辆调度问题的数学模型车辆调度是公交公司、旅游公司、企事业单位等经常遇到的问题,在分析乘车人数、时间、地点等因素的基础上,如何购置车辆使得成本最低,如何合理安排车辆以满足乘客需要,如何使车辆运营费用最省,这些问题都可通过数学建模的方法加以解决.下面以某学校的车辆调度为例进行研究:1.在某次会议上,学校租车往返接送参会人员从A校区到B 校区.参会人员数量见附表1,车辆类型及费用见附表2,请你研究费用最省的租车方案.2.学校准备购买客车,组建交通车队以满足教师两校区间交通需求.假设各工作日教师每日乘车的需求是固定的(见附表3),欲购买的车型已确定(见附表4),两校区间车辆运行时间固定为平均行驶时间35分钟.若不考虑运营成本,请你确定购买方案,使总购价最省.附表1参会人员数量二、问题二模型的建立与求解1.问题分析由于两校区间车辆单程运行时间为35分钟,往返则需70分钟,因此,若不同校区之间的发车时间小于35分钟,或同一校区的发车时间小于70分钟的话,车辆是不能周转使用的,据此便可确定某一时段的乘车人数.通过观察A校区与B校区的18个发车时间,可以看出有两个乘车高峰时段,第一个高峰时段是早上7:30至8:15(即早高峰时段),乘车人数为188人.第二个高峰时段是下午17:15至17:45(即晚高峰时段),乘车人数为222人.从乘车人数看晚高峰时段要多于早高峰时段,而且晚高峰时段的发车时间较为分散,显然只要按晚高峰时段购买车辆,便可满足教师乘车需求.2.模型的建立与求解为建立模型的需要,我们将A校区的发车时间17:15,B校区的发车时间17:15,17:30,17:45依次按1,2,3,4编号.设xij为第i个发车时间点需购置的j型车的数量,(i=1,2,3,4;j=1,2,…,6),cj为购置(包括购置税10%)第j型车的单价,j=1,2,…,6.目标函数是使购车总费用最小.约束条件:满足晚高峰时段各个发车时间点的乘车需求.设z表示购车总费用,在不考虑运营成本的情况下,建立整数线性规划模型如下:minz=∑41i=1∑61jcjxij。
汽车租赁调度问题(详细)--数学建模竞赛
2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2015年8月15日赛区评阅编号(由赛区组委会评阅前进行编号):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):汽车租赁调度问题摘要随着汽车租赁行业竞争的不断增加,众多汽车租赁公司针对汽车租赁的实际需求,纷纷调整调度方案以满足市场需求和赚取利益。
针对问题一,在尽量满足汽车需求的前提下,规划目标为代理点间车辆总转运费最小,首先使用多元统计方法对相关数据进行处理,根据每个汽车租赁代理点的坐标求出各代理点间的欧氏距离,再将其与各代理点的每辆车的转运成本相乘得出任意两个代理点的转运费用,把问题转化为运输问题,最后结合各代理点起初汽车数量与每天汽车需求量建立线性规划模型,确定合适的目标函数和约束条件,利用MATLAB和lingo编程,是最终结果与实际情况相符,最终得到最低转运费用及最优车辆调度方案见附录2。
针对问题二,考虑到短缺损失尽可能低与调度费用低于增值费用等因素,在问题一的基础上,建立目标函数为转运费用和短缺损失费用总和的最小值,同样利用lingo进行求解,得到4周内转运费用和短缺损失费总和最小为万元以及此时相对应的最优车辆调度方案见附录3。
2019数学建模c题出租车c
2019数学建模c题出租车c摘要:1.题目背景介绍2.题目分析3.解决方案设计4.解决方案实现5.结果与讨论6.总结正文:1.题目背景介绍2019 年数学建模C 题出租车问题,主要讲述了一个城市正在考虑对出租车行业进行改革,以提高出租车的使用效率。
改革的内容包括出租车的调度方式、乘客的叫车方式等。
在这个背景下,题目要求我们针对出租车的调度策略进行研究,以提高出租车的使用效率。
2.题目分析通过对题目的仔细阅读和分析,我们可以得知这个问题的核心是要解决出租车的调度问题。
我们需要通过建立数学模型,找到一种高效的调度策略,使得出租车能够在满足乘客需求的同时,最大限度地提高自身的使用效率。
3.解决方案设计在设计解决方案时,我们首先需要考虑的是如何对出租车进行调度。
一种可能的解决方案是,我们可以通过建立一个中央调度系统,对出租车进行统一调度。
这个系统可以根据出租车的位置、乘客的叫车需求等信息,对出租车进行智能调度。
4.解决方案实现在实现这个解决方案时,我们需要考虑的是如何构建这个中央调度系统。
这需要我们利用先进的信息技术,如大数据分析、人工智能等,对出租车的位置、乘客的叫车需求等信息进行实时处理。
同时,我们还需要设计一个有效的调度算法,以保证调度的效率和公平性。
5.结果与讨论通过实施这个解决方案,我们可以预期的是,出租车的使用效率将会得到显著提高。
同时,乘客的满意度也会得到提升,因为他们能够更快地叫到车。
然而,这个解决方案也可能会带来一些问题,比如,出租车司机可能会因为调度系统的安排而感到不满。
因此,我们需要在实施这个解决方案的同时,也要考虑到各方面的利益,以保证方案的顺利实施。
6.总结总的来说,2019 年数学建模C 题出租车问题,主要考察了我们对实际问题的分析和解决能力。
通过对题目的仔细分析,我们可以找到问题的关键所在,然后通过设计一个有效的解决方案,来解决这个问题。
数学建模汽车租赁调度问题
数学建模汽车租赁调度问题汽车租赁业务在现代社会中越来越受到欢迎。
为了提高租车服务的质量和效率,如何合理地调度汽车成为一个重要的问题。
本文将利用数学建模方法,探讨汽车租赁调度问题,并提出一种有效的解决方案。
一、问题概述在汽车租赁公司中,通常有一定数量的汽车可供顾客租用。
假设每辆汽车都有相同的基本租金。
顾客提前预约租车,并在预定时间到租赁公司领取车辆。
为了提高利润和顾客满意度,汽车租赁公司需要合理地安排汽车的调度,以保证每个顾客都能按时得到租赁车辆。
二、模型假设1. 假设每位顾客的租车时间和归还时间都已提前确定,不会发生变化。
2. 假设每辆汽车都有固定的油耗,即不考虑汽车在租赁过程中需要加油的情况。
3. 假设所有汽车的行驶速度相同,不受交通拥堵等因素的影响。
4. 假设所有顾客对汽车的租赁时间都严格遵守,不会延误还车时间。
三、模型建立1. 数据收集:首先,收集所需的数据,包括汽车数量、顾客数量、每辆汽车的基本租金以及每位顾客的租车和归还时间。
2. 路线规划:根据每个租赁订单的时间要求,为每辆汽车规划最佳的路线。
考虑到租车和归还的顺序,采用TSP(Traveling Salesman Problem,旅行商问题)算法,通过动态规划求解最优路径。
3. 调度策略:确定汽车的调度策略,使租车公司的利润最大化。
可以考虑以下几个因素:a. 汽车的利用率:通过合理安排汽车的调度,尽量减少汽车空闲时间,提高汽车的利用率。
b. 顾客的满意度:尽量减少顾客等待租车的时间,确保顾客能够按时得到租车。
c. 路程的最优化:通过动态规划算法求解最佳路径,减少汽车行驶的总路程。
四、模型求解根据以上建立的数学模型,可以使用计算机编程语言来求解。
首先,将所需的数据输入程序中,通过计算得到最优路径和调度策略。
然后,根据计算结果,安排汽车的调度,使得汽车的利润最大化,并确保顾客能够按时得到租车。
五、实例分析以某汽车租赁公司为例,假设该公司有10辆汽车和50个顾客。
2014年全国研究生数学建模竞赛一等奖论文(E题)-乘用车物流运输计划问题
(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校西安理工大学参赛队号队员姓名(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目乘用车物流运输计划问题摘要:本文主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案。
针对前三问,由于不考虑目的地和轿运车的路径选择,将问题抽象为带装载组合约束的一维装车问题,优化目标是在保证完成运输任务的前提下尽可能满载,选择最优装载组合方案使得所使用的轿运车数量最少。
对于满载的条件,将其简化为考虑轿运车的空间利用率最大,最终建立了空间利用率最大化和运输成本最小化的两阶段装载优化模型。
该模型类似于双目标规划模型,很难求解。
为此,将空间利用率最大转换为长度余量最少,并为其设定一个经验阈值,将问题转换为求解整数规划问题,利用分支定界法进行求解。
由于分支定界法有时并不能求得最优解,设计了一种基于阈值的启发式调整优化算法。
最后,设计了求解该类问题的通用算法程序,并对前三问的具体问题进行了求解和验证。
通过求解得出,满足前三问运输任务的1-1型轿运车和1-2型轿运车数量如下表所示(具体的乘用车装载方案见表2、表5、表7):第一问第二问第三问1-1 16 12 251-2 2 1 5针对问题四,其是在问题一的基础上加入了整车目的地的条件,需要考虑最优路径的选择。
在运输成本上,加入了行驶里程成本,因而可以建立所使用的轿运车数量最少和总里程最少的双目标整数规划模型。
对于此种模型,可以采用前三问所设计的通用算法进行求解。
此时,需要重新设计启发式调整优化算法。
为此,根据路线距离的远近和轿运车数量需要满足的比例约束条件设计了新的调整优化方案。
最终求得的各目的地的轿运车使用数量如下表所示,此时的总路程为6404,具体装载方案见表9。
A B C D 总数1-1型 1 6 9 5 211-2型 4 0 0 0 4总量 5 6 9 5 25针对问题五,作为问题四的扩展研究,类似于问题四建立了双目标规划模型。
认证杯数学建模竞赛赛题
认证杯数学建模竞赛赛题认证杯数学建模竞赛的赛题通常涉及实际问题的解决,需要参赛者运用数学知识和方法进行分析、建模和求解。
赛题可能涉及各种数学领域,如线性代数、微积分、概率统计、图论、优化等。
以下是一个认证杯数学建模竞赛的示例赛题:共享汽车调度问题问题描述:共享汽车作为一种便捷的出行方式,已经在许多城市得到广泛应用。
本问题主要关注共享汽车的调度问题,目标是制定一个合理的调度方案,以提高企业的利益和用户的出行效率。
问题分析:首先,我们需要对数据进行处理和可视化,确定共享汽车的分布和使用情况。
这需要使用到线性代数、微积分和图论等数学知识。
其次,我们需要建立数学模型来描述共享汽车的调度问题。
这需要考虑各种因素,如车辆的停放位置、用户的出行需求、车辆的维护成本等。
这需要使用到概率统计、优化等数学知识。
最后,我们需要求解数学模型,得出最优的调度方案。
这需要使用到数值计算、算法设计等数学知识。
解题思路:1. 数据处理和可视化:首先对数据进行预处理,包括清洗、整理和转化等操作。
然后使用线性代数、微积分和图论等数学知识,对数据进行可视化,展示共享汽车的分布和使用情况。
2. 建立数学模型:根据实际情况和问题分析,建立数学模型来描述共享汽车的调度问题。
需要考虑车辆的停放位置、用户的出行需求、车辆的维护成本等因素,并使用概率统计、优化等数学知识进行建模。
3. 求解数学模型:根据建立的数学模型,使用数值计算、算法设计等数学知识进行求解。
求解过程可能需要迭代和优化,最终得出最优的调度方案。
综上所述,认证杯数学建模竞赛的赛题需要参赛者具备扎实的数学基础和实际问题的解决能力,同时也需要有一定的创新能力和团队协作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车租赁调度问题(详细)--数学建模竞赛————————————————————————————————作者:————————————————————————————————日期:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2015年8月15日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):汽车租赁调度问题摘要随着汽车租赁行业竞争的不断增加,众多汽车租赁公司针对汽车租赁的实际需求,纷纷调整调度方案以满足市场需求和赚取利益。
针对问题一,在尽量满足汽车需求的前提下,规划目标为代理点间车辆总转运费最小,首先使用多元统计方法对相关数据进行处理,根据每个汽车租赁代理点的坐标求出各代理点间的欧氏距离,再将其与各代理点的每辆车的转运成本相乘得出任意两个代理点的转运费用,把问题转化为运输问题,最后结合各代理点起初汽车数量与每天汽车需求量建立线性规划模型,确定合适的目标函数和约束条件,利用MATLAB和lingo编程,是最终结果与实际情况相符,最终得到最低转运费用40.49158及最优车辆调度方案见附录2。
针对问题二,考虑到短缺损失尽可能低与调度费用低于增值费用等因素,在问题一的基础上,建立目标函数为转运费用和短缺损失费用总和的最小值,同样利用lingo进行求解,得到4周内转运费用和短缺损失费总和最小为57.46982万元以及此时相对应的最优车辆调度方案见附录3。
针对问题三,在问题二的基础上,综合考虑公司获利、转运费用以及短缺损失等因素,规划目标为公司获得的净利润最大,运用插值拟合方法补充出附件5中租赁收入缺失的数据,用车辆租赁收入减去转运费用和短缺失费用表示公司的净利润。
利用lingo进行优化求解,得到未来四周内公司的最大获利为4076.341万元及最优调度方案见附录5。
针对问题四规划年度利润最大化,确定最优购进方案。
通过spss软件,拟合出每个代理点拥有车辆和需求车辆的关系,并综合总利润=总收入-总花费的关系式,规划出利润和购买车辆的关系,近似求出购买车辆数对年获利影响。
建立数学模型,容易直观地分析出所需购买的车辆数。
另外根据车辆价格汽车的价格,年维修费用的不同,所产生的不同的维修费用,计算出购买第八款车花费最小。
用MATLAB编程,计算出结果为当购买41辆第八款车时,年度总获利最大,最大为万元针对问题五,在问题四的基础上,考虑到购买数量与价格优惠幅度之间的关系,通过查阅资料发现当购买数量大于20时,优惠2%,当购买数量大于40时,优惠5%,在只购买第八款车型的情况下,得到年度净利润最大的购车方案,与问题四相同,使得净年利润最大为44.439310⨯万元,与不进行优惠相比,年利润增加3⨯万元。
210针对问题六,本文要求每个代理点的拥有车辆数中高级车和低级车各占一半以及每个代理点的高级车型需求与低级车型需求大约也各占一半,重新算问题三、四。
在问题三、四程序的基础上将拥有量和需求量各自减半对高级车和低级车分别求最大净利润值之和及购车数量。
关键字:线性规划汽车租赁调度拟合 SPSS一.问题重述国内汽车租赁市场兴起于1990年北京亚运会,随后在北京、上海、广州及深圳等国际化程度较高的城市率先发展,直至2000年左右,汽车租赁市场开始在其他城市发展。
现有某城市一家汽车租赁公司,此公司年初在全市范围内有379辆可供租赁的汽车,分布于20个代理点中。
每个代理点的位置都以地理坐标X和Y的形式给出,单位为千米。
假定两个代理点之间的距离约为他们之间欧氏距离(即直线距离)的1.2倍。
附件1—附件6给出了问题的一些数据。
请解决如下问题:1.给出未来四周内每天的汽车调度方案,在尽量满足需求的前提下,使总的转运费用最低;2.考虑到由于汽车数量不足而带来的经济损失,要求每个代理点的损失率尽可能都低于10%;另外,如果总转运成本太高,使得总转运费用高于因调度而增值的收入,这样的调度方案也是没有意义的,请综合以上情况给出使未来四周总的转运费用及短缺损失最低的汽车调度方案;3.综合考虑公司获利、转运费用以及短缺损失等因素,确定未来四周的汽车调度方案;4.为了使年度总获利最大,从长期考虑是否需要购买新车?如果购买,购买多少,各个代理点如何分配?5.如果购买新车的话,考虑到购买数量与价格优惠幅度之间的关系,在此假设如果购买新车,只购买一款车型,试确定购买计划。
6.在现实中,大多数租车公司会提供多种车型,如至少两种车型(A,B),若已知附件1中所给代理点的拥有车辆数中两种车型各占一半,亦可假定在过去一年和未来四周的汽车需求中,每个点的高级车型需求与低级车型需求大约也各占一半,另外高级车型(B型)租赁收入为低级车型(A型)的1.4倍,假定原附件5表中给出的租赁收入均为低级车型的租赁价格,两种车型的短缺损失假定相同,请再次计算问题3与问题4;7.以上述研究结论为基础,请为各代理点撰写一个简明扼要的调度方案手册,以便今后类似调度问题时使用。
2. 问题分析车辆调度问题是一个数学规划问题,即在满足调度限制的解空间内,寻找使调度选择中提出的目标函数都满意的最优解。
联系实际,综合考虑转运费用、短缺损失、公司获利等因素,利用优化算法、线性规划和lingo、matlab和excel 软件,尽可能得到各代理点车辆租赁调度安排的最优解。
针对问题一在满足需求的前提下得到未来四周内的最优解。
根据附件3未来四周每个代理点每天的汽车需求量,先求得年初各代理点的车辆到第一天最优调度方案,以后每天的调度最优方案都以前一天求得的最优调度结果为当天拥有量。
该问题以各个代理点间调度车辆的总费用最低为目标函数,以可提供车辆的代理点提供的车辆数和需接收车辆的代理点接收的车辆数为约束条件,建立线性规划数学模型。
借用LINGO工具进行方程求解[2]。
针对问题二要求在问题一所得结果的基础上,考虑由于汽车数量不足而造成的短缺损失费用,可以把总的费用简化为转运费用与短缺损失费用之和,建立总费用最低的线性规划模型[1],利用lingo程序进行优化处理,使目标函数值最小,从而得到最优解。
针对问题三需要综合考虑公司获利、转运费用以及短缺损失等因素建立规划模型,总的净利润可以简化为总收入减去总费用,运用matlab对缺少的数据进行拟合[3],再运用lingo辅助求解。
针对问题四需要解决是否购车及最佳购车方案的问题,用未来四周的需求量与现拥有量379做对比,得出供求关系,若总体上供不应求,则需要购进新车。
本问题在确定所需购买的车数量时,先分析附件-4中,10款同类汽车的价格、使用寿命、寿命期内的年维修费用,以八年为一个周期,计算出每款车的总费用,进而确定所需要购买的车型。
再利用spss软件拟合出需求量与拥有量的关系,结合总利润=总收入-总费用,建立购进车的数量与年总利润的数学模型,进而可以在MATLAB软件中求的利润最大时,所需购进的车辆数,确定最优购进方案,并求得最大利润。
并根据短缺损失费最高的代理点,和问题三的调度结果进行新车分配。
针对问题五,在问题四的基础上,考虑到购买数量与价格优惠幅度之间的关系,通过查阅资料发现当购买数量大于20时,优惠2%,当购买数量大于40时,优惠5%,在只购买第八款车型的情况下,得到年度净利润最大的购车方案,与问题四相同。
3.模型的假设(1)租出的每辆车当日租当日还,且无损坏。
(2)汽车的转运成本仅与距离有关,不考虑汽车在转运途中的损耗。
(3)租出的车辆只归还于租出代理点。
(4)各租赁代理点在第二天租赁业务开始前完成相互间的汽车调度。
4. 符号说明符号符号含义ij D 代理点i 和j 之间的实际距离 ij L 欧氏距离ij a代理点i 和j 之间的转运成本W 总转运费用 ij V 转运量数 ij C转运一辆车的费用 R公司获得的净利润s公司的总损失5. 模型的建立与求解5.1问题一:仅考虑总转运费用的汽车调度方案 5.1.1 模型的准备数据处理 (1)根据附件1中数据,利用MATLAB 作出将各个代理点的位置的散点图如下:10203040506070010203040506070x/kmy /k m图1 各代理点的位置(2)根据附件1 提供的各代理点位置的坐标,由平面上两点之间的距离公式22()()ij i j i j L X X Y Y =+++可计算出任意两个代理点之间的欧式距离,由于两个代理点之间的实际距离约为他们之间欧氏距离的1.2倍,则有任意两代理点之间的实际距离为:1.2ij ij D L =(3)各代理点间转运一辆车的费用等于各代理点之间的距离乘以相应的转运成本,即:ij ij ij C D a =利用MATLAB 编程求出各代理点的相互转运费用矩阵ij C ,具体结果见附录1。
5.1.2模型一的建立要使得未来四周的总转运费用最低,转运费用为需要转运两代理点之间的距离,乘以不同代理点之间的每辆车的转运成本(万元/千米),再乘以转运的车辆数,则可得到目标函数:292020211ij tijt i j min W C V====∑∑∑汽车总量约束:不考虑购入新车的情况下,未来四周内,该公司总车辆数是一定的,则有约束:201379,2,3......29tii yt ===∑汽车供求量约束:(1)当代理点i 的汽车供不应求时,即第k 天代理点i 所拥有的车辆数,与k+1 天代理点i 所需求的车辆数之差小于0,则应满足条件为:201,0tijti ti i Vy y =≥∆∆<∑(2)代理点i 的汽车供大于求,即第k 天代理点i 所拥有的车辆数与第k+1天代理点i 所需求的车辆数之差大于0,则应满足条件为:201,0,1,2...20,2,3...29tijti ti i Vy y i t =≤∆∆>==∑其中, ti y ∆表示第k 天代理点i 所拥有的车辆数与第1t +天代理点i 所需求的车辆数之差,即1,ti ik t i y y d +∆=-,ti d 表示第t 天代理点i 的车辆需求量。