数学命题预测试卷二

合集下载

河北省正定中学2023届高三模拟预测(二)数学试题(含解析)

河北省正定中学2023届高三模拟预测(二)数学试题(含解析)

河北省正定中学2023届高三模拟预测(二)数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题(1)求证:直线BE ⊥直线1AC ;(2)求平面1BME N 与平面1BEF 所成角的正弦值21.已知函数()()ln 1f x x =+-(1)求()f x 的单调区间;(2)若()()221f x x a x b +≤+++参考答案:故选:C 7.D【分析】首先化简函数,再结合三角函数的性质,即可判断选项【详解】因为()(sin 2023f x =所以直线AP 与CD 所成角的正弦值的范围为2,12⎡⎤⎢⎥⎣⎦,故选项对于C ,因为14AP AC =,所以点P 是1AC 上靠近A 的四等分点,过点P 作平面11CDD C 的垂线,垂足为Q ,过Q 作QK ⊥则PCQ ∠为直线CP 与平面11CDD C 所成的角,由正方体的性质知,Q 是1DC 靠近D 的四等分点,连接在Rt PCQ △中,易得2232,12144PQ CQ ⎛⎫==+-⨯⨯ ⎪ ⎪⎝⎭所以310tan 10PQ PCQ CQ ∠==,故选项C 正确;对于D ,因为点P 在四边形11ACC A 内(含四边形的边)运动,当P 点在1A 或1C 点时,其外接球的体积最大为正方体ABCD 当P 点不在1A 或1C 时,其外接球体积较小,故D 正确.故选:ACD.10.ABD【分析】利用导数的几何意义求出切线方程判断A ;计算f 求出解析式判断C ;利用导数探讨单调性结合零点存在性定理判断【详解】对于A ,函数()21e 2x f x x =-,求导得()e x f x '=-所以()f x 在0x =处的切线方程为10y x -=-,即1x y -+=【点睛】关键点睛:本题D 选项的解决关系是利用内角平分线定理得到坐标()()()001r ,,,,,0G P x y I x y G x 之间的关系,由此得解13.142故答案为:5π217.(1)π3(2)3 421.(1)单调递增区间为1,2⎛-- ⎝(2)证明见解析【分析】(1)在定义域范围内求导函数大于零或小于零的解集即可;线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.。

2023年高考黄金押题预测卷乙卷文数2之02考试版

2023年高考黄金押题预测卷乙卷文数2之02考试版

2023年高考押题预测卷02高三数学(文科)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,,则集合中的元素个数为( )A.B. C. D.勤部门的工作,采用随机抽样的方法调查100名学生对校园环境的认可程度(100分制),{}1,2,3M =(){},,,N x y x M y M x y M =∈∈+∈N 2389A . 9.分形几何学是一门以不规则几何形态为研究对象的几何学,界中,因此又被称为“大自然的几何学个树形图.若记图2中第A .144B .89C .55 10.已知椭圆的左、右焦点分别为222222:1(0)x y C a b a b+=>>12,F F第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,,且满足,则_______.14.已知圆,直线 ,在区间上任取一个数,则圆O 与直线l 有公共点的概率为______.15.写出一个同时满足下列三个条件的非常数函数______.①在单调递增 , ②值域, ③16.记的内角,,的对边分别为,,,若为的重心,,,则__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)某市决定利用两年时间完成全国文明城市创建的准备工作,其中“礼让行人”是交警部门主扲的重点工作之一.“礼让行人”即当机动车行经人行横道时应当减速慢行,遇行人正在通过人行横道,应当停车让行.如表是该市某一主干路口电子监控设备抓拍的今年1-6月份机动车驾驶员不“礼让行人”行为的人数统计数据.月份 1 2 3 4 5 6不“礼让行人” 33 36 40 39 45 53(1)请利用所给的数据求不“礼让行人”人数与月份之间的经验回归方程,并预测该路口今年11月份不“礼让行人”的机动车驾驶员人数(精确到整数);(2)交警部门为调查机动车驾驶员“礼让行人”行为与驾龄满3年的关系,从这6个月内通过该路口的机动车驾驶员中随机抽查了100人,如表所示: ()2,a m =- ()1,3b = b b ⊥+)a (m =22:4O x y +=:l y x b =+[5,5]-b [)0,∞+[)1,+∞()()=f x f x -ABC A B C a b c O ABC OB OC ⊥34b c =cos A =y x ),121(,y ^^^N x x a x b ∈≤≤+=不“礼让行人” 礼让行人 驾龄不超过3年18 42 驾龄3年以上 4 36依据上表,能否有95%的把握判断机动车驾驶员“礼让行人”行为与驾龄满3年有关?并说明理由.独立性检验临界值表:0.10 0.05 0.010 0.005 0.0012.7063.841 6.635 7.879 10.82818.(12分)如图1,在Rt △ABC 中,,,E ,F 都在AC 上,且,,将△AEB ,△CFG 分别沿EB,FG 折起,使得点A ,C 在点P 处重合,得到四棱锥P -EFGB ,如图2.(1)证明:.(2)若M 为PB 的中点,求三棱锥P -EGM 的体积.19.(12分)已知等差数列与等比数列满足 , , ,且既是和的等差中项,又是其等比中项.∑∑==---=ni i i i ix x y y x x 1_21^)())((b αx αAB BC ⊥212AC AB ==::3:4:5AE EF FC =EB FG ∥EF PB ⊥{}n a {}n b 11a =35a =24b =2a 11a b +33b a -20.(12分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.求证:为定值.21.(12分)已知函数,是曲线在处的切线方程.(1)证明:当时,恒成立;(2)若有两个不同的实数根,且,证明:.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分) 在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.2:2(0)C y px p =>x (1,0)A -C (2,0)M l C P Q 2211||||PM QM +()24ln 1f x x x =--()y g x =()y f x =1x =0x >()()0f x g x -≥()f x a =12,x x 21x x >2122x x a -<+xOy 1C 1cos sin x y αα=+⎧⎨=⎩αO x 2C ρθ=1C 2C ():0l y kx k =>1C O A 2C O B OA OB +l。

小学数学二年级试卷命题

小学数学二年级试卷命题

一、填空题(每空1分,共10分)1. 5个苹果加上3个苹果,一共有 ______ 个苹果。

2. 2个苹果比3个苹果少 ______ 个苹果。

3. 7加上4等于 ______ 。

4. 6减去2等于 ______ 。

5. 3乘以5等于 ______ 。

6. 4乘以2等于 ______ 。

7. 8减去3等于 ______ 。

8. 9加上6等于 ______ 。

9. 5乘以3等于 ______ 。

10. 10减去7等于 ______ 。

二、选择题(每题2分,共10分)1. 下列哪个数比5大?()A. 4B. 6C. 32. 下列哪个数比8小?()A. 7B. 9C. 103. 下列哪个算式的结果是10?()A. 3 + 4 = 7B. 4 + 5 = 9C. 2 + 8 = 104. 下列哪个算式的结果是12?()A. 6 + 6 = 12B. 5 + 7 = 12C. 4 + 8 = 125. 下列哪个算式的结果是20?()A. 4 × 5 = 20B. 5 × 4 = 20C. 6 × 3 = 186. 下列哪个算式的结果是18?()A. 3 × 6 = 18B. 4 × 5 = 20C. 5 × 4 = 207. 下列哪个算式的结果是30?()A. 6 × 5 = 30B. 5 × 6 = 30C. 4 × 7 = 288. 下列哪个算式的结果是24?()A. 3 × 8 = 24B. 4 × 6 = 24C. 5 × 5 = 259. 下列哪个算式的结果是36?()A. 6 × 6 = 36B. 7 × 5 = 35C. 8 × 4 = 3210. 下列哪个算式的结果是42?()A. 7 × 6 = 42B. 6 × 7 = 42C. 8 × 5 = 40三、判断题(每题2分,共10分)1. 3加3等于6。

湖北省襄阳市东风中学2024届高考全国卷信息归集与高考命题预测数学试题

湖北省襄阳市东风中学2024届高考全国卷信息归集与高考命题预测数学试题

湖北省襄阳市东风中学2024届高考全国卷信息归集与高考命题预测数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .101020212.已知点()11,A x y ,()22,B x y 是函数()2f x x bx =的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数 C .a 、b 均为任意实数D .不存在满足条件的实数a ,b3.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲B .乙C .丙D .丁4.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=-⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③5.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .6.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=7.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .2e⎛⎫+∞⎪ ⎪⎝⎭B .,)e +∞C .,)e +∞D .2e⎡⎫+∞⎪⎢⎪⎣⎭8.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( ) A .13i +B .13i -C .13i -+D .13i --9.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2- B .1-C .1D .210.函数()sin x y x-=([),0x π∈-或(]0,x π∈)的图象大致是( )A .B .C .D .11.一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为1A ,2A ,…n A (1A 为A 地,n A 为B 地).从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达1A ,2A ,…n A 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =….则k a 的表达式为( ). A .(1)k n k -+B .(1)k n k --C .()n n k -D .()k n k -12.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直,则该双曲线的离心率为( )A .2B .52C .102D .23二、填空题:本题共4小题,每小题5分,共20分。

2024学年山东省新泰市第二中学高三下学期第二次模拟考试数学试题理试卷

2024学年山东省新泰市第二中学高三下学期第二次模拟考试数学试题理试卷

2024学年山东省新泰市第二中学高三下学期第二次模拟考试数学试题理试卷 注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足2(13)(1)i z i +=+,则||z =( ) A .54 B .55 C .102 D .1052.若复数()()31z i i =-+,则z =( )A .22B .25C .10D .203.已知向量()()1,2,2,2a b λ==-,且a b ⊥,则λ等于( )A .4B .3C .2D .14.已知12,F F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于,A B 两点,若2AB =,则2ABF ∆的内切圆半径为( )A .23B .33C .323D .2335.已知数列满足:.若正整数使得成立,则( )A .16B .17C .18D .196.已知复数z 满足(3)1i z i +=+,则z 的虚部为( )A .i -B .iC .–1D .17.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )A .110B .15C .140D .9408.设i 为数单位,z 为z 的共轭复数,若13z i =+,则z z ⋅=( ) A .110 B .110i C .1100 D .1100i 9.命题“20,(1)(1)∀>+>-x x x x ”的否定为( )A .20,(1)(1)∀>+>-x x x xB .20,(1)(1)∀+>-x x x xC .20,(1)(1)∃>+-x x x xD .20,(1)(1)∃+>-x x x x10.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12 11.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( )A .35B .45-C .45D .3512.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC F D .三棱锥B CEF -的体积为定值二、填空题:本题共4小题,每小题5分,共20分。

2024届上海市徐汇区高三二模数学试题及答案

2024届上海市徐汇区高三二模数学试题及答案

第12题图上海市徐汇区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合22A y y x ,集合2430B x x x ,那么A B .2.已知复数1iz i(i 为虚数单位),则z z .3.在ABC 中,1AC ,2C ,A,则ABC 的外接圆半径为.4.5.6.7.8.9.10.11.不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ,则OAP 面积的取值范围是.12.如图所示,已知ABC 满足8BC ,3AC AB ,P 为ABC 所在平面内一点.定义点集13,3P AP AB AC R D.若存在点0P D ,使得对任意P D ,满足0AP AP恒成立,则0AP的最大值为.第11题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.在下列函数中,值域为R 的偶函数是().A 13y x ;.B lg y x ;.C x x y e e ;.D 3cos y x x .14.为了研究y 关于x 的线性相关关系,收集了5组样本数据(见下表):.A ˆa.B 当x .C .D 15.).A 若 .B 若 .C .D 若16.三棱锥90 ,二面角P BC A 的大小为45 ,则对以下两个命题,判断正确的是()①三棱锥O ABC 的体积为83;②点P 形成的轨迹长度为..A ①②都是真命题;.B ①是真命题,②是假命题;.C ①是假命题,②是真命题;.D ①②都是假命题.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数 y f x ,其中 122log 2xf x x .(1)求证: y f x 是奇函数;(2)若关于x 的方程 12log f x x k 在区间 3,4上有解,求实数k 的取值范围.18.如图,4,ABC 是底面圆O (1)(2)19.(本题满分14分,第1小题满分6分,第2小题满分8分)为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如右表.(单位:个)(1)若规定显著性水平0.05 ,试分析中草药甲对预防此疾病是否有效;(2)已知中草药乙对该疾病的治疗有效率数据如下:对未服用过中草药甲的患者治疗有效率为12,对服用过中草药甲的患者治疗有效率为34.若用频率估计20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知椭圆224:13x y C ,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为左、右焦点,直线l 交椭圆C 于M 、N 两点(l 不过点2A ).(1)若Q 为椭圆C 上(除1A 、2A 外)任意一点,求直线1QA 和2QA 的斜率之积;(2)若112NF F M,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是1k 、2k ,且1294k k,求证:直线l 过定点.21.(本题满分18分,第1小题满分4分,第2小题(i )满分6分,第2小题(ii )满分8分)已知各项均不为0的数列 n a 满足2211n n n n n a a a a a(n 是正整数),121a a ,定义函数111!nkn k y f x x k(0x ),e 是自然对数的底数.(1)求证:数列1n n a a是等差数列,并求数列 n a 的通项公式;(2)记函数 n y g x ,其中 1xn n g x e f x ;(i )证明:对任意0x , 3430g x f x f x ;(ii )数列 n b 满足12n n nb a ,设n T 为数列 n b 的前n 项和.数列 n T 的极限的严格定义为:若m 满足:当n m n T 的极限T .上海市徐汇区2024届高三二模数学试卷-简答参考答案及评分标准2024.4一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 3, 2.2 3.14.35.816.17.2108.79.76410.7211.12.3二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B 14.D 15.C 16.A三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)【解】(1)证明:函数122log 2xy x 的定义域为 22D x x x 或,在D 中任取一个实数x ,都有x D ,并且1111222222()log log log ()222x x x f x f x x x x.因此,122log 2xy x 是奇函数.(2) 12()log f x x k 等价于22x x k x即24122x k x x x x在 3,4上有解.记4()12g x x x,因为()g x 在 3,4上为严格减函数,所以,max ()(3)2g x g ,min ()(4)1g x g ,故()g x 的值域为 1,2 ,因此,实数k 的取值范围为 1,2 .18.(本题满分14分,第1小题满分6分,第2小题满分8分)19.(本题满分14分,第1小题满分6分,第2小题满分8分)20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)【解】(1)在椭圆22:143x y C 中,左、右顶点分别为12(2,0)(2,0)A A 、,设点 000,(2)Q x y x ,则12202000220000312244344QA QA x y y y k k x x x x .(2)设 1122,,,M x y N x y ,由已知可得1(1,0) F ,122111(1,)(+1,)NF x y F M x y,,由112 NF FM 得2211(1,)2(+1,) x y x y ,化简得2121=322 x x y y 代入2222431 x y 可得22114(32)(32)1 x y ,联立2211431 x y 解得117=4=8x y 由112 NF FM 得直线l 过点1(1,0) F ,7(,4 N ,所以,所求直线方程为=(1)2y x.(3)设 3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t (2 t ),联立22143x my tx y ,可得2223463120m y mty t ,由2222364(34)(312)0m t m t ,得2234t m .由韦达定理,得234342263123434, mt t y y y y m m .1294k k ,34349224y y x x .可化为 343449220 y y my t my t ,整理即得 223434499(2)9(2)0 m y y m t y y t ,222223126499(2)9(2)03434t mt m m t t m m ,由20t ,进一步得2222(49)(2)183(2)03434m t m t t m m ,化简可得16160t ,解得1t ,直线MN 的方程为1x my ,恒过定点(1,0).21.(本题满分18分,第(1)小题满分4分,第(2)(i )满分6分,第(2)(ii )满分8分)(方法二)而对于任意0u ,只需22e n u 且4n 时,可得22222222222!123n n e e e u e n n u个…….故存在22max ,5e m u,当n m 时,恒有n T T u ,因而n T 的极限2T e .。

2022~2023学年高一年级数学上册期末备考模拟试卷(2)【含答案】

2022~2023学年高一年级数学上册期末备考模拟试卷(2)【含答案】

期末模拟试卷(2)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}4U x x =∈≤N ,集合{1,},{1,2,4}A m B ==.若(){0,2,3}U A B = ð,则m =().A .4B .3C .2D .02.已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为().A .(][),04,-∞+∞U B .[]0,4C .[)4,+∞D .()0,43.函数()log 14a y x =-+的图像恒过定点P ,点P 在幂函数()y f x =的图像上,则(4)f =().A .16B .8C .4D .24.函数()2log 21f x x x =+-的零点所在区间为().A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭5.函数e 1()cos e 1x x f x x -=⋅+的图像大致为().A .B .C .D .6.牛顿冷却定律描述物体在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t 分钟后的温度T 满足()012tha a T T T T ⎛⎫-=- ⎪⎝⎭,h 称为半衰期,其中a T 是环境温度.若25a T =℃,现有一杯80℃的热水降至75℃大约用时1分钟,那么水温从75℃降至45℃,大约还需要().(参考数据:lg 20.30≈,lg11 1.04≈)A .9分钟B .10分钟C .11分钟D .12分钟7.函数()()214tan πcos f x x x =--的最大值为().A .2B .3C .4D .58.定义在R 上的函数()f x 满足()()()()0,2x f x f x f x f -+==-,且当[]0,1x ∈时,()2f x x =.则函数()72y f x x =-+的所有零点之和为().A .7B .14C .21D .28二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,最小正周期为π,且在0,2π⎛⎫⎪⎝⎭上单调递增的是().A .sin 2y x =B .tan y x =C .sin y x =D .tan y x =10.设正实数m ,n 满足2m n +=,则下列说法正确的是().A .11m n+的最小值为2B .mn 的最大值为1C 的最大值为4D .22m n +的最小值为5411.已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是().A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x <D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎣⎦,有()()()132f x f x f x +>成立12.已知()y f x =奇函数,()(2)f x f x =-恒成立,且当01x 时,()f x x =,设()()(1)g x f x f x =++,则().A .(2022)1g =B .函数()y g x =为周期函数C .函数()y g x =在区间(2021,2022)上单调递减D .函数()y g x =的图像既有对称轴又有对称中心三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.已知正实数a ,b 满足2a b +=,则24a ab+的最小值是______.14.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有两个实数解,则k 的范围是____.15.已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫ ⎪⎝⎭上有最小值无最大值,则ω=_______.16.若函数22sin 2,0()2,()()2,0x a x x f x g x a R x a x -+≥⎧==∈⎨+<⎩,对任意1[1,)x ∈+∞,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围___________四、解答题:本大题共6小题,共70分.第17题10分,第18至22题均12分.解答应写出文字说明、证明过程或演算步骤.17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在横线上,并回答下列问题.设全集U =R ,_____,22{|0}.B x x x a a =++-<(1).若2a =,求()()U UC A C B ;(2).若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.18.已知关于x 的不等式2tan 0x θ-+≥对x ∈R 恒成立.(1).求tan θ的取值范围;(2).当tan θ取得最小值时,求22sin 3sin cos 1θθθ++的值.19.已知函数()π2sin 226f x x ⎛⎫=++ ⎪⎝⎭.(1).若()3f α=,且()0,πα∈,求α的值;(2).若对任意的ππ,42x ⎡⎤∈⎢⎥⎣⎦,不等式()3f x m >-恒成立,求实数m 的取值范围.20.某地区的一种特色水果上市时间11个月中,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数:①()x f x p q =⋅;②2()1f x px qx =++;③()sin(44f x A x B ππ=-+(以上三式中,,,p q A B 均为非零常数,且1q >)(1).为准确研究其价格走势,应选哪种价格模拟函数,为什么?(2).若(3)8,(7)4,f f ==求出所选函数()f x 的解析式,为保证果农的收益,打算在价格在5元以下期间积极拓宽外销渠道,请你预测该水果在哪几个月份要采用外销策略?(注:函数的定义域是[]0,10,其中0x =表示1月份,1x =表示2月份, ,以此类推)21.已知函数41()log 2x a x f x +=(01)且a a >≠.(1).试判断函数()f x 的奇偶性;(2).当2a =时,求函数()f x 的值域;(3).已知()g x x =-[][]124,4,0,4x x ∀∈-∃∈,使得12()()2f x g x ->,求实数a的取值范围.22.已知函数2()1(0).f x ax x a =++>(1).若关于x 的不等式()0f x <的解集为(3,)b -,求a ,b 的值;(2).已知1()422x xg x +=-+,当[]1,1x ∈-时,(2)()x f g x ≤恒成立,求实数a 的取值范围;(3).定义:闭区间1212[,]()x x x x <的长度为21x x -,若对于任意长度为1的闭区间D ,存在,,|()()|1m n D f m f n ∈-≥,求正数a 的最小值.期末模拟试卷02参考答案一、单选题:本题共8小题,每小题5分,共40分.1.A 【详解】因为{}{}40,1,2,3,4U x x =∈≤=N ,又(){0,2,3}U A B = ð,所以{}1,4A B = ,即1A ∈且4A ∈,又{1,}A m =,所以4m =;故选A2.A 【详解】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即()21Δ24404a =--⨯⨯<,解得04a <<,所以若该命题是假命题,则实数a 的取值范围为(][),04,-∞+∞U .故选A.3.A 【详解】当2x =时,log 144a y =+=,所以函数()log 14a y x =-+恒过定点(2,4)记()m f x x =,则有24m =,解得2m =,所以2(4)416f ==.故选A4.B【详解】函数()2log 21f x x x =+-在()0+∞,上单调递增,1102f ⎛⎫=- ⎪⎝⎭<,()110f =>,由零点存在性定理可得,函数()2log 21f x x x =+-零点所在区间为1,12⎛⎫⎪⎝⎭.故选B.5.A 【详解】函数定义域是R ,e 1e e 1()cos()c )11e os (x x xxf x x x f x -----=⋅-==-++,函数为奇函数,排除BD ,当02x π<<时,()0f x >,排除C .故选A .6.B【详解】由题意,25a T =℃,由一杯80℃的热水降至75℃大约用时1分钟,可得()11752580252h ⎛⎫-=- ⎪⎝⎭,所以11501025511h ⎛⎫== ⎪⎝⎭,又水温从75℃降至45℃,所以()1452575252th⎛⎫-=- ⎪⎝⎭,即12022505th⎛⎫== ⎪⎝⎭,所以11110222115tt thh ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以10112lg 22lg 2120.315log 101051lg111 1.04lg 11t -⨯-===≈=--,所以水温从75℃降至45℃,大约还需要10分钟.故选B.7.B 【详解】()()22222sin cos 4tan tan 4tan 1tan 23cos x x f x x x x x x+=--=---=-++,当tan 2x =-时,()f x 取得最大值,且最大值为3,故选B8.B【详解】()f x 是奇函数.又由()()2f x f x =-知,()f x 的图像关于1x =对称.()()()()()()()4131322f x f x f x f x f x +=++=-+=--=-+()()()()2f x f x f x =---=--=,所以()f x 是周期为4的周期函数.()()()()()()()()211112f x f x f x f x f x f x +=++=-+=-=-=--,所以()f x 关于点()2,0对称.由于()()27207x y f x x f x -=-+=⇔=,从而求函数()f x 与()27x g x -=的图像的交点的横坐标之和.而函数()27x g x -=的图像也关于点()2,0对称.画出()y f x =,()27x g x -=的图象如图所示.由图可知,共有7个交点,所以函数()72y f x x =-+所有零点和为7214⨯=.故选B9.BCD【详解】A ,sin 2y x =,2T ππω==,由0,2x π⎛⎫∈ ⎪⎝⎭,得()20,x π∈,函数在区间0,2π⎛⎫ ⎪⎝⎭上不单调,故A 错误;B ,tan y x =最小正周期为π且在0,2π⎛⎫ ⎪⎝⎭上单增,故B 正确;C ,sin y x =最小正周期为π且在0,2π⎛⎫⎪⎝⎭上单增,故C 正确;D ,tan y x =,最小正周期为π,且在0,2π⎛⎫⎪⎝⎭上单调递增,故D 正确;故选BCD.10.AB 【详解】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当n m m n =,即1m n ==时等号成立,故A 正确;2m n +=≥ 1mn ≤,当且仅当1m n ==时,等号成立,故B正确;22224⎡⎤≤+=⎢⎥⎣⎦ ,2,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选AB 11.ACD【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立,故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+ ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭,所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎝⎭在50,12π⎛⎫ ⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎣⎦,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦,sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213+>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选ACD.12.BCD【详解】因为()(2)f x f x =-,所以()(2)f x f x -=+,又()f x 为奇函数,故()()(2)(2)(2)f x f x f x f x f x -=-=--=-=+,利用(2)(2)f x f x -=+,可得()(4)f x f x =+,故()f x 的周期为4;因为()f x 周期为4,则()g x 的周期为4,又()f x 是奇函数,所以(2022)(50542)(2)(2)(3)(2)(1)(1)1g g g f f f f f =⨯+==+=+-=-=-,A 错误,B 正确;当01x 时,()f x x =,因为()f x 为奇函数,故10x -≤<时,()f x x =,因为()(2)f x f x =-恒成立,令021x ≤-≤,此时,(2)2f x x -=-,则21x ≥≥,()(2)2f x f x x =-=-,故02x ≤≤时,,01()2,12x x f x x x ≤≤⎧=⎨-<≤⎩,令21x -≤<-,即12x <-≤,则()2()f x x f x -=+=-,即()2f x x =--;令10x -≤<,即01x <-≤,则()()f x x f x -=-=-,即()f x x =;令23x <<,即32x -<-<-,120x -<-<,(2)2()f x x f x -=-=所以(),112,13f x x xx x⎪=-≤≤⎨⎪-<≤⎩,根据周期性()y g x=在(2021,2022)x∈上的图像与在(1,2)x∈相同,所以,当12x≤<,即213x≤+<时,()()(1)22(1)32g x f x f x x x x=++=-+-+=-,故()g x在(1,2)x∈上单调递减,C正确;由()f x是周期为4的奇函数,则(2)()(2)f x f x f x+=-=-且(1)(1)f x f x-=-+,所以(1)(1)(2)(1)(2)()(1)()g x f x f x f x f x f x f x g x-=-+-=----=++=,故()g x关于12x=对称,()(3)()(1)(3)(4)()(1)(1)()0g x g x f x f x f x f x f x f x f x f x+-=+++-+-=++-+-=,所以()g x关于3,02⎛⎫⎪⎝⎭对称,D正确.故选BCD三、填空题:本大题共4小题,每小题5分,共20分.13.3+【详解】242422222133a b a b a b b aa ab a ab a b a b a b++++=+=+=+=+++≥++(当且仅当2b aa b=,即42a b=-=时等号成立).所以24a ab+的最小值为3+ 14.{}()43,--+∞【详解】由题意可知,直线y k=与函数()f x的图象有两个交点,作出直线y k=与函数()f x的图象如图所示:由图象可知,当4k=-或3k>-时,直线y k=与函数()f x的图象有两个交点.因此,实数k的取值范围是{}()43,--+∞.15.4或10【详解】∵f(x)满足5412f fππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,∴541223xπππ+==是f(x)的一条对称轴,∴362kπππωπ⋅+=+,∴13kω=+,k∈Z,∵ω>0,∴1,4,7,10,13,ω=⋯.当5,412xππ⎛⎫∈ ⎪⎝⎭时,5,646126xπππππωωω⎛⎫+∈++⎪⎝⎭,要使()f x在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则:31624624355321262ππππωωππππω⎧≤+<⎪⎪⇒≤<⎨⎪<+⎪⎩或57285224627593521262ππππωωππππω⎧≤+<⎪⎪⇒≤<⎨⎪<+⎪⎩,此时ω=4或10满足条件;区间5,412ππ⎛⎫⎪⎝⎭的长度为55312412126πππππ-=-=,当13ω 时,f(x)最小正周期22136Tπππω=<,则f(x)在5,412ππ⎛⎫⎪⎝⎭既有最大值也有最小值,故13ω 不满足条件.综上,ω=4或10.16.14a<或322a≤≤【详解】因2()2xf x-=在[1,)+∞上单调递增,则有min1()(1)2f x f==,于是得()f x在[1,)+∞上的值域是1[,)2+∞,设()g x的值域为A,1212在上的值域包含于()g x 的值域”,从而得1[,)2A +∞⊆,0x <时,2()2g x x a =+为减函数,此时()2g x a >,0x ≥时,()sin 2g x a x =+,此时2||()2||a g x a -≤≤+,当122a <,即14a <时,1[,)2A +∞⊆成立,于是可得14a <,当122a ≥,即14a ≥时,要1[,)2A +∞⊆成立,必有0x ≥,()[2,2]g x a a ∈-+满足22122a aa ≤+⎧⎪⎨-≤⎪⎩,即232a a ≤⎧⎪⎨≥⎪⎩,从而可得322a ≤≤,综上得14a <或322a ≤≤,所以实数a 的取值范围是14a <或322a ≤≤.四、解答题:本大题共6小题,共70分.第17题10分,第18至22题均12分.17.【详解】(1).若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<若选③:()(){}233{|log }0|31011xxA x y x x x x x x ⎧⎫--===>=-+>=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2).由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,①若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)a a -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.②若(1)a a -=--,则B =∅,不合题意舍去;③若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a-≥--⎧⎨≤-⎩解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.【详解】(1).不等式2tan 0x θ-+≥对x ∈R 恒成立,则0∆≤,即24tan 0θ-≤,tan 2θ≥,则tan θ的取值范围为[2,)+∞(2).由(1)知tan θ的最小值为2,则22sin 3sin cos 1θθθ++22223sin 3sin cos cos sin cos θθθθθθ++=+223tan 3tan 1126119tan 1415θθθ++++===++.19.【详解】(1).因为()3f α=,所以π2sin 2236α⎛⎫++= ⎪⎝⎭,即1sin 262απ⎛⎫+= ⎪⎝⎭,又由()0,πα∈,得132666απππ<+<,所以π5π266α+=,解得π3α=.(2).对ππ,42x ⎡⎤∈⎢⎥⎣⎦,有2ππ7π2366x ≤+≤,所以1sin 226απ⎛⎫-≤+ ⎪⎝⎭()12f x ≤≤所以要使()3f x m >-对任意的ππ,42x ⎡⎤∈⎢⎣⎦恒成立,只需()min 3f x m >-,所以31m -<,解得4m <.故所求实数m 的取值范围为(),4-∞.的图象不具备先上升,后下降,再上升的特点,不符合题意,对于③,当0A >时,函数()sin()44f x A x B ππ=-+在[0,3]上的图象是上升的,在[3,7]上的图象是下降的,在[7,11]上的图象是上升的,满足题设条件,应选③.(2).依题意,84A B A B +=⎧⎨-+=⎩,解得2,6A B ==,则[]()2sin()6,0,10,N 44f x x x x ππ=-+∈∈,由2sin()6544x ππ-+<,即1sin()442x ππ-<-,而[]0,10,N x x ∈∈,解得{0,6,7,8}x ∈,所以该水果在第1,7,8,9月份应该采取外销策略.21.【详解】(1).()f x 的定义域为R ,4114()log log ()22x xa a x x f x f x --++-===,故()f x 是偶函数.(2).当2a =时,22411()log log (2)22x x x x f x +==+,因为20x >,所以1222x x +≥,所以()1f x ≥,即()f x 的值域是[1,)+∞.(3).“[][]124,4,0,4x x ∀∈-∃∈,使得12()()2f x g x ->”等价于min min ()()2g x f x <-.22()111)1g x x =-=--=--,所以min ()(1)1g x g ==-.令函数12[),0,)(2x x x h x +∈=+∞,对12,[0,)x x ∀∈+∞,当12x x >时,有211212121212*********()()2222(22)(10222222x x x x x x x x x x x x x x h x h x --=+--=-+=-->⋅⋅,所以()h x 在[0,)+∞上单调递增.于是,当1a >时,()f x 在[0,4]单调递增,故min ()(0)log 2a f x f ==,所以log 221a ->-,解得2a <,即a 的范围为12a <<;当01a <<时,()f x 在[0,4]单调递减,故min 257()(4)log 16a f x f ==,所以257log 2116a->-,无解.综上:a 的取值范围为(1,2).22.【详解】(1).∵不等式()0f x <解集为(3,)b -,则2()10f x ax x =++=的根为3,b -,且3b -<,∴11033a b b a a>-=-+=-,,,解得2392a b ==-,.(2).令1,22112x t =⎡⎤∈⎢⎥⎣⎦,若(2)()x f g x ≤,即2214112a t t t t++≤-+,则242a t t -≤-,∵22y t t =-的开口向上,对称轴为1t =,则22y t t =-在1,12⎡⎤⎢⎥⎣⎦单调递减,在(]1,2单调递增,且1|1t y ==-,∴41a -≤-,即03a <≤,故实数a 的取值范围为(]0,3.(3).2()1(0)f x ax x a =++>的开口向上,对称轴为12x a =-,∵211x x -=,根据二次函数的对称性不妨设121x x a+≥-,则有:当112x a≥-时,()f x 在12[,]x x 上单调递增,则可得()()()2222212221111()()1111211f x f x ax x ax x a x x ax a ⎡⎤-=++-++=+-+=++≥⎣⎦,即12112a a a ⎛⎫⨯-++≥ ⎪⎝⎭,解得1a ≥;当12x a <-,即22x a >-时,()f x 在1,2x a -⎪⎢⎣⎭上单调递减,在2,2x a -⎢⎥⎣⎦上单调递增,则可得()222222111()()111242f x f ax x a x a a a ⎛⎫⎛⎫--=++--=+≥ ⎪ ⎪⎝⎭⎝⎭,∵211211x x x x a -=⎧⎪⎨+≥-⎪⎩,则21122x a +≥,∴114a ≥,即4a ≥;综上所述:4a ≥,故正数a 的最小值为4.。

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

绝密*启用前数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时102分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2023学年胡文广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18%B.-8%C.+2%D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2023学年胡文广东广州,2,3分)将图1所示的直角梯形绕直线l旋转一周,得到的立体图开是()lA. B.C.D.图1【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.(2023学年胡文广东广州,3,3分)下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x 相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.【推荐指数】★★4. (2023学年胡文广东广州,4,3分)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( )A .2.5B .5C .10D .15【分析】由D 、E 分别是边AB 、AC 的中点可知,DE 是△ABC 的中位线,根据中位线定理可知,DE =12BC =2.5. 【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★5. (2023学年胡文广东广州,5,3分)不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( ) A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3【分析】解不等式①,得:x >-3;解不等式②,得:x ≤2,所以不等式组的解集为-3<x <2.【答案】B【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★6. (2023学年胡文广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21C .43D .1【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41.【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=m n,其中0≤P (A )≤1.【推荐指数】★★★★7. (2023学年胡文广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A .52B .32C .24D .9主视图 俯视图【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★8. (2023学年胡文广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项2中a·b<0可得a、b异号,所以错误;C项中a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.(2023学年胡文广东广州,9,3分)若a<11=()A.a﹣2B.2﹣a C.a D.﹣aa =1=11a--,由于a<1,所以a-1<0,因此11a--=(1-a)-1=-a.【答案】D【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难.【推荐指数】★★★10.(2023学年胡文广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.(2023学年胡文广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2023学年胡文年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105.【答案】3.58×105【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★12.(2023学年胡文广东广州,12,3分)若分式51-x 有意义,则实数x 的取值范围是_______.【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5.【答案】5≠x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★13.(2023学年胡文广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S =12.则成绩比较稳定的是_______(填“甲”、“乙”中的一个).【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定.【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.【推荐指数】★★★14.(2023学年胡文广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留π) 【分析】扇形弧长可用公式:180n r l π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★15.(2023学年胡文广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【分析】3ab 2+a 2b =ab (3b +a ).【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★16.(2023学年胡文广东广州,16,3分)如图4,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有_____个.AB C D【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC =∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形.【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2023学年胡文广东广州,17,9分)解方程组.1123,12⎩⎨⎧=-=+y x y x 【答案】.112312⎩⎨⎧=-=+②①y x y x ①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握. 【推荐指数】★★★18.(2023学年胡文广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC .求证:∠A +∠C =180°AB CD【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可. 【答案】证明:∵梯形ABCD 是等腰梯形,∴∠B =∠C 又∵AD ∥BC , ∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★19.(2023学年胡文广东广州,19,10分)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

2020年贵州省毕节市高考(文科)数学第二次模拟测试试卷 解析版

2020年贵州省毕节市高考(文科)数学第二次模拟测试试卷 解析版

2020年高考数学第二次模拟试卷(文科)一、选择题1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5} 2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.274.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+15.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣17.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}二、填空题13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.14.计算:log10+log50.25﹣()=.15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为.16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.参考答案一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|≤0},N={x|x2﹣6x+5<0},则M∪N=()A.{x|1<x<7}B.{x|1<x≤7}C.{x|3<x<5}D.{x|3≤x<5}【分析】求出集合M,N,由此能求出M∪N.解:∵集合M={x|≤0}={x|3≤x<7},N={x|x2﹣6x+5<0}={x|1<x<5},∴M∪N={x|1<x<7}.故选:A.2.已知i为虚数单位,若复数z满足zi=(1﹣i)(2+i),则z=()A.﹣1﹣3i B.3+i C.1+3i D.﹣3+i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:∵zi=(1﹣i)(2+i)=3﹣i,∴z=.故选:A.3.从某校高三年级学生中按分层抽样的方法从男、女同学中共抽取90人进行考前心理辅导,若在女同学层次中每个个体被抽到的概率为,则高三年级总人数为()A.560B.300C.270D.27【分析】由题意利用分层抽样的定义,求得结果.解:设高三年级总人数为x,则由题意可得=,∴x=300(人),故选:B.4.函数y=A sin(ωx+φ)+b在一个周期内的图象如图(其中A>0,ω>0,|φ|<),则函数的解析式为()A.y=2sin(x+)+1B.y=2sin(2x+)+1C.y=2sin(x﹣)+1D.y=2sin(2x﹣)+1【分析】由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解:结合函数y=A sin(ωx+φ)+b在一个周期内的图象,可得A==2,b=1,•=﹣,∴ω=2.再根据五点法作图可得2×+φ=0,求得φ=﹣,故函数的解析式为y=2sin(2x ﹣)+1,故选:D.5.如图,在△ABC中,=2,P是BN上一点,若=t+,则实数t的值为()A.B.C.D.【分析】根据即可得出,进而可得出,然后根据B,P,N三点共线即可得出t的值.解:∵,∴,∴,且B,P,N三点共线,∴,解得.故选:C.6.若=3,则sinθcosθ+cos2θ的值是()A.1B.﹣C.D.﹣1【分析】由已知利用同角三角函数基本关系式可求tanθ的值,进而利用二倍角公式,同角三角函数基本关系式化简所求即可求值得解.解:∵==3,∴tanθ=﹣2,∴sinθcosθ+cos2θ====﹣1.故选:D.7.函数f(x)满足3f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),且f(1)=,则f (2020)=()A.B.﹣C.﹣D.【分析】先计算f(0),再根据恒等式寻找f(x)的周期或规律得出答案.解:取x=1,y=0,得3f(0)f(1)=f(1)+f(1)=,∴f(0)=,取x=n,y=1,有3f(n)f(1)=f(n+1)+f(n﹣1),即f(n)=f(n+1)+f(n﹣1),同理:f(n+1)=f(n+2)+f(n),∴f(n+2)=﹣f(n﹣1),∴f(n)=﹣f(n﹣3)=f(n﹣6)所以函数是周期函数,周期T=6,故f(2020)=f(3×336+4)=f(4).∵3f(x)f(y)=f(x+y)+f(x﹣y)令x=y=1,得3f2(1)=f(2)+f(0),可得f(2)=﹣,令x=2,y=1,得3f(2)f(1)=f(3)+f(1),解得f(3)=﹣,令x=3,y=1,得3f(3)f(1)=f(4)+f(2),解得f(4)=﹣.∴f(2020)=﹣;故选:C.8.过抛物线C:y2=2px(p>0)的焦点,且倾斜角为的直线与物线交于A,B两点,若|AB|=16,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=8x【分析】由题意可得直线AB的方程为:y=(x﹣),与抛物线方程联立,利用韦达定理得到x A+x B=7p,由抛物线的定义可知:|AB|=x A+x B+p=8p=16,即可求出p的值,从而求出抛物线的方程.解:∵抛物线C:y2=2px,∴P(,0),∴直线AB的方程为:y=(x﹣),联立方程,消去y得:,∴x A+x B=7p,由|AB|=16,及抛物线的定义可知:|AB|=x A+x B+p=8p=16,∴p=2,∴抛物线的方程为:y2=4x,故选:C.9.在三棱锥P﹣ABC中,AP⊥平面PBC,PA=2PB=2PC=2,BC=,则三棱锥P﹣ABC的外接球体积为()A.3πB.C.8πD.π【分析】设三棱锥P﹣ABC的外接球的半径为R.由PB=PC=1,BC=,根据勾股定理的逆定理可得:PB⊥PC.根据AP⊥平面PBC,可得:AP⊥PB,AP⊥PC.可得三棱锥P﹣ABC的外接球的半径与三条棱长的关系,进而得出:三棱锥P﹣ABC的外接球体积.解:设三棱锥P﹣ABC的外接球的半径为R.∵PB=PC=1,BC=,∴PB2+PC2=BC2,∴PB⊥PC.又AP⊥平面PBC,∴AP⊥PB,AP⊥PC.∴(2R)2=12+12+22=6,解得:R=.则三棱锥P﹣ABC的外接球体积=π×=π.故选:D.10.设α,β为两个平面,命题p:α∥β的充要条件是α内有无数条直线与β平行;命题q:α∥β的充要条件是α内任意一条直线与β平行,则下列说法正确的是()A.“¬p∧¬q”为真命题B.“p∧q”为真命题C.“¬p∧q”为真命题D.“p∨¬q”为真命题【分析】根据面面平行的判定方法及线面平行几何特征,可以判断P的真假;根据面面平行的定义及判定定理可得q的真假.解:如果平面内有无数条相互平行的直线都与平面平行,则两个平面不一定平行,故P 为假命题;如果平面内任意一条直线都与平面平行,由面面平行的判定定理,可得两个平面平行,故q为真命题.∴¬p∧¬q为假命题;“p∧q”为假命题;“¬p∧q”为真命题;“p∨¬q”为假命题.故选:C.11.△ABC的内角A、B、C的对边分别为a、b、c,且b=a(cos C+sin C),若a=1,c =,则角C的大小为()A.B.或C.D.或【分析】由已知结合正弦定理及和角公式进行化简可求A,然后结合正弦定理可求sin C,进而可求C.解:因为b=a(cos C+sin C),由正弦定理可得,sin B=sin A cos C+sin A sin C,所以sin A cos C+sin C cos A=sin A cos C+sin A sin C,所以sin A=cos A,即A=,因为a=1,c=,由正弦定理可得,,所以sin C=,因为c>a,所以C>A,故C=.故选:B.12.已知函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,则k的取值集合是()A.{k|k<0}B.{k|0}C.{}D.{0}【分析】函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即方程|e x﹣1|2﹣|e x﹣1|+k =0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0,作出函数t=|e x﹣1|的图象,可得方程t2﹣t+k=0有根的情况,然后分类利用根的分布分析,列关于k的不等式组求解.解:函数f(x)=(e x﹣1)2﹣|e x﹣1|+k恰有1个零点,即f(x)=|e x﹣1|2﹣|e x﹣1|+k恰有1个零点,也就是方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,令t=|e x﹣1|,则方程化为t2﹣t+k=0.作出函数t=|e x﹣1|的图象,要使方程|e x﹣1|2﹣|e x﹣1|+k=0有一个根,则方程t2﹣t+k=0有根的情况为:①两相等0根,该种情况不存在;②两相等大于等于1的根,该种情况也不存在;③一根大于等于1,而另一个小于0,此时,解得k<0.∴k的取值集合是{k|k<0}.故选:A.二、填空题:共4小题,每小题5分,共20分.13.2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,则该居民会被处罚的概率为.【分析】基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,由此能求出该居民会被处罚的概率.解:2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有对垃圾分类或未投放到指定垃圾桶内都会被处罚.某上海居民提着厨房里产生的“湿垃圾”随意地投收到楼下的“可回收物”、“有害垃圾、“湿垃圾”,“干垃圾”四个垃圾桶内,基本事件总数n=4,该居民会被处罚包含的基本事件个数m=3,则该居民会被处罚的概率为p=.故答案为:.14.计算:log10+log50.25﹣()=.【分析】由已知结合对数的运算性质及对数恒等式即可求解.解:log10+log50.25﹣()=2log510+log50.25﹣()=log5100×0.25﹣=2﹣.故答案为:15.已知函数f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,则f(x)的单调递减区间为(﹣1,0].【分析】先求导,再令x=1,求出函数的解析式,再根据导数和函数的单调性的关系即可求出.解:∵f(x)=x﹣2f'(1)ln(x+1)﹣f(0)e x,∴f′(x)=1﹣2f'(1)•﹣f(0)e x,令x=1可得f′(1)=1﹣2f'(1)•﹣f(0)e,由f(0)=﹣f(0),∴f(0)=0,∴f′(1)=1﹣f'(1),∴f′(1)=,∴f(x)=x﹣ln(x+1),x>﹣1,∴f′(x)=1﹣≤0,解得﹣1<x≤0,故答案为:(﹣1,0].16.过双曲线﹣=1(a>0,b>0)的右焦点F作渐近线的垂线l,垂足为M,l与y 轴交于点P,若=λ,且双曲线的离心率为,则λ的值为2.【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点P的坐标,利用|FM|=λ|PM,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率.解:设F(c,0),则c2=a2+b2∵双曲线C:﹣=1的渐近线方程为y=±x,∴垂线FM的斜率为﹣,∴直线FM的方程为y=﹣(x﹣c),令x=0,得P的坐标(0,),设M(x,y),∵|FM|=λ|PM|,∴(x﹣c,y)=λ(﹣x,﹣y),∴x﹣c=﹣λx且y=﹣4y,即x=,y=,代入y=x,得,即λa2=b2,∴λa2=c2﹣a2,∴(λ+1)a2=c2,∴a=c,∵e=,∴λ=2,故答案为:2.三、解答题:共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,公差d≠0,S4+S6=31且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n﹣3a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.【分析】(Ⅰ)由等差数列的通项公式、求和公式,以及等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(Ⅱ)由等比数列的通项公式可得b n﹣3a n,进而得到b n,再由数列的分组求和,结合等差数列和等比数列的求和公式,计算可得所求和.解:(Ⅰ)根据题意得:S4+S6=4a1+6d+6a1+15d=10a1+21d=31,由a1,a3,a9成等比数列可得,∴,∴,∵d≠0,∴a1=d=1,∴a n=1+(n﹣1)=n,n∈N*;(Ⅱ)由题意可得,即b n=3n﹣1+3a n,∴,∴T n=b1+b2+…+b n=(30+31+…+3n﹣1)+3(1+2+…n)=.18.某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价x(单位:千元)与销量y(单位:百件)的关系如表所示:单价x(千元)1 1.52 2.53销量y(百件)10876t已知=,y i=7.(Ⅰ)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程=x+;(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与x i对应的产品销量的估计值,当销售数据(x i,y i)对应的残差满足|i﹣y i|<0.3时,则称(x i,y i)为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数至少为2个的概率.参考公式:==,=﹣.【分析】(Ⅰ)根据已知数据和参考公式计算出这两个系数即可得到回归直线方程;(Ⅱ)先算出每组数据的残差,并判断出是否为”好数据“,然后结合古典概型,分别找出基本事件和总事件的个数,即可求出概率.解:(Ⅰ)由,可得t=4,,,,代入得,,∴回归直线方程为.(Ⅱ),,,,,共有3个“好数据”.设3个“好数据”为A,B,C,2个非“好数据”为D,E,从5个数据中选择3个的取法为ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,共10种;其中“好数据”的个数至少为2个的取法有7种,∴概率为.19.如图1,在等腰梯形ABCD中,AD∥BC,AD=2BC=4,∠ABC=120°,E为AD的中点.现分别沿BE,EC将△ABE和△ECD折起,点A折至点A1,点D折至点D1,使得平面A1BE⊥平面BCE,平面ECD1⊥平面BCE,连接A1D1,如图2.(Ⅰ)若M、N分别为EC、BC的中点,求证:平面D1MN∥平面A1BE;(Ⅱ)求多面体A1BCD1E的体积.【分析】(Ⅰ)由N、M是BC和CE的中点,得MN∥BE,可得MN∥平面BEA1,再由已知结合平面与平面垂直的性质可得MD1⊥平面BCE,进一步得到MD1∥平面BEA1,然后利用平面与平面平行的判定可得平面MND1∥平面BEA1.(Ⅱ)连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,则点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,再由求解.【解答】(Ⅰ)证明:∵N、M是BC和CE的中点,∴MN∥BE,又∵MN⊄平面BEA1,BE⊂平面BEA1,∴MN∥平面BEA1,∵△A1BE,△BCE,△ECD1为正三角形,∴MD1⊥CE.又∵平面ECD1⊥平面BCE,平面ECD1∩平面BCE=CE,MD1⊂平面ECD1,∴MD1⊥平面BCE,又∵平面A1BE⊥平面BCE,MD1⊄平面BEA1,∴MD1∥平面BEA1,∵MD1∩NM=M,NM⊂平面MND1,MD1⊂平面MND1,∴平面MND1∥平面BEA1.(Ⅱ)解:连接BD1,作CH⊥BE于H,由(Ⅰ)得,MD1∥平面BEA1,∴点D1到平面BEA1的距离d等于点M到平面BEA1的距离,等于点C到平面BEA1的距离的,∴,则.20.已知椭圆C:+=1(a>b>0)的离心率为,过其右焦点F与长轴垂直的直线与椭圆在第一象限交于点M,且|MF|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A,B,点P是椭圆上的动点,且点P与点A,B 不重合,直线PA,PB与直线x=﹣4分别交于点S,T,求证:以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).【分析】(Ⅰ)由题意离心率,及|MF|的值求出a,b,c的值,进而求出椭圆的方程;(Ⅱ)由(Ⅰ)可得A,B的坐标,设P的坐标,求出直线PA与x=﹣4联立求出S的坐标,同理可得T的坐标,进而求出数量积,为0,可证得以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).解:(Ⅰ)由题意和,得,又因为且a2=b2+c2,得a=2,c=1,,所以椭圆C的方程为.(Ⅱ)证明:设点P(m,n),则得,又设直线PA,PB的斜率分别为k1,k2,则,,所以,∴直线PA:y=k1(x+2),直线PB:,所以点S(﹣4,﹣2k1),,由,所以以线段ST为直径的圆过定点Q,同理,以线段ST为直径的圆过定点G.可证以线段ST为直径的圆过定点Q(﹣1,0),G(﹣7,0).21.已知函数f(x)=e x﹣2ax﹣2a,a∈R.(Ⅰ)若函数f(x)在x=0处的切线垂直于y轴,求函数f(x)的极值;(Ⅱ)若函数f(x)有两个零点x1,x2,求实数a的取值范围,并证明:(x1+1)(x2+1)<1.【分析】(Ⅰ)求出f'(x)=e x﹣2a,通过切线的斜率,求解a,利用导函数为0.求解极值点即可.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a ﹣2aln2a﹣2a=﹣2aln2a<0,得到a的范围,判断函数的单调性,题目转化证明,利用分析法说明即证:h(x2)>h(2ln2a﹣x2),令g(x)=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),求出导函数,判断函数的单调性求解证明即可.解:(Ⅰ)f'(x)=e x﹣2a,f'(0)=1﹣2a=0,∴,∴f'(x)=e x﹣1,令f'(x)=0⇒x=0,f'(x)>0⇒x>0,f'(x)<0⇒x<0,∴f(x)的极小值为f(0)=0.(Ⅱ)由(Ⅰ)知,f(x)有两个零点x1,x2,必须有a>0且最小值f(ln2a)=e ln2a﹣2aln2a﹣2a=﹣2aln2a<0,∴ln2a>0,∴2a>1,∴,又∵当x→+∞时,h(x)→+∞;当x→﹣∞时,h(x)→+∞,∴,此时,,∴,,∴,要证:(x1+1)(x2+1)<1,即证:,即证:,即证:x1+x2<2ln2a,即证:x1<2ln2a﹣x2,不妨设x1<x2,∴x1<ln2a<x2,∴x1<2ln2a﹣x2<ln2a,即证:h(x1)>h(2ln2a﹣x2),即证:h(x2)>h(2ln2a﹣x2),令g(x)=(e x﹣2ax﹣2a)﹣[e2ln2a﹣x﹣2a(2ln2a﹣x)﹣2a]=e x﹣e2ln2a﹣x﹣4ax﹣4aln2a(x>ln2a),,当且仅当x=ln2a时取“=”,∴g(x)在(ln2a,+∞)上为增函数,∴g(x)>g(ln2a)=0,∴h(x2)>h(2ln2a﹣x2)成立,∴(x1+1)(x2+1)<1成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程是(φ为参数,0≤φ≤π),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=4,等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,点A的极坐标为(4,).(Ⅰ)求点A,B,C的直角坐标;(Ⅱ)设P为C1上任意一点,求点P到直线BC的距离的取值范围.【分析】(Ⅰ)由极坐标与直角坐标的互化公式可得A的直角坐标,画出图形,数形结合可得B与C的直角坐标;(Ⅱ)写出过BC的直线方程,点,由点到直线的距离公式写出点P到直线BC的距离,再由三角函数求最值可得点P到直线BC的距离的取值范围.解:(Ⅰ)由,且点A的极坐标为(4,),可得A点的直角坐标为,∵等边△ABC的顶点都在C2上,且点A,B,C按照逆时针方向排列,∴B点的直角坐标为(﹣4,0),C点的直角坐标为;(Ⅱ)由B(﹣4,0),C,可得BC的直线方程为,设点,则点P到直线BC的距离为,∵0≤φ≤π,∴,∴,即点P到直线BC的距离的取值范围.一、选择题23.已知函数f(x)=﹣x2+3﹣|x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)≥0的解集M;(Ⅱ)在(Ⅰ)的条件下,若m,n∈M,求证:|m+n|≤|mn+1|.【分析】(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)根据分析法即可证明.解:(Ⅰ)①当x<﹣1时,不等式f(x)≥0可化为﹣x2+2x+3≥0,解得:﹣1≤x≤3,故此时x无解;②当﹣1≤x≤1时,不等式f(x)≥0可化为﹣x2+1≥0,解得:﹣1≤x≤1,故有﹣1≤x≤1;③当x>1时,不等式f(x)≥0可化为﹣x2+2x﹣3≥0,解得:﹣3≤x≤1,故此时x无解;综上,不等式f(x)≥0的解集M={x|﹣1≤x≤1}.(Ⅱ)要证|m+n|≤|mn+1|,即证|m+n|2≤|mn+1|2,即证m2+2mn+n2≤m2n2+2mn+1,即证m2+n2≤m2n2+1,即证m2n2﹣m2﹣n2+1≥0,即证(m2﹣1)(n2﹣1)≥0,∵m,n∈M,∴m2﹣1≤0,n2﹣1≤0,∴(m2﹣1)(n2﹣1)≥0成立.∴|m+n|≤|mn+1|成立.。

重庆市(新版)2024高考数学统编版测试(预测卷)完整试卷

重庆市(新版)2024高考数学统编版测试(预测卷)完整试卷

重庆市(新版)2024高考数学统编版测试(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知等差数列的前项和为,且关于正整数的不等式与不等式的解集均为.命题:集合中元素的个数一定是偶数个;命题:若数列的公差,且,则.下列说法中正确的是( )A .命题是真命题,命题是假命题B .命题是假命题,命题是真命题C .命题是假命题,命题是假命题D .命题是真命题,命题是真命题第(2)题若,,,则( )A.B.C.D.第(3)题已知数列的前n 项和为,且,.若,则正整数k 的最小值为( )A .11B .12C .13D .14第(4)题已知公差不为的等差数列的前项和为,若,,成等比数列,则( )A.B.C.D.第(5)题正项等比数列中,,若,则的最小值等于( )A .1B.C.D.第(6)题已知函数的定义域是,则函数的定义域为( )A.B.C.D.第(7)题2022年4月23日是第27个世界读书日,以引导全民阅读为出发点,弘扬中华优秀文化,传承中华悠久文明,我校高一年级部举行了“培养阅读习惯,分享智慧人生”为主题的读书竞赛活动.如图所示的茎叶图是甲、乙两个代表队各7名队员参加此次竞赛的成绩,乙队成绩的众数为,则下列关于这两个代表队成绩的叙述中,其中错误的是()A .甲队的众数大于乙队的众数B .甲队的中位数大于乙队的中位数C .甲队的平均数小于乙队的平均数D .甲队的方差小于乙队的方差第(8)题在△ABC 中,已知,,,D 为垂足,,则( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在一个只有一条环形道路的小镇上,有一家酒馆,一个酒鬼家住在,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路.下述结论正确的是()A.若酒鬼经过家门口时认得家门,那么酒鬼在10分钟或10分钟以内到家的概率为B.若酒鬼经过家门口时认得家门,那么酒鬼在15分钟或15分钟以内到家的概率为C.若酒鬼经过家门口也不会停下来,那么酒鬼步行15分钟后恰好停在家门口的概率为D.若酒鬼经过家门口也不会停下来,那么酒鬼步行21分钟后恰好停在家门口的概率为第(2)题已知正方体,的棱长为1,点P是正方形上的一个动点,初始位置位于点处,每次移动都会到达另外三个顶点.向相邻两顶点移动的概率均为,向对角顶点移动的概率为,如当点P在点处时,向点,移动的概率均为,向点移动的概率为,则()A.移动两次后,“”的概率为B.对任意,移动n次后,“平面”的概率都小于C.对任意,移动n次后,“PC⊥平面”的概率都小于D .对任意,移动n次后,四面体体积V的数学期望(注:当点P在平面上时,四面体体积为0)第(3)题、为实数且,则下列不等式一定成立的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题对于函数,有下列4个论断:甲:函数有两个减区间;乙:函数的图象过点;丙:函数在处取极大值;丁:函数单调.若其中有且只有两个论断正确,则的取值为______.第(2)题如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积的最小值为______.第(3)题已知直线l为曲线的一条切线,写出满足下列两个条件的函数______.①原点为切点:②切线l的方程为.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,椭圆的左、右顶点分别为A,B.左、右焦点分别为,,离心率为,点在椭圆C上.(1)求椭圆C的方程;(2)已知P,Q是椭圆C上两动点,记直线AP的斜率为,直线BQ的斜率为,.过点B作直线PQ的垂线,垂足为H.问:在平面内是否存在定点T,使得为定值,若存在,求出点T的坐标;若不存在,试说明理由.第(2)题为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按,,,,分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.单位:只抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii)以(i)中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记个人注射2次疫苗后产生抗体的数量为随机变量.试验后统计数据显示,当时,取最大值,求参加人体接种试验的人数及.参考公式:(其中为样本容量)参考数据:0.500.400.250.150.1000.0500.0250.4550.708 1.323 2.072 2.706 3.841 5.024第(3)题若数列的前项和满足.(1)证明:数列是等比数列;(2)设,求数列的前项和.第(4)题在①;②;③设的面积为,且.这三个条件中任选一个,补充在下面的横线上.并加以解答.在中,角,,的对边分别为,,,已知,且.(1)若,求的面积;(2)若为锐角三角形,求的取值范围.(如果选择多个条件分别解答,按第一个解答计分)第(5)题如图,在四边形中,已知点C关于直线BD的对称点在直线AD上,,.(1)求的值;(2)设AC=3,求.。

2022年四川省成都七中高考数学二诊模拟试卷(理科)

2022年四川省成都七中高考数学二诊模拟试卷(理科)

2022年四川省成都七中高考数学二诊模拟试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A,B满足A∪B={1,2,3,4,5,6},A∩B={2,4},A={2,3,4,5},则B=()A.{2,4,5,6}B.{1,2,4,6}C.{2,4,6}D.{1,2,4}2.若z=1+2i,则=()A.i B.﹣i C.1D.﹣13.为了解某中学对新冠疫情防控知识的宣传情况,增强学生日常防控意识,现从该校随机抽取30名学生参加防控知识测试,得分(10分制)如图所示,以下结论正确的是()A.这30名学生测试得分的中位数为6B.这30名学生测试得分的众数与中位数相等C.这30名学生测试得分的平均数比中位数小D.从这30名学生的测试得分可预测该校学生对疫情防控的知识掌握不够,建议学校加强学生疫情防控知识的学习,增强学生日常防控意识4.在(﹣2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.105.若f(x)是定义在R的奇函数,且f(x+1)是偶函数,当0≤x≤1时,f(x)=ln(x+1),则2≤x≤3时,f(x)的解析式为()A.f(x)=ln(x﹣1)B.f(x)=﹣ln(x﹣1)C.f(x)=﹣ln(3﹣x)D.f(x)=ln(3﹣x)6.在正整数数列中,由1开始依次按如下规则取到的项:第一次取1;第二次取2个连续的偶数2,4;第三次取3个连续的奇数5,7,9:第四次取4个连续的偶数10,12,14,16……,按此规律一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,…,则在这个子数列中,第2020个数是()A.3976B.3978C.3980D.39827.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+18.设,为非零向量,λ,μ∈R,则下列命题为真命题的是()A.若•(﹣)=0,则=B.若=λ,则||+||=|+|C.若λ+μ=,则λ=μ=0D.若||>||,则(+)•(﹣)>09.1471年米勒向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆看上去最长(即可见角最大)?后人将其称为“米勒问题”,是载入数学史上的第一个极值问题.我们把地球表面抽象为平面α,悬杆抽象为线段AB(或直线l上两点A,B),则上述问题可以转化为如下的数学模型:如图1,一条直线l垂直于一个平面α,直线l上有两点A,B位于平面α的同侧,求平面上一点C,使得∠ACB最大.建立如图2所示的平面直角坐标系,设A,B两点的坐标分别为(0,a),(0,b)(0<b<a),设点C的坐标为(c,0),当∠ACB最大时,c=()A.2ab B.ab C.D.10.阿波罗尼斯(公元前262年~公元前190年),古希腊人,与阿基米德、欧几里得一起被誉为古希腊三大数学家.阿波罗尼斯研究了众多平面轨迹问题,其中阿波罗尼斯圆是他的论著中的一个著名问题:已知平面上两点A,B,则所有满足=λ(λ>0,且λ≠1)的点P的轨迹是一个圆.已知平面内的两个相异定点P,Q,动点M满足|MP|=2|MQ|,记M的轨迹为C,若与C无公共点的直线l上存在点R,使得|MR|的最小值为6,且最大值为10,则C的长度为()A.2πB.4πC.8πD.16π11.已知函数,若存在唯一的整数x,使得成立,则所有满足条件的整数a的取值集合为()A.{﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,1} 12.已知F1,F2是双曲线)的左、右焦点,点A是双曲线上第二象限内一点,且直线AF1与双曲线的一条渐近线平行,△AF1F2的周长为9a,则该双曲线的离心率为()A.2B.C.3D.2二、填空题:本题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.在Rt△ABC中,已知∠C=90°,CD⊥AB,垂足为D.若AC:BC=3:2,则BD:AD的值为.15.甲,乙,丙,丁,戊共5名同学进行劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你不是第一名.”对乙说:“你和甲都不是最后一名.”从这两个回答分析,5人的名次排列有种不同情况.16.已知双曲线的右焦点为F,虚轴的上端点为B,点P,Q为C上两点,点M(﹣2,1)为弦PQ的中点,且PQ∥BF,记双曲线的离心率为e,则e2=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n}的前n项和为S n,且满足,{b n}是公差不为0的等差数列,b1=1,b4是b2与b8的等比中项.(1)求数列{a n}和{b n}的通项公式;(2)对任意的正整数n,设,求数列{c n}的前2n项和T2n.18.某企业研发了一种新药,为评估药物对目标适应症患者的治疗作用和安全性,需要开展临床用药试验,检测显示临床疗效评价指标A的数量y与连续用药天数x具有相关关系.随机征集了一部分志愿者作为样本参加临床用药试验,并得到了一组数据(x i,y i),i=1,2,3,4,5,其中x i表示连续用药i天,y i 表示相应的临床疗效评价指标A的数值.根据临床经验,刚开始用药时,指标A的数量y变化明显,随着天数增加,y的变化趋缓.经计算得到如下一些统计量的值:,y i=62,(x i﹣)(y i﹣)=47,u i≈4.79,(u i﹣)2≈1.615,(u i﹣)(y i﹣)≈19.38,其中u i=lnx i.12346739610.012.(1)试判断y=a+bx与y=a+blnx哪一个适宜作为y关于x的回归方程类型?并建立y关于x的回归方程;(2)新药经过临床试验后,企业决定通过两条不同的生产线每天8小时批量生产该商品,其中第1条生产线的生产效率是第2条生产线的两倍.若第1条生产线出现不合格药品的概率为0.012,第2条生产线出现不合格药品约概率为0.009,两条生产线是否出现不合格药品相互独立.(ⅰ)随机抽取一件该企业生产的药品,求该药品不合格的概率;(ⅱ)若在抽查中发现不合格药品,求该药品来自第1条生产线的概率.参考公式:对于一组数据(x1,y1),(x2,y2),⋅⋅,⋅(x n,y n),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为=,.19.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,△P AB为正三角形,PD =,E为线段AB的中点,M为线段PD(不含端点)上的一个动点,且PM=λPD.(1)证明:PE⊥平面ABCD;(2)若二面角M﹣EC﹣D的大小为60°,求实数λ的值.20.如图,已知椭圆与等轴双曲线C2共顶点,过椭圆C1上一点P(2,﹣1)作两直线与椭圆C1相交于相异的两点A,B,直线P A,PB的倾斜角互补.直线AB与x,y轴正半轴相交,分别记交点为M,N.(1)若△PMN的面积为,求直线AB的方程;(2)若AB与双曲线C2的左、右两支分别交于Q,R,求的范围.21.已知函数f(x)=(k+1)2x+2﹣x,k是实数.(1)若函数f(x)是定义在R上的奇函数,求k的值;(2)若f(x)≥4对任意的x∈[0,2]恒成立,求k的取值范围;(3)若k=0,方程f(2x)=2af(x)﹣6a﹣9有解,求实数a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知点P(1,2),圆C:x2+y2﹣6y=0.(1)若直线l过点P且在两坐标轴上截距之和等于0,求直线l的方程;(2)设A是圆C上的动点,求(O为坐标原点)的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x+2|+|x﹣4|.(1)求不等式f(x)≤3x的解集;(2)若f(x)≥k|x﹣1|对任意x∈R恒成立,求k的取值范围.。

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅱ卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅱ卷(含部分解析)

2024年普通高等学校招生全国统一考试数学试卷新课标Ⅱ卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.已知1i z =--,则||z =( ).A.0B.1 D.22.已知命题::R p x ∀∈,|1|1x +>,命题:0q x ∃>,3x x =,则( ).A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a =,|2|2a b +=,且(2)b a b -⊥,则||b =( ).A.12B.2C.2D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是( )A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过40%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ). A.221(0)164x y y +=> B.221(0)168x y y +=> C.221(0)164y x y +=> D.221(0)168y x y +=> 6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =( )A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ). A.12 B.1 C.2 D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( ). A.18 B.14 C.12 D.19.对于函数()sin 2f x x =和π()sin 24g x x ⎛⎫=- ⎪⎝⎭,下列正确的有( ). A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.拋物线2:4C y x =的准线为l ,P 为C 上的动点,对P 作22:(4)1A x y +-=的一条切线,Q 有切点,对P 作C 的垂线,垂足为B .则( ).A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点A 有且仅有2个 11.设函数32()231f x x ax =-+,则( ).A.当1a >时,()f x 有一个零点B.当0a <时0x =是()f x 的极大值点C.存在a ,b 使得x b =为曲线()y f x =的对称轴D.存在a 使得点(1,(1))f 为曲线()y f x =的对称中心12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =__________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=__________.14.在如图的44⨯方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有__________种选法,在所有符合上述要求的选法中,选中方格的4个数之和的最大值是__________.15.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A +=.(1)求A ;(2)若2a =sin 2C c B =,求ABC △周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90APC ∠=︒,30BAD ∠=︒,点E ,F 满足25AE AD =,12AF AB =,将AEF △沿EF 对折至PEF △,使得PC =(1)证明:EF PD ⊥:(2)求面PCD 与PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分,若至少被投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5的概率;(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,则该由谁参加第一阶段的比赛? (ii )为使得甲、乙,所在队的比赛成绩的数与期望最大,应该由谁参加第一阶段比赛?19.已知双曲线22:(0)C x y m m -=>,点1(5,4)P 在C 上,k 为常数,01k <<,按照如下公式依次构造点(2,3,)n P n =,过点1n P -作斜率为k 的直线与C 的左支点交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求2x ,2y ; (2)证明:数列{}n n x y -是公比为11k k +-的等比数列; (3)设n S 为12n n n P P P ++△的面积,证明:对任意的正整数n ,1n n S S +=.1. 2024年普通高等学校招生全国统一考试数学答案 新课标Ⅱ卷答案:C解析:||z =.2. 答案:B解析:1x =-时,|1|1x +<,p ∴错误,P ∴⌝和q 是真命题.3. 答案:A解析:(2)0b a b -⋅=,220b a b ∴-⋅=又||1a =,|2|4a b +=, 得1||2b =. 4. 答案:C解析:中位数错误,标差介于200kg ~300kg 之间,∴选C.5. 答案:A解析:设(,)P x y ,将坐标代入原方程联立,得M 方程221(0)164x y y +=>. 6. 答案:D解析:联立()()f x g x =,2(1)1cos 2a x x ax ∴+-=+,2a =代入方程,恰好得到一个极点,2a ∴=.7. 答案:B 解析:πtan 4α=,tan 1α∴=. 8. 答案:C解析:()()ln()f x x a x b =++,()()()f x x a h x =+⋅,(1)0g b -=, 10b a -+=,1a b ∴=-,222221(1)2212a b b b b b +=-+=-+=. 9. 答案:BC解析:A.令()0f x =,()0g x =,零点不同;B.()f x ,()g x 最大值相同;C.π()sin 22f x x Tf ===,π()2g x =,∴C 正确; D.()f x ,()g x 对称轴显然不同,∴D 错误.10. 答案:ABD解析:依次代入抛物线方程,联立求解,所以C 错,ABD 对.11. 答案:D解析:依次带入质检即可12AF F △后为直角三角形12212c F F =≥=,6C =,22||8a AF AF =-=,4a =,32c e a ==. 12. 答案:95解析:命题意图是考察正确应用等差数列的通项公式和求和公式以及会解相关方程 3412512573475a a a d a a a d +=+=⎧⎨+=+=⎩得143a d =-⎧⎨=⎩, 10110931040135952S a ⨯⨯∴=+=-+= 13.答案:3 解析:考察三角恒等式变形tan tan tan()1tan tan αβαβαβ⋅+===--⋅ 222sin ()cos ()19cos ()1a αββαβ+++=⇒+=1cos()3αβ∴+=-1sin()33αβ⎛⎫+=--= ⎪⎝⎭14. 答案:24;58解析:(1)41432124=⨯⨯⨯=(2)分别列出,13,14,15,16最大,1314151658+++=.15. 答案:(1)π6A =(2)2ABC C =+△解析:(1)sin 2A A +=2R ===2sin()2A φ+=π2A φ+=tan φ=π6A =. (2)24πsin 6aR ==sin 2sin cos C c B B =⋅2cos B =,π4B ∴= 54sin π12c =⋅22ABC C a b c ∴=++=+=+△16. 答案:(1)(e 3)2y x =-+(2)2e 8a > 解析:(1)(1)e 1f =-当1a =,1x =时(1)e 3f '=-(e 1)(e 3)(1)y x --=--(e 3)3e e 1y x ∴=-+-+-(e 3)2x =-+;(2)2()e 3x f x ax '=-,()0f x '=2e 30x ax -=2e 3x ax =()e 6x f x ax ''=-,2e 3x ax =,()3(2)f x ax x ''=-2x =时,2e 12a = 232(2)e 2e 8f a a =-⋅=- 代入,得2222e 2e (2)e 8e e 1233k f =-⋅=-= (2)0f <2e 80a ∴-<28e a >2e 8a > 2e ,8a ⎡⎫∴∈+∞⎪⎢⎣⎭. 17. 答案:(1)EF PD ⊥(2)正弦值为0解析:(1)证明:设A 的坐标为(0,0),则B 为(8,0),依次求出E ,(4,0)F ,(1,EF =,152D ⎛ ⎝⎭P 关于EF 的中点M 对称,3407,,2222M ⎛⎫⎛⎫+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设(,)P x y ,7(2x t =+⋅,12y t =+⋅1593,,2222C ⎛⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭PC ∴=将x ,y 表达式代PC ==15,22PD x y ⎛⎫∴=-- ⎪ ⎪⎝⎭ 0EF PD ⋅=EF PD ∴⊥建立坐标系求出各点坐标,再利用向量相乘之积为0证明垂直(2)(8,0)PC =求出面PCD 与面PBF 的法向量1a ,2a 又1212sin 0||a a a a θ⋅==⋅ ∴正弦值为0.18. 答案:(1)0.686(2)(i )乙(ii )甲19. 答案:(1)23x =,20y =(2)证明见解析(3)证明见解析解析:(1)设(),n n n P x y2221n n x x a m∴-= ()n n y y k x x -=-()12n n y y x x -=--.22211221n n x x y x a m⎛⎫-++ ⎪⎝⎭-= 1122n y x xn yn -=-++ 2n n x x y =- 代入222()1x yn y a m+-=得23x =,20y =. (2)()2221n n kx y kx x a m +--= 22222222221n n n n n n k x kxx kx y k x y k x x a m++-+∴-= 111n n x k x k++=- 利用等性证明。

2024学年山东省梁山一中、嘉祥一中高三预测密卷:数学试题试卷解析

2024学年山东省梁山一中、嘉祥一中高三预测密卷:数学试题试卷解析

2024学年山东省梁山一中、嘉祥一中高三预测密卷:数学试题试卷解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12 C .1 D .2 2.已知函数()ln af x x a x=-+在[]1,e x ∈上有两个零点,则a 的取值范围是( )A .e ,11e ⎡⎤-⎢⎥-⎣⎦B .e ,11e ⎡⎫⎪⎢-⎣⎭C .e ,11e ⎡⎫-⎪⎢-⎣⎭D .[)1,e - 3.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β4.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .14155.已知函数()()222ln 25f x a x ax =+++.设1a <-,若对任意不相等的正数1x ,2x ,恒有()()12128f x f x x x -≥-,则实数a 的取值范围是( ) ()()C .(],3-∞-D .(],2-∞-6.已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a ba b b a b ⎧=⎨<⎩,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是( ) A . B .C .D .7.()252(2)x x -+的展开式中含4x 的项的系数为( ) A .20-B .60C .70D .808.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭9.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( ) A .37B .13C 13D 3710.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>11.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .12.“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

2024学年安徽省滁州市来安县第三中学高考数学试题命题比赛模拟试卷(2)

2024学年安徽省滁州市来安县第三中学高考数学试题命题比赛模拟试卷(2)

2024学年安徽省滁州市来安县第三中学高考数学试题命题比赛模拟试卷(2)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数2()xf x x e a =-恰有3个零点,则实数a 的取值范围是( )A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞2.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147B .294C .882D .17643.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥4.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .305.已知集合{|24}A x x =-<<,集合2560{|}B x x x =-->,则A B =A .{|34}x x <<B .{|4x x <或6}x >C .{|21}x x -<<-D .{|14}x x -<<6.如图,四面体ABCD 中,面ABD 和面BCD 都是等腰直角三角形,2AB =,2BAD CBD π∠=∠=,且二面角A BD C --的大小为23π,若四面体ABCD 的顶点都在球O 上,则球O 的表面积为( )A .223πB .283πC .2π D .23π 7.已知集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<<则AB =( )A .{|0}x x <B .1|2x xC .1|12x x ⎧⎫-<<-⎨⎬⎩⎭D .{|1}x x >-8.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40B .60C .80D .1009.已知双曲线22214x y b-=(0b >)的渐近线方程为30x y ±=,则b =( )A .23B .3C .32D .4310.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .11.已知函数13()sin 22f x x x =+,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6π B .4π C .3π D .2π 12.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-二、填空题:本题共4小题,每小题5分,共20分。

2023年甘肃省高考数学二诊试卷(文科)+答案解析(附后)

2023年甘肃省高考数学二诊试卷(文科)+答案解析(附后)

2023年甘肃省高考数学二诊试卷(文科)1. 复数( )A. B. C. D.2. 已知集合,,则( )A. B. C. D.3. 命题p:已知一条直线a及两个不同的平面,,若,则“”是“”的充分条件;命题q:有两个面相互平行,其余各面均为梯形的多面体是棱台.则下列为真命题的是( )A. B. C. D.4. 函数的图象大致是( )A. B.C. D.5. 已知椭圆的方程为,离心率,则下列选项中不满足条件的为( )A. B. C. D.6. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块长方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的.如图所示的三视图是一个鳖臑的三视图,则其分割前的长方体的体积为( )A. 2B. 4C. 12D. 247. n位校验码是一种由n个“0”或“1”构成的数字传输单元,分为奇校验码和偶校验码,若一个校验码中有奇数个“1”,则称其为奇校验码,如5位校验码“01101”中有3个“1”,该校验码为奇校验码.那么4位校验码中的奇校验码的个数是( )A. 4B. 6C. 8D. 108. 若,则( )A. B. 3 C. D.9. 2022年8月,中科院院士陈发虎带领他的团队开始了第二次青藏高原综合科学考察.在科考期间,陈院士为同行的科研人员讲解专业知识,在空气稀薄的高原上开设了“院士课堂”.已知某地大气压强与海平面大气压强之比为b,b与该地海拔高度单位:米满足关系:为常数,e为自然对数的底若科考队算得A地,海拔8700米的B地,则A地与珠峰峰顶高度差约为( )A. B. C. D.10. 如图所示,边长为2的正三角形ABC中,,,则( )A.B.C. 1D. 211. 过抛物线的焦点F作直线l交抛物线于A,B两点,若以AB为直径的圆经过点,则弦长( )A. 8B. 6C. 5D. 412. 若,则以下不等式成立的是其中e为自然对数的底( )A. B.C. D.13. 为庆祝中国共产党第二十次代表大会胜利闭幕,某高中学校在学生中开展了“学精神,悟思想,谈收获”的二十大精神宣讲主题活动.为了解该校学生参加主题学习活动的具体情况,校团委利用分层抽样的方法从三个年级中抽取了260人进行问卷调查,其中高一、高二年级各抽取了85人.已知该校高三年级共有720名学生,则该校共有学生______ 人.14. 若圆O:过双曲线的实轴顶点,且圆O与直线l:相切,则该双曲线的渐近线方程为______ .15. 已知函数满足:当时,,且对任意都成立,则方程的实根个数是______ .16. 我国古代数学名著《孙子算经》卷下的第26题是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”此题所表达的数学涵义是:一个正整数,被3除余2,被5除余3,被7除余2,这个正整数是多少?这就是举世闻名的“中国剩余定理”.若分别将所有被3除余2的正整数和所有被7除余2的正整数按从小到大的顺序组成数列和,并依次取出数列和的公共项组成数列,则______ ;若数列满足,数列的前n项和为,则______ . 17. 的内角A,B,C的对边分别为a,b,c,,且_____.求的面积;若,求在①,②这两个条件中任选一个,补充在横线中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.18. 某省农科院为支持省政府改善民生,保证冬季蔬菜的市场供应举措,深入开展了反季节蔬菜的相关研究,其中一项是冬季大棚内的昼夜温差与反季节蔬菜种子发芽数个之间的关系,经过一段时间观测,获得了下列一组数据值为观察值:温差89 1 01112发芽数个2324262730在所给坐标系中,根据表中数据绘制散点图,并判断y与x是否具有明显的线性相关关系不需要说明理由;用直线l的方程来拟合这组数据的相关关系,若直线l过散点图中的中间点即点,且使发芽数的每一个观察值与直线l上对应点的纵坐标的差的平方之和最小,求出直线l的方程;用中求出的直线方程预测当温度差为时,蔬菜种子发芽的个数.19. 已知四棱锥中,底面ABCD为平行四边形,底面ABCD,若,,E,F分别为,的重心.求证:平面PBC;当时,求E到平面PCD的距离.20. 已知椭圆C:的长轴长为4,A,B是其左、右顶点,M是椭圆上异于A,B的动点,且求椭圆C的方程;若P为直线上一点,PA,PB分别与椭圆交于C,D两点.①证明:直线CD过椭圆右焦点;②椭圆的左焦点为,求的周长是否为定值,若是,求出该定值,若不是,请说明理由.21. 已知函数当时,求的零点个数;设函数,讨论的单调性.22. 在平面直角坐标系中xOy,曲线的参数方程为:为参数,且,P为曲线上任意一点,若将点P绕坐标原点顺时针旋转得到点Q,点Q的轨迹为曲线以原点O为极点,x轴非负半轴为极轴建立极坐标系,求曲线的极坐标方程;已知点,直线与曲线交于A,B两点,求的值.23. 已知求不等式的解集;若,且,恒成立,求m的最大值.答案和解析1.【答案】B【解析】解:复数,故选利用两个复数代数形式的乘法法则,虚数单位i的幂运算性质,求得结果.本题主要考查两个复数代数形式的乘法法则,虚数单位i的幂运算性质,属于基础题.2.【答案】D【解析】解:集合,,则故选:求出集合A,利用交集定义能求出本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】解:对于命题p,若,,则由面面垂直的判定定理可得,所以“”是“”的充分条件,故命题p为真命题,对于命题q,由棱台的定义可知,棱台各个侧棱的延长线交于一定,故命题q为假命题,所以为假命题,为真命题,为假命题,为假命题.故选:先判断命题p,q的真假,再利用复合命题真假判断方法,逐个分析各个选项即可.本题主要考查了面面垂直的判定定理,考查了复合命题的真假判断,属于基础题.4.【答案】D【解析】解:函数,恒成立,排除选项B、C;当,并且时,,排除选项A;故选:利用函数的值域,排除选项,结合x的取值,判断y的值,即可推出函数的图象.本题考查函数图象的判断,函数的值域,是判断函数的图象的常用方法,是基础题.5.【答案】C【解析】解:由,可得,,,故离心率,故A正确;由,可得,,,故离心率,故B正确;由,可得,,,故离心率,故C不正确;由,可得,可得,,,故离心率,故D正确.故选:根据椭圆的几何性质,求解即可判断每个选项的正确性.本题考查椭圆的离心率,属基础题.6.【答案】D【解析】解:由题意可知三视图的直观图是,并且,,,所以长方体的体积为:故选:利用三视图的数据,判断长方体的棱长,然后求解长方体的体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键,是基础题.7.【答案】C【解析】解:根据题意,4位校验码中的奇校验码,即一个4位校验码中有奇数个“1”,若其中有1个“1”,有种情况,若其中有3个“1”,有种情况,则4位校验码中的奇校验码的个数是故选:根据题意,按“1”的个数分2种情况讨论,由加法原理计算可得答案.本题考查排列组合的应用,涉及分类计数原理的应用,属于基础题.8.【答案】C【解析】解:,故选:利用两角和差的余弦公式展开,再利用同角关系即可得.本题考查三角函数的求值,考查两角和差公式,同角关系,属于基础题.9.【答案】B【解析】解:设A地海拔高度为,珠峰峰顶处海拔高度为,由已知得,,所以,即,依题意得,,所以故选:设A地海拔高度为,珠峰峰顶处海拔高度为,由题意可得,再利用指数幂的运算性质求出的值即可.本题主要考查了函数的实际应用,考查了指数幂的运算性质,属于基础题.10.【答案】D【解析】解:,则,,,故选:根据已知提条件,结合向量的线性运算,以及平面向量的数量积公式,即可求解.本题主要考查平面向量的数量积运算,考查转化能力,属于中档题.11.【答案】A【解析】解:已知抛物线方程为,则抛物线的焦点为,过抛物线的焦点F作直线l交抛物线于A,B两点,不妨设直线AB的方程为,联立,消x可得,设,,则,,又以AB为直径的圆经过点,则,即,即,即,即,则,即,所以弦长故选:由抛物线的性质,结合直线与抛物线的位置关系求解即可.本题考查了抛物线的性质,重点考查了直线与抛物线的位置关系,属中档题.12.【答案】A【解析】解:因为,所以,令,则,当时,,单调递增,所以,故,A正确,所以,B错误;由可得,C错误;,D错误.故选:由题意得,令,对其求导,结合导数分析函数单调性,再由单调性即可比较函数值大小.本题主要考查了导数与单调性关系在不等式大小比较中的应用,属于中档题.13.【答案】2080【解析】解:由题意可得抽取的高三年级总人数为人,设该校共有x个学生,则抽取比例为,所以,解得人.故答案为:先求出高三年级抽取的人数,然后设该校总人数为x,利用分层抽样的性质建立方程即可求解.本题考查了分层抽样的性质,属于基础题.14.【答案】【解析】解:圆O:的圆心,半径为,因为圆O:过双曲线的实轴顶点,所以,又圆O与直线l:相切,所以,则,所以双曲线的渐近线方程为故答案为:由题可知,利用圆心O到直线的距离等于半径可得b的值,从而可得双曲线的渐近线方程.本题主要考查了双曲线的性质,直线与圆的位置关系,属于基础题.15.【答案】6【解析】解:由于,则函数的周期为4,又当时,,则可作出函数的大致图象如下,由,可得,由图象可知,当时,函数与函数仅有3个交点,由对称性可知,当时,函数与函数也仅有3个交点,所以方程有6个不同的实数根,即方程的实根个数是故答案为:易知函数的周期4,方程的实根个数即为函数与函数的交点个数,作出函数图象,结合图象即可得出答案.本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.16.【答案】【解析】解:由题意可得,,不妨令,则,即,即为7的倍数,即,,即公共项数列为,,,…,则;又,则,则故答案为:;由等差数列的通项公式的求法,结合裂项求和法求解即可.本题考查了等差数列的通项公式的求法,重点考查了裂项求和法,属中档题.17.【答案】解:若选①:,由余弦定理可得,所以,又,所以,可得,所以的面积;若,,由正弦定理为三角形ABC外接圆半径,可得,可得,可得,所以若选②:,由题意可得,又,所以,可得,所以的面积;若,,由正弦定理为三角形ABC外接圆半径,可得,可得,可得,所以【解析】若选①:由题意利用余弦定理可得,利用同角三角函数基本关系式可求的值,可得,利用三角形的面积公式即可求解;由题意利用正弦定理,进而可求b的值.若选②:利用平面向量数量积的运算可求得,利用同角三角函数基本关系式可求的值,可得,利用三角形的面积公式即可求解;由题意利用正弦定理,进而可求b的值.本题考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,正弦定理,平面向量数量积的运算在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:作出数据分布的散点图,如图所示,由散点图知五个点明显分布在某条直线的附近,因此由散点图可以判断y与x有明显的线性相关关系;设直线l的方程为,即,则五个x值对应的直线上的纵坐标分别为,,26,,,若设观察值与纵坐标差的平方和为D,则,所以当时D取最小值,此时直线l的方程为;由直线l的方程为,令,可得个,所以可预测当温度差为时,蔬菜种子发芽的个数约为【解析】作出数据分布的散点图,根据散点图知五个点明显分布在某条直线的附近,即可得到结论;设直线l的方程,求得纵坐标分别为,,26,,,利用方差的公式,结合二次函数的性质,求得k的值,即可求解;由直线l的方程为,令,求得y的值,即可得到预测结果.本题考查了散点图和回归方程的计算,属于中档题.19.【答案】解:证明:延长PE交AB于M,延长PF交CD于N,,F分别为,的重心,,N分别为AB,CD的中点,且,又底面ABCD为平行四边形,,又平面PBC,平面PBC,平面PBC;设E到平面PCD的距离为,M到平面PCD的距离,由可知且,则,由题意可得:,平面PCD,平面PCD,平面PCD,在棱AB上,到平面PCD的距离等于A到平面PCD的距离,底面ABCD,底面ABCD,,又,,PA,平面PAD,平面PAD,且平面PAD,,由题意知:,,,,,在等腰中,可得,,对于三棱锥的体积可得:,则,解得,到平面PCD的距离为【解析】延长PE交AB于M,延长PF交CD于N,根据等分点与三角形底边平行关系先证明线线平行,再证明线面平行;因为,设E到平面PCD的距离为,M到平面PCD的距离,则,然后利用等体积法求出即可.本题考查线面平行的证明,考查点到面的距离的求法,属中档题.20.【答案】解:由已知得:,,,设,因为M在椭圆上,所以①,因为,将①式代入,得,得,所以椭圆;①证明:设,则,同理可得,联立方程,得,则,同理联立方程,可得,则,又椭圆的右焦点为,所以,因为,说明C,D,三点共线,即直线CD恒过点;周长为定值,因为直线CD恒过点,根据椭圆的定义,所以的周长为【解析】由题意可得,,,设,可得,进而根据题意即可求解;①设,联立直线和椭圆方程,求得,进而得到,再根据向量共线的定义即可得证;②根据椭圆的定义即可求解.本题考查了直线与椭圆的综合应用,属于中档题.21.【答案】解:当时,,则,当,,函数在上单调递减;当,,函数在上单调递增,所以,又,,所以存在,,使得,即的零点个数为函数,定义域为,,当时,,函数在上单调递增;当时,令,由于,①当时,,,函数在单调递减;②当时,,,,函数在上单调递减;③当时,,设,是方程的两个根,且,则,,由,当时,,,函数在上单调递减;当时,,,函数在上单调递增;当时,,,函数在上单调递减,综上所述:当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在,上单调递减,在上单调递增.【解析】求导得到单调区间,计算,确定,,得到零点个数;求导得到导函数,考虑和两种情况,设,根据二次函数根的分布得到函数的单调区间,分类讨论计算得到答案.本题考查了利用导数解决函数的零点问题,求函数的单调区间,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论的思想是解题的关键,分类讨论的方法是常考的方法,需要熟练掌握.22.【答案】解:曲线的参数方程为:为参数,且,可知曲线是以为圆心,2为半径的圆在x轴即上方的部分.转换为极坐标方程为,;P 为曲线上任意一点,若将点P绕坐标原点顺时针旋转得到点Q,设点,则,代入曲线,得到;故曲线的极坐标方程为,曲线的极坐标方程为,,转换为直角坐标方程为,已知点,直线经过点F,所以直线的参数方程为为参数,代入,得到,所以,,故【解析】直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;利用一元二次方程根和系数关系求出结果.本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系,主要考查学生的理解能力和计算能力,属于中档题.23.【答案】解:因为,时,不等式可化为,解得,此时;时,不等式可化为,解得,此时;时,不等式可化为,解得,此时;所以不等式的解集是;因为,且,所以,即,所以,所以,又,所以m的最大值是【解析】利用分段讨论法去掉绝对值,再求不等式的解集;由题意求得,求出的最小值,即可求出m的取值范围,求得m的最大值.本题考查了含有绝对值的不等式解法与应用问题,是中档题.。

初中数学——命题与证明练习试卷2

初中数学——命题与证明练习试卷2

初中数学——命题与证明练习试卷2一、选择题(共10小题;共50分)1. “两条直线相交,有且只有一个交点”的题设是A. 两条直线B. 交点C. 两条直线相交D. 只有一个交点2. 下列命题的逆命题是真命题的是A. 全等三角形的周长相等B. 全等三角形的对应角相等C. 如果,那么D. 有三个角是直角的四边形是长方形3. 下列命题是假命题的是A. 等角的补角相等B. 对顶角相等C. 面积相等的两个三角形全等D. 内错角相等,两直线平行4. 如图,,,,,下列结论错误的是A. B.C. D.5. 下列语句中,是命题的①直角大于锐角;②是钝角吗?③同号两数相乘,积为正;④负数与负数的和仍为负数.A. ①②③B. ①②④C. ①③④D. ②③④6. 考察下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中错误的命题是A. ①B. ②C. ③D. ④7. 下列语句不是命题的是A. 等角的余角相等B. 是无理数C. 延长线段D. 直角三角形的两个锐角互余8. 下列叙述,错误的是A. 对角线互相垂直且相等的平行四边形是正方形B. 对角线互相垂直平分的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线相等的四边形是矩形9. 已知点,,在上,则下列命题为真命题的是A. 若半径平分弦,则四边形是平行四边形B. 若四边形是平行四边形,则C. 若,则弦平分半径D. 若弦平分半径,则半径平分弦10. 下列命题错误的是A. 经过三个点一定可以作圆B. 同圆或等圆中,相等的圆心角所对的弧相等C. 三角形的外心到三角形各顶点的距离相等D. 经过切点且垂直于切线的直线必经过圆心二、填空题(共6小题;共30分)11. 把“对顶角相等”改成“如果,那么”的形式:.12. 命题“等角的补角相等”的题设是,结论是.13. 命题“对顶角相等”的题设是,结论是.14. 把命题“同角的补角相等”改写成“如果,那么”的形式.15. 命题“,,是直线,若,,则”是.(填写“真命题”或“假命题”)16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段..小芸的作法如下:如图,(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点;(2)作直线.老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(共6小题;共78分)17. 原命题:等腰三角形的顶角的外角平分线平行于底边.它的逆命题是:;并证明逆命题是真命题.18. 已知命题:如果是不等于的数,那么一定大于.(1)分析这个命题,你有怎样的发现?(2)仿照题中命题,写一个关于与大小关系的真命题.19. 先化简,再求值:,其中.20. 如图,在中,,是边上的两点,,求的度数.21. 如图,平行四边形的两条对角线相交于点,点是的中点,点是的中点,连接,,,.试说明与的关系,并说明理由.22. 阅读下面材料:小明遇到这样一个问题;在中,有两个内角相等.若,求的度数;若,求的度数.小明通过探究发现,的度数不同,的度数的个数也可能不同,因此为同学们提供了如下解题的想法:对于问题,根据三角形内角和定理,因为,;对于问题,根据三角形内角和定理,因为,所以或或,所以的度数可求.请回答:(1)问题中的度数为;(2)参考小明解决问题的思路,解决下面问题:在中,有两个内角相等.设,当有三个不同的度数时,求的度数(用含的代数式表示)以及的取值范围.答案第一部分1. C2. D3. C4. C5. C【解析】①直角大于锐角,故①是命题;②是钝角吗?是疑问句,故②不是命题;③同号两数相乘,积为正,故③是命题;④负数与负数的和仍为负数,故④是命题,是命题的有①③④.6. D7. C8. D 【解析】A.根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,故此选项正确,不符合题意;B.根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,故此选项正确,不符合题意;C.对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,故此选项正确,不符合题意;D.根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,故此选项错误,符合题意.9. B10. A【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解析】.经过不在同一直线上的三个点一定可以作圆,故本选项错误;.同圆或等圆中,相等的圆心角所对的弧相等,正确;.三角形的外心到三角形各顶点的距离相等,正确;.经过切点且垂直于切线的直线必经过圆心,正确;故选:.【点评】此题主要考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.第二部分11. 如果两个角是对顶角,那么这两个角相等【解析】题设为:对顶角,结论为:相等,故写成“如果,那么”的形式是:如果两个角是对顶角,那么它们相等.12. 两个角分别是相等的两个角的补角;这两个角相等13. 两角为对顶角,它们的大小相等14. 如果两个角是同角的补角,那么这两个角相等【解析】将命题中的条件写在如果的后面,结论写在那么的后面.本命题的条件为:两个角是同角的补角,结论为:这两个角相等.15. 假命题【解析】,,是直线,若,,则,所以原命题是假命题.16. 到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线第三部分17. 过等腰三角形的顶角的顶点与底边平行的直线平分顶角的外角.证明略.18. (1)这是一个假命题;(2)若是负数,则一定大于.19. .20. .21. ,.理由如下:四边形是平行四边形,,,点是的中点,点是的中点,,,,四边形是平行四边形(对角线互相平分的四边形是平行四边形),,.22. (1)或或(2),的取值范围是且.。

2021年安徽省中考数学预测模拟试卷(二)解析版

2021年安徽省中考数学预测模拟试卷(二)解析版

2021年安徽省中考数学预测模拟试卷(二)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.绝对值等于2的数是()A.﹣2B.C.2D.±22.计算:(﹣mn2)3=()A.﹣m3n6B.m3n6C.﹣m3n6D.﹣m3n53.如图所示的几何体,它的俯视图是()A.B.C.D.4.为稳定就业,安徽省人社厅以“职等你来、就业同行”为行动主题共计举办线上线下招聘会2771场.累计3.8万家用人单位提供就业岗位113.8万个,将数据113.8万用科学记数法表示为()A.113.8×103B.113.8×104C.1.138×105D.1.138×1065.下列分解因式正确的一项是()A.9x2﹣1=(3x+1)(3x﹣1)B.4xy+6x=x(4y+6)C.x2﹣2x﹣1=(x﹣1)2D.x2+xy+y2=(x+y)26.某班50名学生的身高被分为5组,第1~4组的频数分别为7、12、13、8,则第5组的频率是()A.0.4B.0.3C.0.2D.0.17.为响应中央“房住不炒”的基本政策,某房企连续降价两次后的平均价格比降价之前减少了19%,则平均每次降价的百分率为()A.9.5%B.10%C.10.5%D.11%8.如图,等腰△ABC中,AB=AC=5,BC=8,AD⊥AC交BC于点D,则AD的值为()A.B.C.5D.9.已知实数x,y满足x﹣y+m=0,xy﹣2m+3=0,若a=(x+y)2,则下列说法中正确的是()A.a只有最大值没有最小值B.a只有最小值没有最大值C.a既有最大值又有最小值D.a既没最大值也没最小值10.如图,等边△ABC中,AB=10,E为AC中点,F,G为AB边上动点,且FG=5,则EF+CG的最小值是()A.5B.5C.5+5D.15二、填空题(本大题共4小题,每小题5分,满分20分)11.的算术平方根是.12.“正方形对角线互相垂直平分”的逆命题是(填“真命题”或“假命题”).13.已知,如图,AB为⊙O直径,C,D分别为⊙O上一点,∠BOD=78°,∠D=2∠B,则∠B度数为.14.已知y关于x的函数y=.(1)当y随x的增大而减小时,x的取值范围是;(2)若y=k时,对应自变量x值有3个,则k的取值范围是.三.解答题(共90分)15.解不等式﹣x>1,并在数轴上表示解集.16.在边长为1个单位长度的小正方形组成的网格中,给出格点(网格线的交点)△ABC 及点O.(1)画出△ABC关于点O的中心对称图形△A'B'C';(2)以点A'为位似中心,画出将△A'B'C'缩小为原来的后得到的△A1B1C1(任意画出一个即可).一.解答题(共7小题)17.观察以下等式:第1个等式:﹣=;第2个等式:﹣=;第3个等式:﹣=;第4个等式:﹣=;…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?19.为方便群众出行,市政府决定在人流量较大的步行街设计一座天桥.左边是它引桥的效果图,右边是其示意图,已知DE∥AB,且与立柱DF长相等,在E处测得C处的仰角为30°,若立柱BC=8,EC=10,AB=17.65,求斜面AD的坡度.(参考数据:≈1.73)20.如图,已知平行四边形ABCD中,E,F为对角线BD上两点,且AE⊥AD,CF⊥BC,AC=BC.(1)求证:AE=CF;(2)若∠EAC=60°,求∠BAE的度数.21.为纪念澳门回归21周年,某中学组织七、八年级全体学生开展了以“澳门回归”为主题的网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分100分),收集的数据如下:七年级:100,95,75,80,90,85,85,80,80,100;八年级:80,70,95,90,90,100,80,85,90,90.平均数中位数众数七年级a b80八年级8790c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有1500人,本次竞赛成绩不低于90分的为“优秀”.请估计这两个年级共有多少名学生达到“优秀”;(4)从上述统计成绩可知,被调查的20名学生中共有5人95分及以上,现从这5人中任选两人,求选中两人都是满分的概率.22.某超市销售一种成本为8元/千克的大米,当售价定为10元/千克时,每天可销售100kg;经市场调查发现,每涨价1元,销售量减少10kg;每降价1元,销售量增加100kg.根据市场监管规定,商品售价不低于成本且不高于成本价的150%.(1)若售价为x元/千克,利润为y元,求出y关于x的函数解析式,并写出x的取值范围;(2)当售价为多少时,该超市每天销售大米获得的利润最大?最大利润是多少?23.如图1,Rt△ABC中,∠CAB=90°,AB=AC,D为BC边上一点AE⊥AD,且AE=AD,连接CE,AC与ED交于点F,BC=8,CD=2.(1)求证:EC=BD;(2)求AD的长;(3)如图2,P为ED延长线上一点,且PC=PF,求证:DF=2PD.2021年安徽省中考数学预测模拟试卷(二)参考答案与试题解析一.选择题(共10小题)1.绝对值等于2的数是()A.﹣2B.C.2D.±2【分析】根据绝对值的意义求解.【解答】解:∵|2|=2,|﹣2|=2,∴绝对值等于2的数为±2.故选:D.2.计算:(﹣mn2)3=()A.﹣m3n6B.m3n6C.﹣m3n6D.﹣m3n5【分析】先根据积的乘方的运算法则进行计算,再按照幂的乘方的运算法则计算可求得答案.【解答】解:(﹣mn2)3=﹣•m3•(n2)3=﹣m3n6.故选:C.3.如图所示的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义可得答案.【解答】解:从上面看该几何体,看到的是正方形,且右下角还有一个小正方形,选项B 中的图形比较符合题意,故选:B.4.为稳定就业,安徽省人社厅以“职等你来、就业同行”为行动主题共计举办线上线下招聘会2771场.累计3.8万家用人单位提供就业岗位113.8万个,将数据113.8万用科学记数法表示为()A.113.8×103B.113.8×104C.1.138×105D.1.138×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数113.8万用科学记数法表示为113.8×104=1.138×106.故选:D.5.下列分解因式正确的一项是()A.9x2﹣1=(3x+1)(3x﹣1)B.4xy+6x=x(4y+6)C.x2﹣2x﹣1=(x﹣1)2D.x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A:运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B:运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C:x2﹣2x﹣1不能进行因式分解,不符合题意;选项D:x2+xy+y2不能进行因式分解,不符合题意.故选:A.6.某班50名学生的身高被分为5组,第1~4组的频数分别为7、12、13、8,则第5组的频率是()A.0.4B.0.3C.0.2D.0.1【分析】直接利用频率的定义结合已知求出第5组频数,进而得出答案.【解答】解:∵某班50名学生的身高被分为5组,第1~4组的频数分别为7、12、13、8,∴第5组的频数是:50﹣7﹣12﹣13﹣8=10,故第5组的频率是:=0.2.故选:C.7.为响应中央“房住不炒”的基本政策,某房企连续降价两次后的平均价格比降价之前减少了19%,则平均每次降价的百分率为()A.9.5%B.10%C.10.5%D.11%【分析】设平均每次降价的百分率为x,根据题意列方程即可得到结论.【解答】解:设平均每次降价的百分率为x,依题意,得:(1﹣x)2=1﹣19%,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率为10%.故选:B.8.如图,等腰△ABC中,AB=AC=5,BC=8,AD⊥AC交BC于点D,则AD的值为()A.B.C.5D.【分析】作AE⊥BC于E,根据等腰三角形三线合一的性质得出CE=BC=4,利用勾股定理求出AE=3,再根据tan∠C==,得到=,即可求出AD.【解答】解:如图,作AE⊥BC于E,∵AB=AC=5,BC=8,∴CE=BC=4,∴AE===3,在直角△ACE中,∵∠AEC=90°,∴tan∠C=,在直角△ACD中,∵∠DAC=90°,∴tan∠C=,∴=,即=,∴AD=.故选:B.9.已知实数x,y满足x﹣y+m=0,xy﹣2m+3=0,若a=(x+y)2,则下列说法中正确的是()A.a只有最大值没有最小值B.a只有最小值没有最大值C.a既有最大值又有最小值D.a既没最大值也没最小值【分析】由a=(x+y)2得,a=(x+y)2=(x﹣y)2+4xy,由x﹣y+m=0,xy﹣2m+3=0得x﹣y=﹣m,xy=2m﹣3,代入后利用配方法即可.【解答】解:由题意可知x﹣y=﹣m,xy=2m﹣3,∴a=(x+y)2=(x﹣y)2+4xy=(﹣m)2+4(2m﹣3)=(m+4)2﹣28,当m=﹣4时,a有最小值﹣28,故选:B.10.如图,等边△ABC中,AB=10,E为AC中点,F,G为AB边上动点,且FG=5,则EF+CG的最小值是()A.5B.5C.5+5D.15【分析】作C点关于AB的对称点C′,取BC的中点Q,连接C′Q,交AB于点G,此时CG+EF最小,作C′H⊥BC交BC的延长线于点H,再根据等边三角形的性质和勾股定理可得答案.【解答】解:如图:作C点关于AB的对称点C′,取BC的中点Q,连接C′Q,交AB于点G,此时CG+EF最小,作C′H⊥BC交BC的延长线于点H,∵BC=BC′=10,∠CBC′=120°,∴HC′=5,HB=5,∴HQ=10,∴C′Q==5,∴EF+CG的最小值是5.故选:A.二.填空题(共4小题)11.的算术平方根是2.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.12.“正方形对角线互相垂直平分”的逆命题是假命题(填“真命题”或“假命题”).【分析】把原命题的题设与结论交换后判断真假即可.【解答】解:正方形对角线互相垂直平分的逆命题对角线互相垂直平分的四边形是正方形,逆命题是假命题;故答案为:假命题.13.已知,如图,AB为⊙O直径,C,D分别为⊙O上一点,∠BOD=78°,∠D=2∠B,则∠B度数为13°.【分析】连接OC,根据圆周角定理∠DCB=39°,由半径相等可推出∠DCB=3∠B,即可解答.【解答】解:连接OC,∵∠BOD=78°,∴∠DCB=39°,∵OC=OD,OC=OB,∴∠D=∠OCD,∠B=∠OCB,∵∠D=2∠B,∴∠DCB=∠OCD+∠OCB=3∠B,∴∠B=×39°=13°.故答案为:13°.14.已知y关于x的函数y=.(1)当y随x的增大而减小时,x的取值范围是x≤1或x>2;(2)若y=k时,对应自变量x值有3个,则k的取值范围是2<k<3.【分析】(1)根据题目中的函数解析式和题意,可以分别求出当y随x的增大而减小时,x的取值范围,然后即可得到x的取值范围;(2)根据题意和二次函数的性质、一次函数的性质,即可得到当y=k时,对应自变量x 值有3个时k的取值范围.【解答】解:(1)∵y=,∴当x≤1时,y=﹣x+2,y随x的增大而减小;当x>1时,y=﹣x2+4x﹣1=﹣(x﹣2)2+3,∴当x>2时,y随x的增大而减小,1<x<2时,y随x的增大而增大;由上可得,当y随x的增大而减小时,x的取值范围是x≤1或x>2,故答案为:x≤1或x>2;(2)y=,∴当x≤1时,y=﹣x+2,x=1时,y=1,当x=0时,y=2,y随x的增大而减小;当x>1时,y=﹣x2+4x﹣1=﹣(x﹣2)2+3,x=2时,y取得最大值,此时y=3,x=3时,y=2,∴当y=k时,对应自变量x值有3个,则k的取值范围2<k<3,故答案为:2<k<3.三.解答题15.解不等式﹣x>1,并在数轴上表示解集.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:4x﹣1﹣3x>3,4x﹣3x>3+1,x>4,将不等式的解集表示在数轴上如下:16.在边长为1个单位长度的小正方形组成的网格中,给出格点(网格线的交点)△ABC 及点O.(1)画出△ABC关于点O的中心对称图形△A'B'C';(2)以点A'为位似中心,画出将△A'B'C'缩小为原来的后得到的△A1B1C1(任意画出一个即可).【分析】(1)延长AO到A′使OA′=OA,延长BO到B′使OB′=OB,延长CO到C′使OC′=OC,从而得到△A'B'C';(2)延长C′A′到C1使A′C1=C′A′,延长B′A′到B1使A′B1=B′A′,从而得到△A1B1C1.【解答】解:(1)如图,△A'B'C'为所作;(2)如图,△A1B1C1为所作.17.观察以下等式:第1个等式:﹣=;第2个等式:﹣=;第3个等式:﹣=;第4个等式:﹣=;…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)观察所给等式中的各个分数的分子与分母的数字与序号的关系可得结论;(2)同(1)一样的方法进行总结可得;利用分式的加减法则分别计算等式的左边和右边可得.【解答】解:(1)第6个等式为:,故答案为:;(2)猜想第n个等式为:,证明如下:左边====右边,故猜想成立,故答案为:.18.中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?【分析】设线路一的路程为s,开车的平均速度为v,骑行的速度为x,则线路二的路程为2s,利用时间=路程÷速度,结合两种出行方式所花费时间一致,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利于v÷v即可求出结论.【解答】解:设线路一的路程为s,开车的平均速度为v,骑行的速度为x,则线路二的路程为2s,依题意得:=+,解得:x=v,经检验,x=v是原方程的解,且符合题意,∴v÷v=.答:开车速度是骑行速度的倍.19.为方便群众出行,市政府决定在人流量较大的步行街设计一座天桥.左边是它引桥的效果图,右边是其示意图,已知DE∥AB,且与立柱DF长相等,在E处测得C处的仰角为30°,若立柱BC=8,EC=10,AB=17.65,求斜面AD的坡度.(参考数据:≈1.73)【分析】通过作垂线构造直角三角形、矩形,利用直角三角形的边角关系求出DF,AF,再根据坡度的意义求解即可.【解答】解:如图,过点E作EH⊥BC,EG⊥AB,垂足分别为H、G,在Rt△ECH中,∵∠CEH=30°,CE=10,∴CH=CE•sin30°=10×=5,EH=CE•cos30°=10×=5≈8.65,∴BH=BC﹣CH=8﹣5=3=EG=DF=DE,∵AB=17.65,∴AF=17.65﹣8.65﹣3=6,∴斜面AD的坡度为==.20.如图,已知平行四边形ABCD中,E,F为对角线BD上两点,且AE⊥AD,CF⊥BC,AC=BC.(1)求证:AE=CF;(2)若∠EAC=60°,求∠BAE的度数.【分析】(1)根据平行四边形的性质证明△EAD≌△FCB,即可得结论;(2)根据等腰三角形的性质即可求出结果.【解答】解:(1)证明:∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,∴∠ADE=∠CBF,∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,在△EAD和△FCB中,,∴△EAD≌△FCB(ASA),∴AE=CF;(2)∵∠EAC=60°,∴∠CAD=30°,∴∠ACB=30°,∵AC=BC.∴∠BAC=75°,∴∠BAE=15°.21.为纪念澳门回归21周年,某中学组织七、八年级全体学生开展了以“澳门回归”为主题的网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分100分),收集的数据如下:七年级:100,95,75,80,90,85,85,80,80,100;八年级:80,70,95,90,90,100,80,85,90,90.平均数中位数众数七年级a b80八年级8790c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有1500人,本次竞赛成绩不低于90分的为“优秀”.请估计这两个年级共有多少名学生达到“优秀”;(4)从上述统计成绩可知,被调查的20名学生中共有5人95分及以上,现从这5人中任选两人,求选中两人都是满分的概率.【分析】(1)由平均数、中位数、众数的定义求解即可;(2)在平均数相同的情况下,由中位数和众数的大小进行说明即可;(3)由该校七、八年级共有的人数乘以“优秀”所占的比例即可;(4)画树状图,再由概率公式求解即可.【解答】解:(1)a=(100+95+75+80+90+85+85+80+80+100)=87,把七年级10名同学的成绩排序为:75,80,80,80,85,85,90,95,100,100,∴七年级10名同学的成绩的中位数为b==85,∵八年级10名同学的成绩中90分出现的次数最多,∴众数c=90;(2)八年级成绩较好,理由如下:七年级和八年级的平均数相同,但八年级中位数和众数都比七年级高,故八年级成绩较好;(3)七年级成绩不低于90分的有4个,八年级成绩不低于90分的有6个,∴1500×=750(名),即估计这两个年级共有750名学生达到“优秀”;(4)把5名同学分别记为A、B、C、D、E,其中C、D、E表示满分,画树状图如图:共有20个等可能的结果,选中两人都是满分的结果有6个,∴选中两人都是满分的概率为=.22.某超市销售一种成本为8元/千克的大米,当售价定为10元/千克时,每天可销售100kg;经市场调查发现,每涨价1元,销售量减少10kg;每降价1元,销售量增加100kg.根据市场监管规定,商品售价不低于成本且不高于成本价的150%.(1)若售价为x元/千克,利润为y元,求出y关于x的函数解析式,并写出x的取值范围;(2)当售价为多少时,该超市每天销售大米获得的利润最大?最大利润是多少?【分析】(1)分两种情况:8≤x≤10,10<x≤12,根据题意列出y关于x的函数解析式即可;(2)根据(1)求得的函数解析式,将其配方成顶点式即可得最值情况,然后进行讨论.【解答】解:(1)8×150%=12(元/千克),8≤x≤10时,y=(x﹣8)[100(10﹣x)+100]=﹣100x2+1900x﹣8800;10<x≤12时,y=(x﹣8)[100﹣10(x﹣10)]=﹣10x2+280x﹣1600;∴y关于x的函数解析式为y=;(2)8≤x≤10时,y=﹣100x2+1900x﹣8800=﹣100(x﹣)2+225,∴当x=时,y有最大值225;10<x≤12时,y=﹣10x2+280x﹣1600==﹣10(x﹣14)2+360,∴当x=14时,y有最大值360,∵﹣10<0,当10<x≤12时,y随x的增大而增大,故当x=12时,y有最大值320;综上,当x=12时,利润最大,最大利润是320.答:当售价为12元时,该超市每天销售大米获得的利润最大,最大利润是320元.23.如图1,Rt△ABC中,∠CAB=90°,AB=AC,D为BC边上一点AE⊥AD,且AE=AD,连接CE,AC与ED交于点F,BC=8,CD=2.(1)求证:EC=BD;(2)求AD的长;(3)如图2,P为ED延长线上一点,且PC=PF,求证:DF=2PD.【分析】(1)证明△ABD≌△ACE(SAS),由全等三角形的性质得出EC=BD;(2)由勾股定理求出ED,则可求出答案;(3)过点D作DG∥EC,证明△PCD∽△PEC,得出比例线段,则可得了结论.【解答】(1)证明:∵∠CAB=∠EAD=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴EC=BD;(2)解:由(1)可知,CD=2,EC=6,∠ACE=∠ABD,又∵∠ABD+∠ACB=90°,∴∠ECD=∠ACE+∠ACB=90°,∴ED==2,∴AD=2•sin45°=2×=2.(3)证明:过点D作DG∥EC,由(1)可知,∠ECA=∠B=45°,∵PC=∴PF,∴∠PCF=∠PFC,即∠FCD+∠PCD=∠FEC+∠FCE,∵∠DCF=∠ECF=45°,∴∠PCD=∠PEC,又∵∠P=∠P,∴△PCD∽△PEC,∴,∴PC=3PD,又∵PC=PF,∴PF=3PD,∴DF=2PD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学命题预测试卷(二)(理工类)120分钟)(考试时间分。

在每小题给出的四个选分,共75一、选择题(本大题共15小题,每小题5 项中,只有一项是符合题目要求的)??????)1.已知集合,那么等于(,,且
N M1?M?Ma,02 N?N1,??????.不能确定C.D
A.B.20,1,a,0,1,21,0,1,2 )b的关系是(2.已知,a与ca?b?22a?b?3c,3. D C.A.B.baa?b??2b?a??b2a???? 3.已知,那么)的值等于()tan)(1?10?,?35??(1?tan21?.D
C . A .B.2 313?44的最小正周期是()4.函数
x2cossinx?y?2????. D . C A.B .42
2x?21??x?y的定义域为()5.函数??2??
A.B.2?且xx?R,Rx?C.D.0?且xx?R,2??x02?x?62x?0的两根的倒数为根的一元二次方程为(6.以方程)22?x?18?06?x?2?0x6x B.A.
32203?xx???9x?118x?0. C D.2x轴的抛物线方程是(1),准线为).顶点在点7A(2,-22
B.A.)1y??2()(x?2)?14(x?2)y??(22.D
C.)?1))(x?2(?2y?1?4((x?2)y8.设,那么实数m的三角形式是()0m??? B. A .)sini?(cosm)0sini?0(cosm
?33?????.D C.)sin??m(cosicos?msini???22??22表示”是“二元二次方程.“90??F?DxAx??Bxy?CyEy0A??,BC?0圆”的()B.必要非充分条件A.充分非必要条件
D.既非充分又非必要条件C.充分且必要条件
12)(x?x?0f()?x?1,则=(10 .已知))f(x x221x?111?x??
B. A .xx221?11?x1?x?
D. C .xxx?xf(x)上的函数)R,则是(11.设定义域在)xf( B.偶函数,增函数.奇函数,增函数
A D.偶函数,减函数.奇函数,减函数 C
x26的展开式中常数项是(12 .))?(2xA.30 B.20 C.15 D.10
?cos?rx?a??为参数)的(过第一、二、四象限,则圆13.若直线bax?y???sinr?b?y?圆心在()
A.第一象限B.第二象限
C.第三象限D.第四象限
1arccos(?)的值为(14.)2????2??C..B D. A .633315.由1,2,3,4组成的无重复数字的四位数,按从小到大的顺序排成一个数??aa等于(,则)列18n A.1243 B.3421 C.4123
D.3412
16分。

把答案填在题中横线上)二、填空题(本大题共4题,每小题4分,共m?3??3cosxsinx.16 .已知,那么m的取值范围是m3?
??3.17.函数在上的最小值是3,?316?x?12xy?
22作该圆的一条切线,切18.已知圆的方程为,过
0?8??2x?x8?yy)2,0P(.线的长为
.19.五人站成一排,其中某人恰好站在中间的概率是
分。

解答应写出推理、演算步骤)小题,共59三、解答题(本大题共5 分)(本小题满分1120.22??a sinsin??的值.,求已知)?1(cot0??a
??cosa?cos?a1?a
21.(本小题满分12分)
首项为25的等差数列,其前9项的和等于前17项的和,问这个数列前多少项的和最大?
22.(本小题满分12分)
2??x?22??log)??f(1x.已知函数??22x??(1)求的解析式及的定义域.)(xf(x)f(2)判定的单调性.)xf(
分).(本小题满分1223?????.中,如右图所示,在正三棱柱
B3ABB?CABC?BA??)求证:;(1CABB??的大小.2)求二面角(C?A?BC
12分)(本小题满分24.2上满足的任意两点,其中O,Q是抛物线为坐标原点,设Pxy?OQOP?P,Q都不是抛物线的顶点.
(1)求证:PQ所在直线与x轴交于定点.
(2)求面积的最小值.OPQ?
参考答案
一、选择题
1.C 2.A 3.B 4.A 5.C 6.A 7.B 8.D 9.B 10.D 11.A 12.A 13.B 14.D 15.B
二、填空题
1m??1m??917.0 18.4 16.19或.5三、解答题
222???niinsinss??so)?s?aca??(?co 20.解
22???socaca?os?soc?a
2?ni2as ?
2222???so?c?cosa(sin)2?nias2 ?
2222??so)c?(a?asin12a?
222?to)c(a?1a?2a?a22
?a)?a1?(1?a??221.解设此数列公差为d,由已知得
9?(9?1)d25??225?36dS?9?9217?(17?1)?17?25?d?S425?136d
172SS? 179得故
225d??2?36d?4?136d2512?169?13))??(nn(n?1)?(?2?Sn?25??n2
故当时,有最大值169,即这三个数数前13项和最
大.S13?n n22??)x1?1?(2?x2??).解(122 gl?logof(1?x)???
2222)?x1?(1x??1?xg)?lof(x?21?x1?x?0即要使有意义,必须)x?1)(x?1)?0xf((x1?1??x?1故的定义域为.),1?(?f(x)1x?1?x?x?1,则)设(2 211?x1?x21?l(?fx)?logog)f(x
22211?x1?x21(1?x)(1?x)21?log
2)()(x?1?1x21.
由于1?1?x?x?21,?0?x)?(1?x)(1?x)?01(1?x)(2211而
0?x)?)?(1x)(1?x)?2(x?(1?x)(1?x212121)x1?(1?x)(1?x)(1?x)(2211,故00?log?1?
2)?x?x)(1?x)(1?x)(1(12112故)f(x)?f(x21
为增函数.故)xf(??交于,OBC中点D,连AD,连.解(231)取CDBB2??,则,设?AB?BC?2,BD3AB?1B?B2???
?2?DB2,tantan?B?BCB?????DBCB??B?B??~
?BO?DB?BB???,即?DCB?B?OB?90?B?易证又
ADBC????CBAB????(2) D?CB?AD,BCB?为二面角的平面角?C??B?AODCA6? ?BD26?DO?
632?2???3AODtan?66
?3arctan?AOD?.
1x??y的方程:,则24.解(1)设OP的方程:OQ )?kx(k0y?k
kxy??11)(,P,得交点联立方程组?22kkx?y?1?x?y??2联立方程组,得交点),?Q(kkk??2xy??1?k?k2所在直线方程为PQ 故?)y?x(?kk12?k2k 令,得1?x0?y PQ的方程为又时,1?xk?1).1,0从而PQ所在直线过一定点R (1S?S?y?y)S?OR ()2 (QOR?POR?PPOQQ?211111k(?)???(1???k)
kk22故时,的面积最小值为1.1?kPOQ?。

相关文档
最新文档