生理实验报告神经干复合动作电位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体解剖及动物生理学实验报告
实验名称神经干复合动作电位
姓名
学号
系别
组别
同组姓名
实验室温度20℃
实验日期2015年4月24日
一、实验题目
蟾蜍坐骨神经干复合动作电位(CAP)
A蟾蜍坐骨神经干CAP阈值和最大幅度的确定
B蟾蜍坐骨神经干CAP传导速度的确定
C蟾蜍坐骨神经干CAP不应期的确定
二、实验目的
确定蟾蜍坐骨神经干复合动作电位(CAP)的
(1)临界值和最大值
(2)传导速度
(3)不应期(相对不应期、绝对不应期)
三、实验原理
神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。
阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。
动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。
神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返
回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。
四、实验方法
蟾蜍坐骨神经标本的制作
1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经
干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。
2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,
外周端接触记录电极R1-R2,之间接触接地电极。
3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系
统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.
A.蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定
(1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板
上的通道1(因此信号输入线应连接在通道1)。
(2)确定装置是否正常工作,以及神经是否具有活性。采用较大的刺激强度,1V,刺激时程0.2ms,延时5ms,刺激模式为但刺激。选择“同步触发”,按下“开
始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。
(3)快速降低刺激强度,确定CAP的阈电位。记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。
(4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本
在正常生理活性时,1V以内的刺激强度即可引起最大的CAP)。
B.蟾蜍坐骨神经干复合动作电位(CAP)传导速度的确定
(1)从“实验”菜单中选取“动作电位传导速度”,界面出现两个采集通道,对应通道1和通道2,因此采用两对引导电极R1-R2和R3-R4,同时输入两道
信号。
(2)使用单刺激模式,调整刺激强度,使产生最大CAP。
(3)测量两个通道显示的动作电位起点的时间差。
(4)测量R1和R3之间神经的长度。
(5)重复步骤1-4至少三次。
(6)计算传导速度:传导速度=△D(mm)/△T(ms)
(7)计算几次重复测量得到的传导速度的平均值(Mean)和标准误(SEM)。
C.蟾蜍坐骨神经干复合动作电位(CAP)不应期的确定
(1)采用双刺激模式,刺激条件相同,产生一对幅度相同的最大的CAP。
(2)逐渐减小两刺激间隔,直到第二个CAP幅度刚刚开始减小,即进入相对不应期。此波间隔与绝对不应期之差即为相对不应期。
(3)继续减小间隔,直到第二个CAP刚刚完全消失,此间隔即为绝对不应期。
(4)重复步骤1-3至少三次。
(5)计算绝对不应期和相对不应期的均值(Mean)及标准误(SEM)。
五、实验结果
A蟾蜍坐骨神经干CAP阈值和最大幅度的确定
图1. 蟾蜍坐骨神经干CAP的阈电位(当前刺激强度为0.16V)
图2. 蟾蜍坐骨神经干CAP的最大幅度2.28mV(当前刺激强度为0.70V)
表1.蟾蜍坐骨神经干CAP随刺激强度的变化数据
实验次数刺激强度(V)CAP(mV)实验次数刺激强度(V)CAP(mV)10.91 2.08070.49 2.030
20.84 2.07080.42 1.842
30.77 2.04090.35 1.720
40.70 2.280100.28 1.200
50.63 2.080110.210.570
60.56 2.013120.140.000
根据上表可绘制下图,曲线图能更加直观的显示蟾蜍坐骨神经干CAP随刺激强度增加的变化趋势。
图3 蟾蜍坐骨神经干CAP随刺激强度的变化曲线图
由以上图表可知,当刺激强度为0.16V时,刚好能观察到一个CAP;之后随着刺激强度增大,动作电位的幅度也就越来越大;当刺激强度达到0.70V时,CAP达到最大,为2.280mV;继续增大刺激强度,动作电位的幅度就不会增大了,而是略微降低。由此可得在一定范围内,坐骨神经干复合动作电位的幅度随着刺激强度增大而增大。但当刺激强度超过一定范围后,坐骨神经干复合动作电位就不再增大了。
神经干是混合纤维,包含着多种兴奋性不同的神经。阈强度的刺激刚刚可以引起其中一些兴奋性较高的纤维产生动作电位,随着刺激强度的增加,其余兴奋性较低的纤维陆续产生动作电位。当刺激超过顶强度时,全部神经纤维产生动作电位。所以神经干的动作电位会随着刺激的增大而增大,直到产生最大动作电位。