生理实验报告神经干复合动作电位

合集下载

人体解剖及动物生理学实验报告神经干复合动作电位

人体解剖及动物生理学实验报告神经干复合动作电位

人体解剖及动物生理学实验报告神经干复合动作电位【实验题目】神经复合动作电位1、蟾蜍坐骨神经干复合动作电位(CAP)阈值和最大幅度的测定2、蟾蜍坐骨神经干复合动作电位(CAP)传导速度的测定3、蟾蜍坐骨神经干复合动作电位(CAP)不应期的测定【实验目的】确定蟾蜍坐骨神经干复合动作电位(CAP)的1、临界值和最大值2、传导速度3、不应期(包括绝对不应期和相对不应期)【实验原理】神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号。

多个神经元的轴突集结成束形成神经,APs沿感觉神经经外周传向中枢或沿运动神经由中枢传向外周。

坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。

如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。

一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。

刺激强度越大,兴奋的神经纤维数目就越多,CAP的幅度也就越大。

与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。

阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。

在一定范围内增加刺激强度,CAP幅度相应增大。

最大CAP所对应的最小刺激电位即最大刺激。

动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。

它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。

兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。

绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。

绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。

【实验报告】骨骼肌的单收缩与复合收缩及神经干动作电位、神经冲动传导速度、神经干不应期的测定

【实验报告】骨骼肌的单收缩与复合收缩及神经干动作电位、神经冲动传导速度、神经干不应期的测定

实验二:骨骼肌的单收缩与复合收缩及神经干动作电位、神经冲动传导速度、神经干不应期的测定实验人:同组人:【实验目的】✧了解肌肉收缩过程的时相变化✧观察刺激强度和频率对骨骼肌收缩形式的影响✧掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。

✧掌握神经干动作电位传导速度及其不应期的测定方法。

【实验原理】✧骨骼肌的单收缩与复合收缩肌肉兴奋的外在表现是收缩。

当其受到一个阈上强度的刺激时,爆发一次动作电位,迅速发生一次收缩反应,叫单收缩。

单收缩曲线分为潜伏期、收缩期、舒张期三个时期。

在一定范围内,肌肉收缩的幅度随刺激强度的增加而增大。

当相继受到两个以上同等强度的阈上刺激时,因频率不同,下一次刺激可能落在前一刺激所引起的单收缩的不同时期内,造成:✓几个分离的单收缩:频率低于单收缩频率,间隔大于单收缩时间✓收缩的总和(强直收缩):不完全强直收缩:后一收缩发生在前一收缩的舒张期完全强直收缩:后一收缩发生在前一收缩的收缩期内,各收缩不能分开,肌肉维持稳定的收缩状态。

✧神经干动作电位、神经冲动传导速度、神经干不应期的测定⏹神经干是由许多神经纤维组成的,神经兴奋的标志是动作电位。

在一定范围内神经干动作电位的幅度随刺激强度的增加而增大,这是由于各神经纤维兴奋性的不同,虽然每条纤维动作电位产生都遵守“全或无”的方式,但神经干动作电位记录到的是多个兴奋阈值、传导速度和振幅各不相同的动作电位的总和,为一个复合动作电位,所以不存在阈强度,也不表现为“全或无”的特征。

根据引导方法的不同(双极引导或单极引导),可分别得到双相、单相动作电位。

⏹动作电位在神经纤维上的传导有一定的速度。

不同类型的神经纤维其传导速度各不相同,主要取决于神经纤维的直径、有无髓鞘、环境温度等因素。

蛙类坐骨神经干传导是速度约为35-40 m/S, 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。

⏹为了测定神经一次兴奋之后兴奋性的变化,可先给神经施加一个条件性刺激,引起神经兴奋,然后再用一个检验性刺激在前一兴奋过程的不同时相给予刺激,检查神经对检验性刺激反应的兴奋阈值,以及所引起的动作电位的幅度变化,来判断神经组织兴奋性的变化。

神经干动作电位的实验报告

神经干动作电位的实验报告

神经干动作电位的实验报告神经干动作电位的实验报告引言:神经干动作电位(nerve conduction action potential)是指神经细胞在受到刺激后产生的电信号,它是神经系统正常功能的重要指标之一。

本实验旨在研究神经干动作电位的特征及其在临床应用中的意义。

实验方法:本次实验采用了小鼠尾神经为研究对象。

首先,将小鼠固定在实验台上,用电刺激仪器对尾神经进行刺激。

刺激强度和频率分别为10mA和1Hz。

同时,使用电极记录尾神经上的动作电位,并将信号放大放大后通过示波器显示和记录。

实验结果:经过实验记录和数据分析,我们得到了以下结果:1. 动作电位的波形特征:在实验中,我们观察到尾神经上的动作电位呈现出典型的波形特征。

首先是负向的初始反应,随后是正向的峰值反应,最后是负向的复极化反应。

这一波形特征反映了神经细胞在受到刺激后的电活动过程。

2. 动作电位的幅值和潜伏期:通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性。

实验结果显示,动作电位的幅值和潜伏期与刺激强度和频率呈正相关关系。

这一结果表明,神经传导速度和神经细胞的兴奋性受到刺激强度和频率的调节。

3. 动作电位的传导速度:实验结果显示,动作电位在尾神经中的传导速度为Xm/s。

这一结果与已有的文献报道相符,进一步验证了本实验的可靠性。

实验讨论:神经干动作电位的实验结果对于临床应用具有重要意义。

首先,通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性,从而诊断和监测神经系统疾病。

例如,在神经病学领域,动作电位的异常可以提示神经疾病的存在和发展。

其次,动作电位的传导速度可以用来评估神经损伤的程度和康复进展。

在临床上,这对于神经损伤患者的康复治疗和预后评估非常重要。

此外,神经干动作电位的实验方法还可以应用于药物研发和毒理学研究中。

通过测量动作电位的变化,我们可以评估药物对神经细胞兴奋性的影响,从而指导药物的合理使用和毒性评估。

神经干动作电位的引导实验报告

神经干动作电位的引导实验报告
2、测定了神经干动作电位的传导速度,了解了影响传导速度的因素。
3、观察到了普鲁卡因对神经干动作电位的抑制作用,进一步理解了神经兴奋传导的机制。
八、注意事项
1、制备神经干标本时,要小心操作,避免损伤神经纤维。
2、实验过程中要保持神经干的湿润,以维持其正常的生理功能。
3、刺激强度和刺激频率要适中,避免过度刺激导致神经损伤。
4、滴加药物时要注意量的控制,避免药物扩散影响实验结果。
通过本次实验,我们对神经干动作电位的产生、传导和特点有了更深入的理解,为进一步研究神经生理功能奠定了基础。同时,也让我们认识到在实验操作中要认真细致,严格控制实验条件,以获得准确可靠的实验结果。
4、药物对神经干动作电位的影响
滴加普鲁卡因溶液后,动作电位的幅度逐渐减小,传导速度逐渐减慢,最终动作电位消失。
六、实验讨论
1、神经干动作电位的特征
神经干动作电位为双相动作电位,这是由于神经干中的神经纤维在兴奋传导过程中,兴奋部位与未兴奋部位之间存在电位差,从而形成了双向传导的动作电位。
动作电位的幅度与刺激强度有关,当刺激强度达到阈值时,动作电位的幅度达到最大值,这是因为所有的神经纤维都被兴奋。
动作电位的产生是由于细胞膜对离子通透性的改变,导致膜电位的快速变化。在静息状态下,细胞膜对钾离子的通透性较高,对钠离子的通透性较低,因此膜内电位较膜外低,表现为静息电位。当受到刺激时,细胞膜对钠离子的通透性迅速增加,钠离子大量内流,导致膜电位迅速去极化,形成动作电位的上升支。随后,细胞膜对钠离子的通透性迅速降低,对钾离子的通透性增加,钾离子大量外流,导致膜电位迅速复极化,形成动作电位的下降支。
动作电位具有“全或无”的特性,即刺激强度未达到阈值时,不产生动作电位;刺激强度达到阈值后,动作电位的幅度不再随刺激强度的增加而增大。

生理学实验神经干动作电位的测定

生理学实验神经干动作电位的测定

⽣理学实验神经⼲动作电位的测定实验四神经⼲动作电位的测定【实验⽬的】学习⽣物电活动的细胞外记录法;观察坐⾻神经⼲动作电位的基本波形、潜伏期、幅值以及时程。

【实验原理】神经组织属于可兴奋组织,其兴奋的客观标志是产⽣动作电位,即当受到有效刺激时,膜电位在静息电位的基础上将发⽣⼀系列的快速、可逆、可扩布的电位变化。

动作电位可以沿着神经纤维传导。

在神经细胞外表⾯,已兴奋的部位带负电,未兴奋的部位带正电。

采⽤电⽣理学实验⽅法可以引导出此电位差或电位变化,根据引导的⽅式不同,所记录到的动作电位可呈现单向或双向的波形。

由于坐⾻神经⼲是由许多神经纤维组成的,所以其产⽣的动作电位是众多神经纤维动作电位的叠加,即为⼀个复合动作电位。

这些神经纤维的兴奋性是不同的,所以在⼀定范围内增⼤刺激强度可以使电位幅度增⼤。

这和单⼀细胞产⽣的动作电位是有区别的。

本实验所引导出的动作电位即为坐⾻神经⼲的复合动作电位。

【实验对象】蛙或蟾蜍。

【实验材料】两栖类⼿术器械 1 套、滴管、BL-410⽣物机能实验系统、神经屏蔽盒、刺激电极、接收电极、任⽒液。

【实验步骤】1.制备坐⾻神经⼲标本坐⾻神经⼲标本的制备⽅法与制备坐⾻神经-腓肠肌标本相似。

⾸先按照制备坐⾻神经- 腓肠肌标本的⽅法分离坐⾻神经,当游离⾄膝关节处时,在腓肠肌两侧找到胫神经和腓神经,任选其⼀剪断,然后分离留下的⼀⽀直⾄⾜趾并剪断。

保留与坐⾻神经相连的⼀⼩段脊柱,其余组织均剪除。

此时,即制成了坐⾻神经⼲标本。

将标本浸于任⽒液中,待其兴奋性稳定后开始实验。

2.接标本与实验仪器1)棉球沾任⽒液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电(图 4-1 屏蔽盒)极端(即 0刻度端),其神经部分横搭在各个电极上。

2)取出 BL-410 ⽣物机能实验系统专⽤刺激电极,将其插头插在与主机“刺激”插⼝中,另⼀端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接⼝上。

红⾊接正极,⿊⾊接负极。

实验2.5神经干复合动作电位的测定

实验2.5神经干复合动作电位的测定

一、实验目的观察蟾蜍或蛙的坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。

二、基本原理神经或肌肉发生兴奋时,兴奋部位发生电位变化,这种可扩布性的电位变化即为动作电位,神经干的动作电位是神经兴奋的客观指标。

单根神经纤维产生和传导的动作电位是“全或无”式的。

坐骨神经干是由许多神经纤维组成的,因此神经干的动作电位与单个神经纤维的动作电位不同,它是由许多不同类型和直径的神经纤维的动作电位叠加而成的综合动作电位,称为复合动作电位。

复合动作电位不遵循“全或无”的特征。

在一定刺激强度范围内,随着刺激强度的增加,被兴奋的神经纤维的数目逐渐增多。

复合动作电位的振幅也增加。

根据引导方法的不同(双极引导或单极引导),可分别得到双相或单相动作电位。

如将正常完整的神经干置于肌槽的刺激电极和一对(两个)引导电极的表面,当神经干一端兴奋后兴奋波先后通过两个引导电极,在两个引导电极处,可引导出两个方向相反的电位偏转波,称为双相动作电位,如将两个引导电极之间的神经麻醉或损伤,动作电位只通过一个电极引导出来,它只有一个方向的电位偏转,称为单相动作电位。

三、实验用品蟾蜍或蛙,两栖类常用手术器械(手术剪、手术镊、手术刀、金冠剪、解剖钳、眼科剪、眼科镊、肾形弯盘、毁髓针和玻璃分针),蛙板(木质或硬泡沫塑料),探针,锌铜弓,培养皿或不锈钢盘,蜡盘,污物缸,滴管,纱布,粗棉线,任氏液。

RM6240B 生理实验系统,BB-3G神经标本屏蔽肌槽。

四、实验方法和步骤1.制备蟾蜍或蛙坐骨神经干标本参考实验2.1,剥制两条坐骨神经干标本,神经干要尽可能分离得长,要求上自脊柱附近的主干,下沿腓总神经与胫神经一直分离至踝关节附近。

在制备过程中,要把神经周围的结缔组织分离干净,但勿损伤神经标本。

2.安置实验设备RM6240B生理实验系统通过USB接口与计算机相连。

将坐骨神经干标本置于肌槽的电极表面,使神经干从中枢到外周的方向顺序放在刺激电极、地线和引导电极上并与各电极接触良好。

神经干电位实验报告

神经干电位实验报告

一、实验目的1. 理解神经干动作电位的基本概念和形成机制。

2. 掌握神经干动作电位的引导方法和步骤。

3. 通过实验观察神经干动作电位的特点,包括波形、传导速度和不应期。

4. 分析神经干动作电位在不同条件下的变化,如刺激强度、损伤和药物作用等。

二、实验原理神经干动作电位是神经纤维在受到有效刺激时产生的可传导的电位变化,是神经细胞兴奋的客观标志。

神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。

三、实验材料1. 实验对象:青蛙或蟾蜍2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N系统四、实验方法和步骤1. 制备神经标本:将青蛙或蟾蜍处死,解剖出坐骨神经干,用任氏液浸泡并保持湿润。

2. 安放引导电极:将引导电极固定在神经干上,确保电极与神经干良好接触。

3. 安放刺激电极:将刺激电极固定在神经干上,距离引导电极适当距离。

4. 启动试验系统:连接BL-420N系统,打开软件,设置实验参数。

5. 观察记录:逐渐增加刺激强度,观察并记录神经干动作电位的波形、传导速度和不应期。

6. 分析实验结果:分析不同刺激强度下神经干动作电位的变化,以及损伤和药物作用对神经干动作电位的影响。

五、实验结果1. 神经干动作电位波形:观察到神经干动作电位呈双相波形,第一相为上升支,第二相为下降支。

2. 神经干动作电位传导速度:随着刺激强度的增加,神经干动作电位传导速度逐渐提高。

3. 神经干动作电位不应期:观察到神经干动作电位存在不应期,不应期随刺激强度的增加而缩短。

六、讨论1. 神经干动作电位的形成机制:神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。

2. 刺激强度对神经干动作电位的影响:随着刺激强度的增加,神经干动作电位传导速度逐渐提高,不应期缩短。

神经干复合动作电位的记录和观察

神经干复合动作电位的记录和观察

课程名称:动物生理学实验实验项目:实验二神经干复合动作电位的记录和观察[目的]1、学习电生理学实验方法。

2、观察蛙坐骨神经干复合动作电位的波形,并了解其产生原理。

3、测量神经干动作电位产生的阈强度和顶强度。

[原理]1、两栖类一些基本的生命活动和生理功能与温血动物类似,而离体组织器官所需的生活条件比较简单,并且易于控制和掌握,因此在生理实验中常用两栖类离体组织器官作为实验标本。

2、神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。

如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相动作电位。

3、神经细胞的动作电位是以“全或无”方式发生的。

坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。

复合动作电位的幅值在一定刺激强度下是随着刺激强度的变化而变化的。

[实验材料]蛙常用手术器械蛙板任氏液培养皿烧杯神经屏蔽盒Medlab生物信号采集系统[实验流程] 神经干标本制备→仪器联接和调试→测定参数→测定神经干的刺激阈值→观察记录双相动作电位→观察记录单相动作电位[实验步骤]一、蛙坐骨神经干标本制备1.毁脑、脊髓。

2.去躯干上部及内脏和皮肤将前半躯干、皮肤和内脏一并拉剥弃之,仅保留一段腰背部脊柱及两后肢,并将其放入盛有任氏液的培养皿中。

3.洗净手和所用过的用具,以防沾染标本。

4.平分标本沿脊柱正中线至耻骨联合中央将标本分为两半。

放入任氏液中。

5.游离坐骨神经任取一标本,用玻璃分针游离坐骨神经腹腔段。

然后换至背侧向上,持玻璃分针沿坐骨神经沟(股二头肌及半膜肌肌间沟)小心分离坐骨神经大腿段,用剪刀剪去神经干上各细小分支(切忌撕扯)。

坐骨神经下行至腘窝处分为两支:内侧为胫神经,走行表浅;外侧为腓神经。

沿胫、腓神经走向分离至踝部,尽量将神经干标本剥离长一些,要求上自脊神经发出部位,下沿腓神经与胫神经一直分离到踝关节附近,剪断侧支。

神经干动作电位实验报告

神经干动作电位实验报告

神经⼲动作电位实验报告神经⼲动作电位实验报Experimental report of neUhtstem action potential告Intern ship report实验报告⼀、实验⽬的:1. 学习蛙坐⾻神经⼲标本的制备2. 观察坐⾻神经⼲的双相动作电位波形,并测定最⼤刺激强度3. 测定坐⾻神经⼲双相动作电位的传导速度4. 学习绝对不应期和相对不应期的测定⽅法5. 观察机械损伤或局⿇药对神经兴奋和传导的影响⼆、实验材料1. 实验对象:⽜蛙2. 实验药品和器材:任⽒液,2%普鲁卡因,各种带USB接⼝或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪⼑,眼科剪,眼科镊,培养⽫,烧杯,滴管,蛙毁髓探针,BL-420N 系统三、主要⽅法和步骤:1. 捣毁脑脊髓2. 分离坐⾻神经3. 安放引导电极4. 安放刺激电极5. 启动试验系统6. 观察记录7. 保存8. 编辑输出四、实验结果和讨论1. 观察神经⼲双相动作电位引导(单通道,单刺激)如图,观察到⼀个双相动作电位波形。

Pm 驴:i SQOQOKi 2.0 ms 7 射¥也00z 时间⼀—j .................... : .................. 频率:最⼤值-...... ' ........ ' ......... [ ........ ;...... [协⼩值:-15 --20 _oo: oo. m兀卫EQ创2. 神经⼲双相动作电位传导速度测定(双通道,单刺激)kUUUChz L.U ns ZlT m¥ii J.ttmzj .................. ■:- I2? 1. WV1 I ----------- 14 I I 4 I I IooTio mo oa nr iins on oo oru oom coe co nr no⽇on m nn oo oo ni2 DO on rtu OO CIJ ri^oo oc OIA(1) 选择“神经⾻骼肌实验”⼀“…传导速度测定”(2) 改变单刺激强度(3) 传导速度=传导距离(R1--R2-)/传导时间(t 2-t 1)如图所⽰,两个波峰之间的传导时间△ t = (t 2-t 1) = 0.66ms实验中,我们设定在引导电极1和3之间的距离△ R = (R 1--R2-) = 1cm故传导速度v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/s1 OOY-ID释: 最⼤ii;■⼩值:平均值:嶂赠但?⾯租BJ祠;最知宜.环值:平均值:⽽租3. 神经⼲双相动作电位不应期观察-1B - -20 _I OOV, 4丐砂 |110:00.614 O0:0tJ.fil3 00:00.S22 CiO:OO.S2S 00:00.S30⼆黒 HL LJ倒 UJ S3时间:最⼤值; 最⼩值- 平均値删值时间:[Q1D |CO.QL. 3H g DI 3耨 OD Cd 00 W 3好 0⼝⽫ 11T 0Q D3 驀 1 OO.QJI 3R M :0i S? QIXQ1,諮孝 00:01.^7由上图可知,当刺激间隔时间为 4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。

神经干动作电位实验报告

神经干动作电位实验报告

神经干动作电位实验报告篇一:泥蛙神经干动作电位的引导传导速度的测定实验报告神经干动作电位传导速度的测定一实验目的一掌握坐骨神经标本的制备方法。

二掌握引导神经干复合动作电位和测定其传导速度的基本原理。

二相关知识(一)兴奋及兴奋性的概念(二)动作电位的潜伏期、动作电位时程和幅值1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础上发生一次短暂的,可向周围扩布的电位波动。

这种电位波动称为动作电位。

(三)、动作电位的传导局部电流的形式(一)、细胞外记录1(二)、神经干的动作电位神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。

四实验原理(一)、单根神经纤维动作电位的引导及其传导1、记录出了一个先升后降的双相动作电位的原理当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。

在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。

随后,冲动继续向右侧传导,离开1电极传向2电极处。

当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。

这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。

负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位2的上相。

当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。

如果互换正、负电极的位置,则记录到先降后升的双相动作电位。

C.A点神经纤维多于B点(次要原因)。

动作电位实验报告

动作电位实验报告

动作电位实验报告实验二:神经干动作电位的测定一、实验目的1、学习神经干标本的制备2、学习电生理实验的操作方法3、观察蛙坐骨神经干复合动作电位的波形,并了解其产生的基本原理二、实验原理神经干在受到有效刺激后,可以产生相应的动作电位,这标志着神经发生了兴奋。

如果在神经干的另一端引导传来的兴奋冲动,可以产生双相动作电位;如果在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相动作电位。

神经细胞的动作电位是以“全或无”的方式产生的。

蛙的坐骨神经干是由很多不同类型的神经纤维组成的,因此神经干的动作电位是复合动作电位。

复合动作电位的幅值在一定的刺激强度下是随着刺激强度的变化而变化的。

三、实验材料和器械青蛙;常用手术器械、计算机采集系统、神经屏蔽盒、固定针、蜡盘、培养皿、污物缸、棉线、纱布、滴、任式液管。

四、实验方法和步骤1.制备蟾蜍坐骨神经干标本(1)毁脑脊髓和下肢标本制备。

(2)剥皮的下肢标本俯卧于蛙板上,用尖头镊子夹住骶骨尾端稍向上提,使骶部向上隆起,用粗剪刀水平位剪除骶骨。

(3)标本仰卧置于蛙板上,用玻璃分针分离脊柱两侧的坐骨神经,穿线,紧靠脊柱根部结扎,近中枢端剪断神经干,用尖头镊子夹结扎线将神经干从骶部剪口处穿出。

(4)标本俯卧位置于蛙板上,使其充分伸展呈人字形,用三根大头针将标本钉在蛙板上。

然后再用玻璃分针循股二头肌和半膜肌之间的坐骨神经沟,纵向分离暴露坐骨神经大腿部分,直至分离至腘窝胫腓神经分叉处,用玻璃分针将腓浅神经、胫神经与腓肠肌和胫骨前肌分离,将腓肠肌剪除。

(5)用手轻提一侧结扎神经的线头,辨清坐骨神经走向,置剪刀于神经与组织之间,剪刀与下肢成30°角,紧贴股骨,腘窝,顺神经走向,剪切直至跟腱并剪断跟腱和神经。

(6)用手捏住结扎神经的线头,用镊子剥离附着在神经干的组织,将剥离出来的坐骨神经干标本浸入盛有任氏液培养皿中待用。

2.系统连接和仪器参数设置(1)系统连接:连接生物信号采集处理系统和神经屏蔽盒,须避免连接错误或连接不良。

实验四 神经干复合动作电位的记录

实验四 神经干复合动作电位的记录

实验四:神经干复合动作电位的记录神经干复合动作电位传导速度的测定神经干复合动作电位不应期的测定一、目的要求:1.学习电生理仪的使用方法;2.观察蟾蜍坐骨神经动作电位的基本波形,并了解其产生的基本原理;3.用电生理学方法测定蟾蜍坐骨神经的神经冲动传导速度;4.学习测定神经不应期的基本原理和方法;5.学习电生理学的基本记录方法。

二、基本原理:1.如将两个引导电极分别置于正常完整的神经干表面,动作电位先后通过两个引导电极,可引导出两个方向相反的电位偏转,称为双相动作电位。

如将两个引导电极之间的神经麻醉或损伤,动作电位只通过第一个电极引导出来,它只有一个方向的电位偏转,称为单相动作电位。

坐骨神经由许多神经组成,所以神经干的动作电位与单个神经纤维的跨膜动作电位不同,它是许多动作电位组成的复合动作电位。

虽然每条神经纤维都按“全或无”定律参与反应,但在一定范围内,复合动作电位的振幅可随刺激强度的改变而发生变化。

2.神经冲动的传导速度(v)指动作电位在单位时间(t)内传导的距离(s),可根据神经干上动作电位从一点传导到另一点所需要的时间来计算:v=s/t (m/s)不同类型的神经纤维传导速度各不相同,神经纤维愈粗,传导速度愈快。

坐骨神经中传导速度约为35-40m/s。

3.神经在一次兴奋后,其兴奋性发生周期性的变化,而后才恢复正常。

包括绝对不应期、相对不应期、超常期、和低常期。

通过调节刺激器输出的连续双脉冲的时间间隔,可测定坐骨神经的不应期。

当双脉冲的间隔时间为20ms左右时,可出现两个同样大小的动作电位。

逐渐缩短双脉冲之间的间隔,第二个动作电位向第一个动作电位靠近,振幅也随之降低,最后可因落在第一个动作电位的绝对不应期内而完全消失。

三、动物与器材:1.动物:蟾蜍2.器材:常用手术器材、电子刺激器、刺激隔离器、神经屏蔽盒、滤纸片、蛙钉、蜡盘、绵线。

3.试剂:任氏液、3mol/L Kcl溶液四、方法与步骤:1.双毁髓。

生理实验报告神经干复合动作电位

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告实验名称神经干复合动作电位姓名学号系别组别同组姓名实验室温度20℃实验日期2015年4月24日一、实验题目蟾蜍坐骨神经干复合动作电位(CAP)A蟾蜍坐骨神经干CAP阈值和最大幅度的确定B蟾蜍坐骨神经干CAP传导速度的确定C蟾蜍坐骨神经干CAP不应期的确定二、实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的(1)临界值和最大值(2)传导速度(3)不应期(相对不应期、绝对不应期)三、实验原理神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。

坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。

如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。

一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。

刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大.与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小.阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。

在一定范围内增加刺激强度,CAP幅度相应增大。

最大CAP所对应的最小刺激电位即最大刺激。

动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。

它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。

兴奋的周期性变化,依次包括绝对不应期、相对不应期等等.绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋.绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。

本科生理实验报告

本科生理实验报告

一、实验名称神经干复合动作电位二、实验日期2023年11月15日三、实验地点生理学实验室四、实验目的1. 确定蟾蜍坐骨神经干复合动作电位(CAP)的临界值和最大幅度。

2. 确定蟾蜍坐骨神经干CAP的传导速度。

3. 确定蟾蜍坐骨神经干CAP的不应期(相对不应期和绝对不应期)。

五、实验原理神经干复合动作电位(CAP)是神经纤维受到阈上刺激时产生的动作电位,由多个单个动作电位叠加而成。

通过测定CAP的临界值、最大幅度和传导速度,可以了解神经纤维的兴奋性和传导特性。

六、实验对象与用品实验对象:蟾蜍实验用品:- 生物信号采集系统RM6240- 刺激电极S1、S2- 记录电极R1-R2- 接地电极- 刺激输出线- 刺激输出插口- 标本盒- 剪刀、镊子、解剖针等解剖工具七、实验方法1. 蟾蜍坐骨神经标本的制作:- 双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经。

- 游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。

- 注意保持神经湿润。

2. 连接电极:- 将神经搭于标本盒内,保证神经与电极充分接触。

- 中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。

3. 连接仪器:- 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口。

- 信号输入端红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1。

4. 刺激与记录:- 采用方波脉冲刺激,刺激频率从低到高逐渐增加,直至观察到CAP出现。

- 记录CAP的临界值、最大幅度和传导速度。

八、实验结果与分析1. 临界值:通过逐渐增加刺激强度,观察到CAP出现的最小刺激强度为临界值。

2. 最大幅度:在临界值以上的刺激强度下,CAP的最大幅度保持相对稳定。

3. 传导速度:通过测量刺激电极与记录电极之间的距离,结合CAP的传导时间,计算出CAP的传导速度。

神经的电生理特性及影响因素实验报告

神经的电生理特性及影响因素实验报告

神经的电生理特性及影响因素实验报告实验1 蟾蜍坐骨神经干复合动作电位特性***,***(浙江大学08级*************************)【目的】探讨神经干双相动作电位的形成机制及影响因素。

1 材料蟾蜍;任氏液;BB-3G标本屏蔽盒,微机生物信号采集处理系统。

2 方法2.1 系统连接和参数设置 RM6240多道生理信号采集处理系统与标本盒连接,1、2通道时间常数0.02s、滤波频率3KHz、灵敏度5mV,采样频率100KHz,扫描速度0.2ms/div。

单刺激激模式,刺激波宽0.1ms,延迟1ms,同步触发。

2.2 制备蟾蜍坐骨神经干标本蟾蜍毁脑脊髓和下肢标本制备,下肢标本仰卧置于蛙板上,分离脊柱两侧的坐骨神经,紧靠脊柱根部结扎,近中枢端剪断神经干,将神经干从骶部剪口处穿出。

循股二头肌和半膜肌之间的坐骨神经沟,纵向分离坐骨神经直至腘窝胫腓神经分叉处,将腓浅神经、胫神经与腓肠肌和胫骨前肌分离。

置剪刀于神经与组织之间,剪切直至跟腱并剪断跟腱和神经。

剥离附着在神经干的组织,坐骨神经干标本浸入任氏液中。

2.3 实验观察2.3.1 中枢端引导动作电位神经干末梢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms的方波刺激神经干,测定第1和第2对引导电极引导的双相动作电位正相波和负相波的振幅和时程。

2.3.2 改变引导电极距离用刺激电压1.0V,波宽0.1ms的方波刺激神经干中枢端,记录引导电极距离10mm、20mm、30mm时的动作电位。

分别测定上述三个引导电极距离的动作电位正相波和负相波的振幅和时程。

2.3.3 末梢端引导动作电位和测定动作电位传导速度引导电极距离10mm,神经干中枢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms的方波刺激神经干,测定第1对引导电极引导的双相动作电位正相波和负相波的振幅和时程。

分别测量两个动作电位起始点的时间差和标本盒中两对引导电极之间的距离S(应测r1- r2 的间距),计算动作电位传导速度。

生理实验报告神经干复合动作电位

生理实验报告神经干复合动作电位

生理实验报告神经干复合动作电位实验目的:1.了解神经干复合动作电位的形成和传导。

2.掌握记录和分析神经干复合动作电位的方法。

3.观察和分析神经干复合动作电位在不同刺激条件下的变化。

实验原理:神经干是指神经纤维在离开整个神经系统后,在肌骨、脏器等部位的展开。

神经干复合动作电位(CNAPs)是指由神经干上的多个神经元细胞同时参与形成的电信号,它是神经干传导时产生的电生理事件。

通常情况下,神经干复合动作电位由4个不同的组分组成,依次是起始变化、顶峰反射、降落相和后期反射。

这些组分的形成和传导过程会受到不同因素的影响,如刺激的强度、频率和持续时间等。

实验设备:1个主机1台示波器1个刺激电极2个测量电极1箱生理盐水1张生理实验纸实验步骤:1.将示波器的探头分别连接到刺激电极和测量电极上,探头的地线连接到主机上的地线端。

2.将测量电极分别放置在神经干上和离神经干较远的位置上,测量电极间距应足够大,以避免电信号重叠。

3.用生理盐水湿润纸片,将刺激电极夹在纸片中央的合适位置上。

4.调整示波器的放大倍数和时间基准以获得清晰的信号波形。

5.将主机上的刺激按钮设置为适当的参数,并按下开始按钮开始记录信号。

6.根据实验要求分别改变刺激电流的强度、频率和持续时间,并记录相应的信号波形。

7.重复实验步骤4-6,直到完成所有实验要求。

实验结果分析:1.观察到的信号波形应包含起始变化、顶峰反射、降落相和后期反射这四个组分,根据波形的形态和振幅变化可以分析神经传导的速度和强度。

2.改变刺激条件后,观察信号波形的变化,记录并分析不同刺激条件下的神经传导特点如传导速度、传导延迟、反射强度等。

实验结论:1.神经干复合动作电位是由神经干上的多个神经元细胞参与形成的电信号。

2.神经干复合动作电位的形成和传导受到多种因素的影响,包括刺激强度、频率和持续时间等。

3.改变刺激条件可以观察到神经干复合动作电位的变化,进而分析神经传导的特点。

4.通过实验可以掌握记录和分析神经干复合动作电位的方法,并获得相关实验结果。

神经干动作电位实验报告

神经干动作电位实验报告

神经干动作电位实验报告神经干动作电位实验报告引言:神经干动作电位是一种记录和研究神经元活动的重要方法。

通过测量神经元在受到刺激时产生的电信号,我们可以了解神经元的兴奋性、传导速度以及神经网络的功能。

本实验旨在探究神经干动作电位的特性和应用,并通过实际操作来加深对该实验的理解。

实验步骤:1. 实验前准备:将被试者坐于舒适的位置,确保其放松且不受干扰。

将电极贴于被试者的皮肤上,通常选择头皮、手腕或脚踝等部位。

2. 刺激信号的产生:使用外部刺激器,如电极或光纤,对被试者进行刺激。

可以选择不同的刺激方式,如电流、光线或声音等。

3. 信号采集:使用生物电放大器将神经干动作电位信号放大,并通过电极将信号输入到计算机或记录设备上。

确保信号的质量和稳定性,以获取准确的实验结果。

4. 数据分析:通过对采集到的信号进行处理和分析,可以得到神经干动作电位的特征参数,如幅值、潜伏期和传导速度等。

同时,还可以对不同刺激条件下的实验结果进行比较和统计。

实验结果与讨论:1. 神经干动作电位的特征参数:根据实验数据的分析,我们可以得到神经干动作电位的幅值、潜伏期和传导速度等参数。

这些参数可以反映神经元的兴奋性和传导能力,从而帮助我们了解神经系统的功能和病理变化。

2. 神经干动作电位的应用:神经干动作电位在临床医学和科学研究中有着广泛的应用。

例如,通过测量神经干动作电位,可以评估神经系统的功能状态,如神经病变、神经损伤和神经炎等。

此外,神经干动作电位还可以用于研究神经网络的连接和传导机制,对于理解大脑的工作原理和神经系统疾病的发生机制具有重要意义。

3. 实验的局限性和改进方向:在进行神经干动作电位实验时,也存在一些局限性。

例如,信号的稳定性和噪声的干扰可能影响实验结果的准确性。

此外,实验中使用的刺激方式和参数的选择也可能对结果产生影响。

因此,未来的研究可以进一步改进实验设计和信号处理方法,以提高实验的可重复性和准确性。

结论:神经干动作电位实验是一种重要的方法,用于研究神经元活动和神经系统功能。

神经干复合动作电位的测定

神经干复合动作电位的测定

华南师范大学实验报告学生姓名何茂辉学号20062501302专业生物科学年级、班级06科三课程名称生理学实验实验项目实验类型□验证□设计□综合实验时间09 年 4 月13 日实验指导老师黄秀明、胡学军实验评分神经干复合动作电位的测定实验目的:1.观察蛙坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。

2.学习测定蛙或蟾蜍离体神经干上神经冲动传导速度的方法和原理。

实验材料:虎纹蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒实验方法:1.虎纹蛙坐骨神经干的标本制备参照实验2-1的方法剥离蛙的坐骨神经干,尽量把神经干标本剥离得长一些,要求上自脊髓附近,下沿腓神经与胫神经一直分离到踝关节附近;尽量把神经干周围的组织剔除干净,剥离时切勿损伤神经干标本。

2.实验装置的连接按照图2-3-1将神经屏蔽盒与信号采集处理系统连接,屏蔽盒的地线良好接地。

3.仪器的操作和实验参数的设置(1)本实验在Windows界面的生理采集处理系统平台下进行,打开生理采集系统。

(2)采样窗参数的设置。

(3)刺激参数的设置。

4.将蛙的坐骨神经干标本置于屏蔽盒内的电极上,神经干的中枢端置于刺激电极一侧,从末梢端引导动作电位。

5.刺激、观察、记录神经干复合动作电位(1)神经干兴奋阈值的测定。

(2)在刺激阈值的基础上逐渐加大刺激强度,可见动作电位的图形为双向,而且它的幅值随刺激强度的增大而加大。

当刺激增加到一定强度时,可见动作电位的幅值不再增大。

(3)动作电位参数的测量。

(4)在两个引导电极之间损伤神经干标本,即可使原来的双相动作电位的下相消失,变为单相;注意上相动作电位的图形有什么样的变化。

(5)选取最为理想的动作电位图形,打印出来,附于实验报告上。

实验结果:图1 虎纹蛙坐骨神经干的复合动作电位(双向动作电位)图2 虎纹蛙坐骨神经干的复合动作电位(单向动作电位)结果分析:1、神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人体解剖及动物生理学实验报告实验名称神经干复合动作电位姓名学号系别组别同组姓名实验室温度20℃实验日期2015年4月24日一、实验题目蟾蜍坐骨神经干复合动作电位(CAP)A蟾蜍坐骨神经干CAP阈值和最大幅度的确定B蟾蜍坐骨神经干CAP传导速度的确定C蟾蜍坐骨神经干CAP不应期的确定二、实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的(1)临界值和最大值(2)传导速度(3)不应期(相对不应期、绝对不应期)三、实验原理神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。

坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。

如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。

一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。

刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。

与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。

阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。

在一定范围内增加刺激强度,CAP幅度相应增大。

最大CAP所对应的最小刺激电位即最大刺激。

动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。

它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。

兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。

绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。

绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。

不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。

四、实验方法蟾蜍坐骨神经标本的制作1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。

注意保持神经湿润。

2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。

3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.A.蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定(1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。

(2)确定装置是否正常工作,以及神经是否具有活性。

采用较大的刺激强度,1V,刺激时程0.2ms,延时5ms,刺激模式为但刺激。

选择“同步触发”,按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。

(3)快速降低刺激强度,确定CAP的阈电位。

记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。

(4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本在正常生理活性时,1V以内的刺激强度即可引起最大的CAP)。

B.蟾蜍坐骨神经干复合动作电位(CAP)传导速度的确定(1)从“实验”菜单中选取“动作电位传导速度”,界面出现两个采集通道,对应通道1和通道2,因此采用两对引导电极R1-R2和R3-R4,同时输入两道信号。

(2)使用单刺激模式,调整刺激强度,使产生最大CAP。

(3)测量两个通道显示的动作电位起点的时间差。

(4)测量R1和R3之间神经的长度。

(5)重复步骤1-4至少三次。

(6)计算传导速度:传导速度=△D(mm)/△T(ms)(7)计算几次重复测量得到的传导速度的平均值(Mean)和标准误(SEM)。

C.蟾蜍坐骨神经干复合动作电位(CAP)不应期的确定(1)采用双刺激模式,刺激条件相同,产生一对幅度相同的最大的CAP。

(2)逐渐减小两刺激间隔,直到第二个CAP幅度刚刚开始减小,即进入相对不应期。

此波间隔与绝对不应期之差即为相对不应期。

(3)继续减小间隔,直到第二个CAP刚刚完全消失,此间隔即为绝对不应期。

(4)重复步骤1-3至少三次。

(5)计算绝对不应期和相对不应期的均值(Mean)及标准误(SEM)。

五、实验结果A蟾蜍坐骨神经干CAP阈值和最大幅度的确定图1. 蟾蜍坐骨神经干CAP的阈电位(当前刺激强度为0.16V)图2. 蟾蜍坐骨神经干CAP的最大幅度2.28mV(当前刺激强度为0.70V)表1.蟾蜍坐骨神经干CAP随刺激强度的变化数据实验次数刺激强度(V)CAP(mV)实验次数刺激强度(V)CAP(mV)10.91 2.08070.49 2.03020.84 2.07080.42 1.84230.77 2.04090.35 1.72040.70 2.280100.28 1.20050.63 2.080110.210.57060.56 2.013120.140.000根据上表可绘制下图,曲线图能更加直观的显示蟾蜍坐骨神经干CAP随刺激强度增加的变化趋势。

图3 蟾蜍坐骨神经干CAP随刺激强度的变化曲线图由以上图表可知,当刺激强度为0.16V时,刚好能观察到一个CAP;之后随着刺激强度增大,动作电位的幅度也就越来越大;当刺激强度达到0.70V时,CAP达到最大,为2.280mV;继续增大刺激强度,动作电位的幅度就不会增大了,而是略微降低。

由此可得在一定范围内,坐骨神经干复合动作电位的幅度随着刺激强度增大而增大。

但当刺激强度超过一定范围后,坐骨神经干复合动作电位就不再增大了。

神经干是混合纤维,包含着多种兴奋性不同的神经。

阈强度的刺激刚刚可以引起其中一些兴奋性较高的纤维产生动作电位,随着刺激强度的增加,其余兴奋性较低的纤维陆续产生动作电位。

当刺激超过顶强度时,全部神经纤维产生动作电位。

所以神经干的动作电位会随着刺激的增大而增大,直到产生最大动作电位。

B蟾蜍坐骨神经干CAP传导速度的确定图4. 某次神经干兴奋传导速度的测定图表2. 蟾蜍坐骨神经干传导时间记录数据R1、R3电极间距离传导时间差△t(ms)传导速度(mm/ms)平均值(mm/ms)标准误1 20mm 0.95 21.052 20mm 0.95 21.0524.335 1.9353 20mm 0.75 26.674 20mm 0.7 28.57由上表数据可计算出标准差为3.87,标准误为1.935,证明各组平行实验间误差并不大,得到的实验结果较为准确。

C蟾蜍坐骨神经干CAP不应期的确定图5.双刺激下刚刚进入相对不应期内的神经干CAP图图6. 双刺激下刚刚进入绝对不应期内的神经干CAP图表3.蟾蜍坐骨神经干相对不应期和绝对不应期的测量数据相对不应期(ms)绝对不应期(ms)1 8.1 1.12 7.2 0.53 4.8 0.5Mean 6.7 0.7SEM 1.59 0.20减小刺激间隔,直到第二个CAP开始减小,表明第二个刺激进入了前一次兴奋的相对不应期,可得当第二个CAP刚刚开始减小时的刺激间隔平均值为6.7ms,所以相对不应期为6.7ms,但其标准误为1.59,表明各组平行实验间差距较小,实验效果较好。

蟾蜍坐骨神经干CAP的绝对不应期其平均值为0.7ms,且三组平行实验的标准误为0.20,表明各组平行实验间差距很小。

本次实验误差可能原因为实验时间较长,未及时将神经标本浸泡在任氏液中,导致神经失活。

三、分析与讨论1、对比动作电位,分析神经干复合动作电位(CAP)的特点,并解释其随刺激幅度变化而变化的现象。

神经干动作电位振幅随刺激电压增加而增高,不具有“全或无”性质。

神经干动作电位是由许多这种兴奋性不同的单根神经纤维的动作电位综合成的复合性电位变化。

一根神经纤维在受到阈值以上刺激产生动作电位不随着刺激强度增大而增大,但是坐骨神经干是有许多神经纤维组成的,在受到阈值以上刺激时,由于引起不同数目神经纤维产生动作电位,随着刺激强度增大,神经纤维产生动作电位的数目也越多,动作电位的幅度也就越大,当全部神经纤维都产生动作电位时,动作电位的幅度就不会增大了。

故在一定范围内,坐骨神经干动作电位的幅度随着刺激强度增大而增大。

2、分析解释测量神经传导速度的实验中通道2和1所记录的CAP的不同之处;分析蟾蜍坐骨神经干中所包含的神经纤维种类及其传导速度,判断所测定的纤维类型,分析实验中可影响传导速度数值的因素。

(1)通道2记录的CAP的幅度小于通道1记录的CAP幅度。

坐骨神经中枢端的神经纤维多,越向外周端神经纤维越少,而通道2电极位于外周端,通道1电极位于中枢端。

所以通道2处发生兴奋的神经纤维比通道1兴奋的神经纤维少,所以幅度比通道1小。

(2)不同类型的神经纤维传导速度不同,其传导速度主要受神经纤维的直径、内阻及有无髓鞘的影响。

蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29μm,其中直径最粗的有髓纤维为Aα类纤维,它是蛙神经的主要组成部分,传导速度在正常室温下为35-40m/s。

蟾蜍的坐骨神经是混合神经,由实验测得神经纤维的传导速度是24.335m/s,可知其神经纤维主要类型是A类神经纤维。

(3)实验中可影响传导速度数值的因素:a)分离坐骨神经时不小心使用了铁质的解剖针、镊子等,而不是玻璃分针,导致分离出来的神经的活性不是很好,受到了损伤;b)离体的神经暴露在空气中很容易干燥,生物活性受到影响;c)神经由于受到连续刺激,活性下降。

d)实验中神经是否剥离干净以及完整会影响其兴奋传导速度e)环境温度等也会影响神经活性,从而影响其兴奋传导速度。

3、分析不应期之内 CAP变化的原因;不应期可分为绝对不应期和相对不应期,在绝对不应期内,无论给以多大的刺激,CAP 都不会改变,而在相对不应期内,CAP仍然会改变,只是所需的刺激强度更大。

绝对不应期产生的原因:钠通道激活后必须首先进入失活状态,然后才逐渐由失活状态恢复到关闭状态,以备下一次激活。

它不能由激活状态直接进人关闭状态。

动作电位产生过程中是由钠通道激活导致钠离子内流,所以第一次兴奋后,钠通道由激活状态进人失活状态后,这时无论给予其多么强大的刺激,均不能引起其再次开放,即引起新的动作电位。

相关文档
最新文档