奥数比例应用题

合集下载

六年级奥数按比例分配经典题

六年级奥数按比例分配经典题

六年级奥数 按比例分配知识要点及解题基本方法:解答按比例分配的应用题,先要将各部分的比转化为各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法,分别求出各部分量。

解题步骤是:1、 先求出按比例分配的总数量;2、 再求出分配的比,并求出各个部分占总数量的几分之几;3、 用总数量乘以部分量占总数量的几分之几得到各部分量。

例1:某家场有耕地108公顷,其中粮田、棉田和其它作物的比是3:4:5,每种耕地各有多少公顷?练习:1、一个长方形与一个正方形的周长之比为6:5,长方形的长是宽的57,求长方形与正方形的面积之比。

2、第一队与第二队的人数比是3:2,第二队与第三队的为数之比是5:4,第一队与第三队的人数之比是多少?4、 六年级有男生150人,男生与女生的人数之比为5:4,六年级一共有多少人?例2、一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比。

(正确求出按比例分配的总数量是解决此题的关键)练习:1、小兰与小红所有的图书本数的比是5:3,小兰给小红15本后,两人的图书数一样多,原来两从共有图书多少本?2、数学小组和美术小组人数的比是5:3,数学小组比美术小组多24人,两组各多少人?例3:甲、乙两列火车同时从相距672千米的A 、B 两城相对开出,27小时两列火车相遇,已知甲、乙两列火车的速度比是7:9,求相遇时甲比乙少行多少千米?例4:小明与小红所有的图书的本数比5:3,小明给小红7本后,两人图书的本数同样多,原来两人共有图书多少本?例5、实验小学六年级学生分三组参加义务劳动。

第一组和第二组的人数之比是5:4,第二级和第三组的人数比是3:2.已知第一组人数比二、三组人数总和少15人。

问实验小学六年级共有多少人?(将两个比转化为三个量的连比是解比题的关键)例6:学校原有科技书。

文艺书共630本,其中科技书与文艺书的本数之比是1:4,后来又买来一些科技书,这时科技书与文艺书的本数字比是3:7.问:又买来科技书多少本、(抓住不变量是解决此类问题的有效途径)。

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析一、填空题1、甲、乙两车分别从、两地同时相向开出,甲车速度是千米/小时,乙车速度是千米/小时,当甲车驶过、距离的多千米时与乙车相遇,、两地相距()千米.【答案】225【解析】在相同的时间内,两车行驶的路程比等于两车的速度之比,由于两车的速度之比等于,那么、距离的多千米即是、距离的,所以千米的距离相当于全程的,全程的距离为(千米).2、袋子里红球与白球的数量之比是.放入若干只红球后,红球与白球数量之比变为;再放入若干只白球后,红球与白球数量之比变为.已知放入的红球比白球少只.那么原来袋子里共有()只球.【答案】960【解析】根据第一次操作白球的数量不变,把改写成,改写成.第二次操作相对于第一次操作红球数量不变,把改写成,这时我们可以看出,经过两次操作后,红球共增加了份,白球增加了份.原来红球有个,白球有个.两种球共个.3、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为.实际上,甲、乙、丙三人所得糖果数的比为,其中有一位小朋友比原计划多得了块糖果.那么这位小朋友是()(填“甲”、“乙”或“丙”),他实际所得的糖果数为()块.【答案】丙 150【解析】方法一:原计划甲、乙、丙三人所得糖果数分别占总数的,,;实际甲、乙、丙三人所得糖果数分别占总数的,,,只有丙占总数的比例是增加的,所以这位小朋友是丙.糖果总数为(块),丙实际所得的糖果数为(块).方法二:对比分析甲15——14,乙12——12,丙9——10,发现多得糖果的是丙所以15÷(10—9)×10=150(块)4、一项机械加工作业,用4台型机床,5天可以完成;用4台型机床和2台型机床3天可以完成;用3台型机床和9台型机床,2天可以完成,若3种机床各取一台工作5天后,剩下、型机床继续工作,还需要______ 天可以完成作业.【答案】3【解析】由于用4台型机床5天可以完成;用4台型机床和2台型机床3天可以完成,所以2台型机床3天完成的量等于4台型机床2天完成的量,则、两种机床每天完成的量的比为,即型机床每天完成的量为3,型机床每天完成的量为4,该项作业总量为,那么型机床每天完成的量为,3种机床各取一台工作5天后,剩下的工作量为,、型机床还需继续工作天.5、有甲、乙两块含铜率不同的合金,甲块重千克,乙块重千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为________.【答案】2.4【解析】设切下的部分重量为千克,则甲切下的千克与乙剩下的千克混合.由于得到的两块新合金的含铜率相同,所以若将这两块新合金混合,得到的大块合金的含铜率应与原来的两块新合金的含铜率相同,而这一大块合金是由千克甲块合金与千克乙块合金混合而成的,所以千克甲块合金与千克乙块合金混合后的含铜率与千克甲块合金与千克乙块合金混合后的含铜率相同,而甲、乙两块合金含铜率不同,所以这两种混合中甲、乙两种合金的重量比相同,即,所以:,解得.6、甲、乙两个工人上班,甲比乙多走的路程,而乙比甲的时间少,甲、乙的速度比是().【答案】12:11【解析】甲走的路程是乙走的路程的,甲用的时间是乙用的时间的,所以甲的速度是乙的速度的,即甲、乙的速度比是.二、解答题7、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【答案】2【解析】解:设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为:20×4+21×3=143,则单位“1”的价格为:71.5÷143=0.5元,所以圆珠笔的单价是O.5×4=2(元).8、加工某种零件,甲分钟加工个,乙分钟加工个,丙分钟加工个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件?【答案】1400 1200 1050【解析】根据题意可知,甲、乙、丙的工作效率之比为,那么在相同的时间内,三人完成的工作量之比也是,所以甲加工了个零件,乙加工了个零件,丙加工了个零件。

小学奥数6-2-9 比例应用题(二).专项练习及答案解析

小学奥数6-2-9 比例应用题(二).专项练习及答案解析

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;④x ay b=,y cz d=⇒x acz bd=;::::x y z ac bc bd=;知识点拨教学目标比例应用题(二)⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?解析如下:练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。

现在参赛的学生共有多少人?解析如下:练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。

解析如下:练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。

某天过河的车与马数目比是2:9,马和人数目比是3:7,共收渡费945元,则这天车,马,人数目各是?解析如下:练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。

已知他卖出的桃子大小个数比是8:5,则卖出的大小桃子各有多少个?(答案:卖出大桃120个,小桃75个)例5 一个盒子里有黑棋子和白棋子若干,若取出一粒黑子,则余下的黑白数比是9:7,若放回黑子,再取出一粒白子,则余下黑白之比是7:5,那么盒子原有黑比白多多少?解析如下:练习5 同学周末登山,男背红包,女背蓝包,他们每人只能看到背包,其中一位男生说:我看到的红蓝包之比是5:3,另一女生说:我看到的蓝包是红包的一半。

(完整)六年级奥数思维训练比例应用题

(完整)六年级奥数思维训练比例应用题

六年级奥数思维训练比例应用题
一、尝试练习
1.甲乙两人走同一段路, 甲要20分钟, 乙要15分钟, 现在甲、乙两人分别同时从相距840米的两地相向而行, 相遇时, 甲、乙各走了多少米?
2.盒子里共有红、白、黑三种颜色的彩球共68个, 红球与白球个数的比是1:2, 白球与黑球个数的比是3:4, 红球有多少个?
二、训练营地
1.甲、乙、丙三个平行四边形的底之比是4:5:6, 高之比是3:2:1, 已知三个平行四边形的面积和是140平方分米, 那么甲、乙、丙三个平行四边形的面积各是多少?
2.某校四、五年级参加数学竞赛的人数相等, 四年级获奖人数与未获奖人数的比是1:4, 五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
3.光明小学有三个年级, 一年级学生占全校学生人数的25%, 二年级与三年级学生人数的比是3: 4, 已知一年级比三年级学生少40人, 一年级有学生多少人?
4.五年级举行数学竞赛, 一班占参加比赛总人数的1/3, 二班与三班参加比赛人数的比是11: 13, 二班比三班少8人, 则三班有多少人参加比赛?。

六年级数学奥数第6讲:比例解应用题-课件

六年级数学奥数第6讲:比例解应用题-课件
三个年级共植树: 8×(2+3+4)=72(棵)
答:三个年级共种树苗72棵。
芭啦啦综合教育学校将六年级的280名学生,分成三个小 组进行植树活动。已知甲组和乙组人数的比是2:3,乙组和 丙组人数的比是4:5。求这三个小组各有多少人?
甲组:乙组=2:3 乙组:丙组=4:5
甲组:乙组:丙组 =8:12:15
某生产队由15个队员收割一块双季稻,8小时能割完,但割了 3小时以后,由于天气突然发生变化,增加了10个社员进行抢收, 问还需多少小时才能割完这块双季稻?
工作总量是一定的,所以工作时间与工作效率成反比。 解:设还需要x小时才能割完这块双季稻。
(15+10)x=15×(8-3) 25x=75 x=3
长:宽:高 =6:3:2
每份有:30÷6=5(厘米) 宽: 5×3=15(厘米) 高: 5×2=10(厘米)
长方体的体积:30×15×10=4500(立方厘米)
答:长方体的体积是4500立方厘米。
解答按比例分配问题,要根据已知条件,把已 知数量与份数对应起来,转化为求一个数的 几分之几来做。
学校把购进的图书的60%按2∶3∶4分配给四、 五、六三个年级。已知六年级分得56本,学校共 购进图书多少本?
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天 是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,




我们,还在路上……
每份有:280÷(8+12+15)=8(人) 甲组:8×8=64(人) 乙组:8×12=96(人) 丙组:8×15=120(人)

奥数比例的应用题

奥数比例的应用题

奥数比例的应用题简介奥数中的比例是一个重要的数学概念,它在实际生活中有很多应用。

本文将介绍一些奥数比例的应用题,帮助读者提升对比例的理解和应用能力。

题目一:商场促销活动某商场举行了一次大促销活动,原价为100元的商品打八折出售,某天一共卖出了120个。

问实际收入是多少?解答:首先,计算折扣后的价格:100元 * 0.8 = 80元。

然后,计算实际收入:80元 * 120个 = 9600元。

所以,实际收入是9600元。

题目二:购买食材小明要做一道菜需要用到3个鸡蛋、2根香蕉和1瓶牛奶。

他去超市购买了4个鸡蛋、6根香蕉和2瓶牛奶。

问他买了超市里的食材的比例分别是多少?解答:首先,计算鸡蛋的比例:4个鸡蛋 / 3个鸡蛋 = 1.33。

然后,计算香蕉的比例:6根香蕉 / 2根香蕉 = 3。

最后,计算牛奶的比例:2瓶牛奶 / 1瓶牛奶 = 2。

所以,小明买了超市里的食材的比例分别是1.33:3:2。

题目三:图书馆借书某图书馆有3000本书,其中科学类书籍占总数的30%,文学类书籍占总数的40%,其他类书籍占总数的30%。

问科学类书籍的数量是多少?解答:首先,计算科学类书籍的数量:3000本 * 30% = 900本。

所以,科学类书籍的数量是900本。

题目四:草原生态在某个草原上,羊的数量和狼的数量之比为3:1,如果有100只羊,问草原上狼的数量是多少?解答:首先,计算羊和狼的比例:3:1。

然后,计算狼的数量:100只羊 * (1只狼 / 3只羊) = 33.33只狼。

所以,草原上狼的数量是33.33只。

题目五:小明的学习时间小明每天花费1小时的时间看书,1小时的时间做作业,3小时的时间玩游戏。

问他一天总共花费的时间和玩游戏的时间的比例各是多少?解答:首先,计算一天总共花费的时间:1小时 + 1小时 + 3小时 = 5小时。

然后,计算玩游戏的时间的比例:3小时 / 5小时 = 0.6。

所以,小明一天总共花费的时间和玩游戏的时间的比例分别是5:0.6。

小学六年级比例奥数题及答案

小学六年级比例奥数题及答案

小学六年级比例奥数题及答案
比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。

解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

增加的成本2份刚好是下降利润的2份。

售价都是25份。

所以,今年的成本占售价的22/25。

3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
解:
原来甲.乙的速度比是5:4
现在的甲:5×(1-20%)=4
现在的乙:4×(1+20%)4.8
甲到B后,乙离A还有:5-4.8=0.2
总路程:10÷0.2×(4+5)=450千米。

奥数中的比例问题10题

奥数中的比例问题10题

奥数比例问题10题:
1、12 ∶16 化成最简整数比是 _________ 。

把连比 24 ∶36 ∶ 40 化成最简整数比是 _________ 。

3、( ) ∶3 ∶8 = 6∶( )∶12
4、把7
653:化成最简整数比是_________。

5、(3x-2):(10-2x )=7:4 ,求x 的值。

6、豆沙粽子和咸肉粽子和蛋黄粽子的个数之比为 5:3:1 ,三种粽子共 198 个。

那么三种粽子各有多少个?
7、一班和二班的人数之比是 8 ∶7 ,如果将一班的 8 名同学调到二班去, 则一班和二班的人数比变为 4∶5 ,求原来两班的人数。

8、已知甲、乙、丙三个数,甲等于乙、丙两数和的3
1,乙等于甲、丙两数 和的21,丙等于甲、乙两数和的7
5,求甲∶乙∶丙。

9、某山区小学要栽 253 棵松树,分给三个年级。

六年级分到的5
1等于五年级分到的41,又等于四年级分到的2
1,三个年级各分到多少棵?
10、甲与乙之间的年龄比是7:8,乙与丙之间的年龄差是9岁,求甲和丙的年龄差是多少岁?。

人教版六年级数学上册-第四单元-比--奥数题(附答案)【可编辑全文】

人教版六年级数学上册-第四单元-比--奥数题(附答案)【可编辑全文】

可编辑修改精选全文完整版第四单元 比 奥数题例题1.(比的问题转化为分数问题)(1)小明读一本书,已读的页数和未读的页数之比是5:4.如果再读27页,已读的页数和未读的页数之比是2:1.求这本书有多少页?(2)甲、乙两袋糖果的质量比是3:2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?练习1.(1)六(1)班男生人数与女生人数的比是5:4,已知女生比男生少3人,全班共有多少人?(2)甲、乙两袋糖果的质量比是4:3,如果从甲袋糖果中拿出3千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?例题2.下图中阴影部分的面积占圆面积的31,占长方形面积的72,圆的面积与长方形面积的比是多少?练习2.下图中阴影甲占平行四边形面积的75,阴影乙占三角形面积的32,平行四边形面积与三角形面面积的比是多少?例题3.(按比分配)(1)一条路全长120千米,分成上坡、平路、下坡三段,三段路程之比是1:2:3,小明走完三段路程所用的时间之比是4:5:6,已知他上坡的速度是每小时5千米,小明走完全程用了多长时间?(2)甲、乙、丙三人合作加工一批零件,加工一个零件甲需要6分钟,乙需要5分钟,丙需要4.5分钟,三人完成加工任务后共得工钱1590元。

按照加工零件的数量分工钱,甲、乙、丙各分得工钱多少元?(3)学校组织体检,收费标准如下:老师每人3元,学生每人2元。

已知老师和学生人数比为2:9,共收得体检费3120元,那么老师、学生各有多少人?(4)徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋。

现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋。

如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?(5)甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。

已知丙比甲多付了120元,那么这台电视机多少钱?(6)张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。

六年级奥数专项复习 比例应用题

六年级奥数专项复习  比例应用题

六年级奥数专项复习:比例应用题1、老赵、老钱、老孙三人凑钱买来一张彩票,没想到竟中了奖,领来奖金后,他们三人按照3:5:4的比例来分,结果老钱比老赵多分到了2000元,那么老孙分到了( )元。

2、中国古代的黑火药配制中的硝酸钾、硫磺、木炭的比例为15:2:3,今有木炭50千克,要配制黑火药1000千克,还需要木炭( )千克。

3、根据美学的观点及经验法则,一副彩色的作品其红、黄、蓝三原色之配色比例为5:3:8时,其色彩强度达到平衡,可使作品看起来比较柔和,不会有某种颜色特别突兀的感觉,我们都知道,橘色是由红色加黄色而成;紫色是有红色加蓝色而成;绿色是由黄色加蓝色而成。

请问一次法则,橘、紫、绿这三种中间色之配色比例为( )时,其色彩强度可达到平衡。

4、有三批货物共值152万元,第一,第二,第三批货物按重量比为2:4:3,按单价比为6:5:2,这三批货物分别价值( 、 、 )万元。

5、一个容器内注满了水,将大、中、小三个铁球这样操作:第一次次,沉入小球;第二次,取出小球,沉入中球:第三次,取出中球,沉入大球。

已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍,那么大、中、小三种球的体积比为( )。

6、今年儿子的年龄是父亲年龄的四分之一,15年后,儿子的年龄是父亲年龄的十一分之五。

今年儿子( )岁。

7、某校若干名学生参加某电视邀请赛,其中男生人数与女生人数的比为8:5.后来又有20名女生报名赛,这时女生人数占参赛总人数的十一分之五,现在参赛的学生共有( )人。

8、甲、乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有( )。

9、某学校六年级原来有三个班,现在要将三班的同学分插到一班和二班,如果将三班的学生的一半分到一班,另一半分到二班,则两班的人数之比为7:8;如果将三班的学生的八分之五分到一班,另外的分到二班,则新的两班人数相等,那么原来一班、二班和三班的人数之比为( )。

小学奥数系列6-2-4比例应用题专练2及参考答案

小学奥数系列6-2-4比例应用题专练2及参考答案

小学奥数系列6-2-4比例应用题专练2一、比例应用题专练1. 、 、 三个水桶的总容积是 公升,如果 、 两桶装满水, 桶是空的;若将 桶水的全部和 桶水的 ,或将 桶水的全部和 桶水的 倒入 桶, 桶都恰好装满.求 、 、 三个水桶容积各是多少公升?2. 加工某种零件,甲 分钟加工 个,乙 分钟加工 个,丙 分钟加工 个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件?3. 某学校四五六年级共有615名学生,已知六年级学生的 ,等于五年级学生的 ,等于四年级学生的 。

这三个年级各有多少名学生学生?4.一块长方形铁板,宽是长的 .从宽边截去 厘米,长边截去 以后,得到一块正方形铁板.问原来长方形铁板的长是多少厘米?5. 一个正方形的一边减少 ,另一边增加 米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?6. 一把小刀售价 元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是 ;如果小强买了这把小刀,那么两人剩余的钱数之比变为 .小明原来有多少钱?7. 甲、乙两人原有的钱数之比为 ,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为 ,求原来两人的钱数之和为多少?8. 甲本月收入的钱数是乙收入的 ,甲本月支出的钱数是乙支出的 ,甲节余240元,乙节余480元.甲本月收入多少元?9. 一项机械加工作业,用4台A 型机床,5天可以完成;用4台A 型机床和2台B 型机床3天可以完成;用3台B 型机床和9台C 型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A 、C 型机床继续工作,还需要________天可以完成作业.10. 动物园门票大人 元,小孩 元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了 ,儿童增加了 ,共增加了 人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?11. 某水果批发市场存放的苹果与桃子的吨数的比是 ,第一天售出苹果的 ,售出桃子的吨数与所剩桃子的吨数的比是 ;第二天售出苹果 吨,桃子 吨,这样一来,所剩苹果的吨数是所剩桃子吨数的 ,问原有苹果和桃子各有多少吨?12. 有一个长方体,长和宽的比是,宽与高的比是 .表面积为 ,求这个长方体的体积.13. 有一个长方体,长与宽的比是,宽与高的比是 .已知这个长方体的全部棱长之和是 厘米,求这个长方体的体积.14. 某高速公路收费站对于过往车辆收费标准是:大型车 元,中型车 元,小型车 元.一天,通过该收费站的大型车和中型车数量之比是 ,中型车与小型车之比是 ,小型车的通行费总数比大型车多 元.(1) 这天通过收费站的大型车、中型车、小型车各有多少辆?(2) 这天的收费总数是多少元?15. 枚壹分硬币摞在一起与 枚贰分硬币摞在一起一样高, 枚壹分硬币摞在一起与 枚伍分硬币摞在一起一样高.用壹分、贰分、伍分硬币各摞成一个圆柱体,并且三个圆柱体一样高,共用了 枚硬币,问:这些硬币的币值为多少元?16. 某工地用 种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为 ,速度比为 ,运送土方的路程之比为 ,三种车的辆数之比为 .工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到 天后,另一半甲种车才投入工作,一共干了 天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?17. 将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为 .实际上,甲、乙、丙三人所得糖果数的比为 ,其中有一位小朋友比原计划多得了 块糖果.那么这位小朋友是________(填“甲”、“乙”或“丙”),他实际所得的糖果数为________块.18. 有一堆糖果,其中奶糖占45%,再放人16块水果糖后,奶糖就只占25%那么,这堆糖果中有奶糖多少块?19. 今年儿子的年龄是父亲年龄的,年后,儿子的年龄是父亲年龄的.今年儿子多少岁?20. 一个周长是厘米的大长方形,按图⑴与图⑵所示意那样,划分为四个小长方形.在图⑴中小长方形面积的比是,.而在图⑵中相应的比例是, .又知长方形的宽减去的宽所得到的差与的长减去的长所得到差之比为.求大长方形的面积.21. 北京中学生运动会男女运动员比例为,组委会决定增加女子艺术体操项目,这样男女运动员比例变为;后来又决定增加男子象棋项目,男女比例变为,已知男子象棋项目运动员比女子艺术体操运动员多人,则总运动员人数为多少?22. 袋子里红球与白球的数量之比是.放入若干只红球后,红球与白球数量之比变为;再放入若干只白球后,红球与白球数量之比变为.已知放入的红球比白球少只.那么原来袋子里共有________只球.23. 一堆围棋子有黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为;再拿走45枚黑棋子后,黑子与白子的个数比为,求开始时黑棋子与白棋子各有多少枚?24. 有若干个突击队参加某工地会战,已知每个突击队人数相同,而且每个队的女队员的人数是该队的男队员的,以后上级从第一突击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的,问开始共有多少支突击队参加会战?25. 某学校入学考试,参加的男生与女生人数之比是.结果录取91人,其中男生与女生人数之比是.未被录取的学生中,男生与女生人数之比是.问报考的共有多少人?26. 有甲、乙两块含铜率不同的合金,甲块重千克,乙块重千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为________.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。

比例的应用1——小学六年级奥数题

比例的应用1——小学六年级奥数题

比例的应用(1)例1:甲乙两个长方形,它们的周长相等,甲的长与宽之比是3:2,乙的长与宽之比是4:3,那么,甲与乙的面积之比是多少?练习:1、甲乙两人步行的速度比是7:5,甲乙分别由A、B两地同事出发,如果相向而行,0.5小时相遇。

如果他们同时同向而行,那么甲追上乙需要多少小时?2、客车和货车从甲、乙两地同时出发,相向而行,在距中点30千米处相遇。

已知货车与客车的速度比是5:8,求甲、乙两地的距离。

例2:一种大米每千克1.08元,另一种大米每千克1.48元,把这种大米混合后,售价为每千克1.23元,求两种大米混合的重量比?练习:1、用奶糖和水果糖混合在一起酿成一种礼品糖,已知奶糖每千克5.4元,水果糖每千克3元。

现在要想配出的礼品糖每千克为4.8元,那么奶糖和水果糖应该按怎样的比例混合?2、例3:两只蜡烛长度相等,粗蜡烛可以点5小时,细蜡烛可以点4小时,同时点燃一段时间后,粗蜡烛长度是细蜡烛长度的2倍。

此时已经点燃了多少小时?练习:1、有长度相同,粗细不同的两支蜡烛,细蜡烛点完需1小时,粗蜡烛点完需2小时。

有一次停电,将这两支蜡烛同时点燃,来电时,发现粗蜡烛是细蜡烛的2 倍时,问停电多长时间?2、两支粗细,长短都不相同的蜡烛,长的一支能燃4小时,短的一支能燃6小时,将它们同时点燃2小时后,两支蜡烛剩下的长度相等。

求两支蜡烛原来的长度比。

3、两支蜡烛粗细不同,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完要1小时,粗蜡烛点完要2小时,有一次停电,将这两支蜡烛同时点燃,来电时发现两支蜡烛所剩的长度一样。

问:停电多长时间?能力检测:1、甲和乙同时分别从A、B两站相对出发,在离中点 8千米处相遇,已知乙的速度与甲的速度比是3:4,问A、B两站相距多少千米?2、话梅糖每千克5.1元,奶糖每千克8.9元,现把这两种糖混合后,要求混合后的糖价为每千克5.4元,话梅糖和奶糖应用怎样的重量比才合适?3、一个底面直径是24厘米的圆柱形玻璃中装有水,水里放着一个底面直径12厘米,高18厘米的圆锥形铅块,当铅块从水中取出时,杯里的水面会下降多少厘米?4、一个正方体的表面积是54平方厘米,如果以这个正方体一个面的对角线为棱长做一个新的正方体,如图所示。

奥数比例的应用题

奥数比例的应用题

奥数比例的应用题奥数比例的应用题国际数学奥林匹克是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。

下面是小编收集的奥数比例的应用题,希望大家认真阅读!奥数比例的应用题1知识点1.份数思想甲:乙=a:b,可以看成甲为a份,乙为b份。

份数是可以相加减的,如甲、乙的总和为a+b份,甲比乙多a-b份。

2.量份对应如果a份对应的量是x,那么1份对应的量就是x÷a。

而如果1份对应的量是x,那么a份对应的量就是x×a3.统一比(化连比)在两个比中,1份代表的量可能是不同的。

例如甲:乙=2:3,乙:丙=2:5,这里乙在前面的比中代表3份,在后面的比中代表2份,应该取3、2最小公倍数6,两个比分别化为甲:乙=4:6,乙:丙=6:15,这样就统一了两个比,可以写成甲:乙:丙=4:6:15.例题:(1)艾迪和大宽的糖数之比为4:5,艾迪有20块糖,那么大宽有块糖.(2)艾迪和大宽一共有45块糖,而且两人糖数之比为4:5,那么艾迪有块糖,大宽有块糖.(3)艾迪、大宽和薇儿一共有45块糖,而且三人糖数之比为4:5:6,那么艾迪有块糖,大宽有块糖,薇儿有块糖.(4)艾迪、大宽和薇儿三人糖数之比为4:5:6,并且知道薇儿比艾迪多10块糖,那么三人共有块糖.【解析】(1)艾迪4份是20块,因此1份是20÷4=5块,大宽是5份,因此大宽有5×5=25块;(2)艾迪4份,大宽5份,总共9份,对应45块糖,所以1份是45÷9=5块糖,所以艾迪有5×4=20块糖,大宽有5×5=25块糖;(3)一共有4+5+6=15份,对应45块糖,所以1份是45÷15=3块糖,所以艾迪有3×4=12块糖,大宽有3×5=15块糖,薇儿有3×6=18块糖;(4)薇儿比艾迪多6-4=2份,对应10块糖,所以1份是10÷2=5块糖,三人一共有4+5+6=15份,所以共有5×15=75块糖。

六年级奥数题目(比例问题)

六年级奥数题目(比例问题)

六年级奥数题目(比例问题)题目一小明有20个石头,小亮有40个石头。

他们想要按比例分石头,使得小明分到的石头数是小亮的一半。

应该如何分配这些石头呢?题目二一个餐馆制作了30个汉堡,其中10个是鸡肉汉堡,20个是牛肉汉堡。

如果要按照这个比例制作75个汉堡,各类汉堡的数量应该是多少?题目三某公司团队共有30人,其中男性20人,女性10人。

如果要按照这个比例招募50人,预计男性和女性各占多少位?题目四某田径队有60名运动员,其中男队员占总人数的40%。

如果要招募更多的运动员,使得男队员和女队员的比例仍然是2:3,需要招募多少名女队员?题目五小红的体重为40公斤,小明的体重是小红的两倍。

如果要按照这个比例制作一个健康食谱,小红需要摄入多少卡路里才能符合她的比例?题目六某手机厂商在过去两个月中销售了1000台手机,其中200台是红色的,800台是其他颜色的。

如果要按照这个比例销售2000台手机,红色手机的数量应该是多少?题目七一份食谱需要用到250克的面粉和500克的糖。

如果你想制作一份只有一半份量的食谱,你需要准备多少克的面粉和糖?题目八某电视台正在播出一部50集的连续剧,目前已经播出了15集。

如果想知道目前播出了连续剧的百分之多少,你需要进行哪种计算?题目九一个果园有20棵苹果树和30棵梨树。

苹果树和梨树的比例是4:6。

如果想在果园中增加10棵梨树,你需要增加多少棵苹果树?题目十一个化学实验用到100毫升的酒精和200毫升的水。

如果你想制作一半份量的实验液,你需要准备多少毫升的酒精和水?这些比例问题的解答需要根据给出的比例进行计算。

希望以上题目能够帮助你提升比例问题的解答能力。

【精品】比例 (奥数)

【精品】比例 (奥数)

【精品】比例 (奥数)一、比例1.一个零件的高是4mm,在图纸上的高是2cm.这幅图纸的比例尺是()A. 1:5B. 5:1C. 1:2D. 2:1【答案】 B【解析】【解答】解:2cm=20mm,比例尺:20:4=5:1。

故答案为:B。

【分析】把2cm换算成mm,然后写出图上距离与实际距离的比并化成后项是1的比就是这幅图的比例尺。

2.下面各比中,能与:6组成比例的是()A. 2.5:16B. 0.1:C. 3:2.4D. :4【答案】 D【解析】【解答】解:;A、2.5:16=2.5÷16=0.15625,不能组成比例;B、,不能组成比例;C、3:2.4=1.25,不能组成比例;D、,能组成比例。

故答案为:D。

【分析】比例是表示两个比相等的式子,因此比值相等的两个比才能组成比例。

3.下面各比中与:组成比例的比是()。

A. 3:4B. 4:3C. 1:12【答案】 B【解析】【解答】:=÷=,选项A,3:4=3÷4=,≠,不能组成比例;选项B,4:3=4÷3=,=,能组成比例;选项C,1:12=1÷12=,≠,不能组成比例。

故答案为:B.【分析】判断两个比是否能组成比例,可以求出比值,用前项÷后项=比值,如果比值相等,就能组成比例,否则不能组成比例.4.如果5x=8y(x、y≠0),那么________:________=5:8.【答案】 y;x【解析】【解答】如果5x=8y(x、y≠0),那么y:x=5:8。

故答案为:y;x。

【分析】根据比例的性质:在比例里,两外项之积等于两内项之积,将相乘的两个数同时做外项或内项即可解答。

5.一幅地图的比例尺是1:400000,把它改成线段比例尺是________,已知AB两地的实际距离是24千米,在这幅地图上应画________厘米。

【答案】;6【解析】【解答】400000厘米=4千米,图上1厘米代表实际4千米,线段比例尺为:, 24÷4=6(厘米).故答案为:;6.【分析】先把400000厘米化为4千米,比例尺就是图上1厘米表示实际4千米;实际距离×比例尺=图上距离,据此解答.6.在3,15,12,5,9,30,20把可以组成的比例写出两组________、________。

五年级奥数比和比例应用题

五年级奥数比和比例应用题

五年级奥数比和比例应用题五年级奥数比和比例应用题无论是在学校还是在社会中,我们最不陌生的就是试题了,通过试题可以检测参试者所掌握的知识和技能。

那么一般好的试题都具备什么特点呢?下面是店铺为大家整理的五年级奥数比和比例应用题,欢迎阅读与收藏。

五年级奥数比和比例应用题 1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。

现在由三人共同加工,问完成任务时,三人各加工了多少个?错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。

评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。

诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。

但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。

从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。

这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

五年级奥数比和比例应用题 2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。

现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。

人教统编版小学奥数系列6-2-4比例应用题专练1

人教统编版小学奥数系列6-2-4比例应用题专练1

人教统编版小学奥数系列6-2-4比例应用题专练1姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、比例应用题专练1 (共26题;共118分)1. (5分)甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5:4,两地相距540km,求两车各自的速度。

2. (5分)根据要求完成下列问题。

(1)一种消毒水是按药液和纯水的比为1:50的比例配制而成的,请根据这个关系完成下表。

药液/克0158…纯水/克050150350…(2)把表中药液和纯水的质量所对应的点描在下面的方格纸上,再顺次连接。

(3)纯水量与所需药液量成________比例关系。

(4)要配制816克的消毒水,需要药液和纯水各多少克?3. (5分) (2019六下·法库月考) 配制一种药液,药粉和水的质量比是1:40.(1) 400克药粉需加水多少克?(2) 400克水应加药粉多少克?4. (5分) (2019六下·江宁月考) 一块长方形地,量得它的周长是48米,长和宽的比是5:3.这块长方形地的面积是多少平方米?5. (5分)一个平行四边形的面积是8平方厘米,底和高的比是4:2,平行四边形的底边和高各是多少厘米?6. (5分)分配合理吗有两个渔翁在河边钓鱼,其中一个人钓了5条鱼,另一个人钓了4条鱼,他们就生起火准备烤鱼美餐一顿。

这时,有一个过路人走来,请求和他们一起吃烤鱼,两个渔翁欣然同意了。

于是他们三个人就一同吃起美餐来,每个人都吃了3条香喷喷的烤鱼。

吃过鱼以后,路人留下1.8元作为回报,两个渔翁请一位老先生给算一算,看看每个人应该得到多少钱。

老先生说:“这是一道按比例分配的算术题,因为你们两个人中,有一人钓了5条鱼,另外一人钓了4条鱼,所以这1.8元,应该按照5:4来分配。

钓5条鱼的人应该得到 (元),钓4条鱼的人应该得到 (元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数比例应用题
国际数学奥林匹克是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的历史。

下面是小编收集的奥数比例应用题及答案,希望大家认真阅读!
知识点
1.份数思想
甲:乙=a:b,可以看成甲为a份,乙为b份。

份数是可以相加减的,如甲、乙的总和为
a+b份,甲比乙多a-b份。

2.量份对应
如果a份对应的量是x,那么1份对应的量就是x÷a。

而如果1份对应的'量是x,那么a份对应的量就是x×a
3.统一比(化连比)
在两个比中,1份代表的量可能是不同的。

例如甲:乙=2:3,乙:丙=2:5,这里乙在前
面的比中代表3份,在后面的比中代表2份,应该取3、2最小公倍数6,两个比分别化
为甲:乙=4:6,乙:丙=6:15,这样就统一了两个比,可以写成甲:乙:丙=4:6:15.
例题:
(1)艾迪和大宽的糖数之比为4:5,艾迪有20块糖,那
么大宽有块糖.
(2)艾迪和大宽一共有45块糖,而且两人糖数之比为4:5,那么艾迪有块糖,大宽有块糖.
(3)艾迪、大宽和薇儿一共有45块糖,而且三人糖数之比为4:5:6,那么艾迪有
块糖,大宽有块糖,薇儿有块糖.
(4)艾迪、大宽和薇儿三人糖数之比为4:5:6,并且知道薇儿比艾迪多10块糖,那么三
人共有块糖.
(1)艾迪4份是20块,因此1份是20÷4=5块,大宽是5份,因此大宽有5×5=25块;
(2)艾迪4份,大宽5份,总共9份,对应45块糖,所以1份是45÷9=5块糖,所
以艾迪有5×4=20块糖,大宽有5×5=25块糖;
(3)一共有4+5+6=15份,对应45块糖,所以1份是45÷15=3块糖,所以艾迪有3×4=12块糖,大宽有3×5=15块糖,薇儿有3×6=18块糖;
(4)薇儿比艾迪多6-4=2份,对应10块糖,所以1份是10÷2=5块糖,三人一共有4+5+6=15份,所以共有5×15=75块糖。

1、民间常将生姜、红糖用水煎服以防感冒,一般按1:
2:50的质量比煮沸。

贝贝感冒了,妈妈给他一次喝了212克姜汤,那么需要准备生姜和红糖各多少克?(水在煮沸过程中的损失忽略不计)
2、
(1)艾迪和薇儿身上的钱数之比为3:2,妈妈又给艾迪4元钱后,艾迪与薇儿的钱数之比变成8:5,则薇儿身上有多少钱?
(2)艾迪和薇儿原有的积分卡张数之比为8:7,若艾迪给薇儿4张,则两人的张数之比将变成18:17,则艾迪原有多少张?
(3)艾迪和薇儿家里的课外书之比为5:4,大宽问艾迪和薇儿各借了5本课外书后,艾迪和薇儿的课外书之比变成了9:7,则艾迪和薇儿原来的课外书共有多少本?
3、甲乙两人原有的钱数之比为6:5,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为18:11,求原来两人的钱数之和为多少?。

相关文档
最新文档