数学人教版八年级上册三角形中线习题

合集下载

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (81)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (81)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)一、单选题1.如图,在△ABC中,D为AB的中点,CE=3BE,CF=2AF,四边形CEDF的面积为17,则△ABC的面积为()A.22 B.23 C.24 D.25【答案】C【解析】【分析】本题需先分别求出S△BED=13S△CED,S△AFD=12S△CDF,S△ACD=S△BCD,再根据S△CDE+S△CDF=17,列出方程组,解方程组即可求出结果.【详解】连接CD,∵四边形CEDF的面积为17,设S△CED=x,S△CFD=y,∴x+y=17,∴CE=3BE,CF=2AF,∴S△BED=13S△CED=13x,S△AFD=12S△CDF=12y,∵D为AB的中点,∴S△ACD=S△BCD,∴x+13x=y+12y,∴17 4332x yx y==+⎧⎪⎨⎪⎩,解得98xy==⎧⎨⎩,∴S△ABC=S△ACD+S△BCD=43×9+32×8=24.故选C.【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出三角形面积的和.2.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,∠2的度数是()A.20 B.25 C.40 D.70【答案】D【解析】【分析】先根据邻补角定义求出∠COB, 再根据角平分线定义求出∠2=12∠COB,代入求出即可.【详解】解:∵∠1=40°,∴∠COB=180°-40°=140°,∵OD 平分∠COB,∴∠2=12∠COB =12×140° =70°,故选: D.【点睛】本题主要考查角平分线的性质及邻补角的性质.3.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【详解】①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1 个.故选:A.【点睛】本题考查了对三角形的中线、角平分线、高的正确理解,解题的关键是熟练掌握这些性质.4.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∠AD,交BC于F,交AB于G,下列结论:①GA=GP;②当∠CAB=40°,BC∠AD时,∠APB=35°;③BP垂直平分CE;④FP=FC,其中正确的判断有()A.只有①② B.只有③④C.只有①③④D.①②③④【答案】C【解析】【分析】根据题意利用角平分线的性质以及已知条件对①②③④逐一判断即可.【详解】①∵AP平分∠BAC∴∠CAP=∠BAP∵PG∥AD∴∠APG=∠CAP∴∠APG=∠BAP∴GA=GP,故①正确.②∵PA平分∠CAB,PB平分∠CBE,∴∠APB=12∠ACB=45°,故②错误.③∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一),故③正确④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上∴∠DCP=∠BCP又PG∥AD∴∠FPC=∠DCP∴FP=FC,故④正确.故①③④都正确.故选C.【点睛】本题综合性较强,考查了角平分线的性质和定义,平行线的性质,线段的垂直平分线的判定,等腰三角形的性质等,解题的关键是熟练掌握这些性质.5.如图,在Rt∠ABC中,∠ACB=90°,CD与CE分别是斜边AB上的高与中线,以下判断中正确的个数有()①∠DCB=∠A;②∠DCB=∠ACE;③∠ACD=∠BCE;④∠BCE=∠BEC.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据垂直的定义得到∠CDB=90°,根据余角的性质得到∠DCB=∠A,故∠正确;根据直角三角形的性质得到AE=CE=BE,根据等腰三角形的性质得到∠A=∠ACE,于是得到∠DCB=∠ACE,故∠正确;同理得到∠ACD=∠BCE,故∠正确;由于BC不一定等于BE,于是得到∠BCE不一定等于∠BEC,故∠错误.【详解】∠CD∠AB,∠∠BDC=90°,∠∠DCB+B=90°,∠∠A+∠B=90,∠∠DCB=∠A,∠∠正确;∠CE是RtABC斜边AB上的中线,∠EA=EC=EB,∠∠ACE=∠A,∠∠DCB=∠A,∠∠DCB=∠ACE,∠∠正确;∠EC=EB,∠∠B=∠BCE,∠∠A+∠B=90,∠A+∠ACD=90,∠∠B= ∠ACD,∠∠ACD= ∠BCE,∠∠正确;∠BC与BE不一定相等,∠∠BCE 与∠BEC 不一定相等,∴④不正确;∠正确的个数为3个,故答案为C.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.6.如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC =76°,则∠EAD的度数是( )A.19°B.20°C.18°D.28°【答案】A【解析】先根据角平分线的定义求出∠BAD、∠BAE的度数;再根据角的和差关系求解即可.【详解】∵AD是△ABC的角平分线∠BAC=76°,∴∠DAC=∠DAB=38°,∵AE是△ABD的角平分线,∴∠BAE=19°,∴∠EAD=∠BAD-∠BAE=19°.故选A.【点睛】考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.7.三角形的角平分线是( )A.直线B.射线C.线段D.以上均不正确【答案】C【解析】【分析】根据三角形角平分线的定义求解即可.【详解】三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线.【点睛】解答此题的关键是区分三角形的角平分线和角的平分线:一个是线段,一个是射线.8.如图,△ABC的平分线AD与中线BE交于点O,有下列结论:①AO 是△ABE的角平分线;②BO是△ABD的中线,下列说法正确的是( )A.①②都正确B.①不正确,②正确C.①②都不正确D.①正确,②不正确【答案】D【解析】【分析】根据三角形的角平分线的定义,三角形的中线的定义可知.【详解】AD是三角形ABC的角平分线,∴AO是∠BAC的角平分线,∴AO是△ABE的角平分线,故①正确;∵BE是三角形ABC的中线,∴E是AC是中点,而O不一定是AD的中点,故②错误.故选D.【点睛】本题是三角形的角平分线、中线、高,主要考查了学生对角平分线的定义和中线的定义的理解和掌握,理解它们的概念是解题的关键.9.如图,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,当OC的位置发生变化时(不与直线AB重合),那么∠EOF的度数( )A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定【答案】A【解析】【分析】由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【详解】∵OE、OF分别是∠AOC、∠BOC的角平分线,∴∠AOE=∠COE,∠COF =∠BOF,∵∠AOC+∠COB=∠AOE+∠COE+∠COF+∠BOF=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,∴∠EOF=∠COE+∠COF=90°.故选A.【点睛】本题主要考查角平分线的性质和平角的定义,得出2(∠COE+∠COF)=180°是解题的关键.10.下列说法不正确的是()A.三角形的三条角平分线相交于三角形内一点.B.三角形的一条中线把三角形分成面积相等的两个三角形.C.正多边形的每一个外角都相等.D.三角形的三条高都在三角形内部.【答案】D【解析】【分析】利用三角形的中线、角平分线及高的性质和正多边形的外角关系逐一判断后即可确定正确的选项.【详解】A. 三角形的三条角平分线相交于三角形内一点.正确;B. 三角形的一条中线把三角形分成面积相等的两个三角形.正确;C. 正多边形的每一个外角都相等.正确;D. 三角形的三条高不一定在三角形内部,钝角三角形的高在三角形的外部. 此选项错误;故选:D.【点睛】本题考查了三角形的角平分线、中线和高的性质及正多边形的外角,熟练掌握相关性质是解题关键.。

人教版八年级数学上册 11.1.2三角形的高、中线与角平分线 同步训练

人教版八年级数学上册    11.1.2三角形的高、中线与角平分线    同步训练

人教版八年级数学上册11.1.2三角形的高、中线与角平分线同步训练一、选择题(共10小题,3*10=30)1.过△ABC的顶点A,作BC边上的高,以下作法正确的是()2.下列说法中正确的是()A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边3.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG4.若AD是△ABC的中线,下列结论错误的是()A.AB=BC B.BD=DCC.AD平分BC D.BC=2DC5.如图,已知P是△ABC的重心,连接AP并延长交BC于点D,若△ABC的面积为20,则△ADC 的面积为()A.10 B.8 C.6 D.56. 如图,D ,E 分别是△ABC 的边AC ,BC 的中点,那么下列说法中不正确的是( )A .DE 是△BCD 的中线B .BD 是△ABC 的中线C .AD =DC ,BE =ECD .AD =EC ,DC =BE7.如图,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( )A .AB =2BF B .∠ACE =12∠ACB C .AE =BE D .CD ⊥BE8.如图,AD ,BE ,CF 依次是△ABC 的高、中线和角平分线,下列表达式中错误的是( )A .AE =CEB .∠ADC =90°C .∠CAD =∠CBED .∠ACB =2∠ACF9.三角形一边上的中线一定可以把原三角形分成两个( )A .形状相同的三角形B .面积相等的三角形C .直角三角形D .周长相等的三角形10.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E.若∠A =54°,∠B =48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°二.填空题(共8小题,3*8=24)11.如图,线段AD 叫做△ABC 的边BC 上的_______,则∠ADB =∠ADC =________.12. 如图,以CF 为高的三角形是_______________________________.13.如图,在△ABC 中,AD ⊥BC ,垂足为D.若BC =5,AD =2,则△ABC 的面积为________.14.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB =2________,BD =________,AE =12________.15.如图②,AE 平分∠BAC ,交BC 于点E.若∠BAE =50°,则∠CAE =________,∠CAB =________.16.如图,AD ⊥BC 于点D ,那么图中以AD 为高的三角形有________个.17.如图,在△ABC 中,∠1=∠2,点G 为AD 的中点,延长BG 交AC 于点E ,F 为AB 上一点,且CF⊥AD于点H,下列说法正确的有________个.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高.18.如图,在△ABC中,CD是△ABC的角平分线,DE∥BC,交AC于点E,若∠ACB=60°,则∠EDC=__________.三.解答题(共7小题,46分)19.(6分) 在△ABC中,∠ACB是钝角,AD是BC边上的高.若AD=2,BD=3,CD=1,求△ABC 的面积.20.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高.(2)若△ABD的面积为6,且BD边上的高为3,求BC的长21.(6分) 如图,已知△ABC.(1)画中线AD;(2)画△ABD的高BE及△ACD的高CF.22.(6分) 如图,AD是∠CAB的平分线,DE∥AB,DF∥AC,EF交AD于点O. DO是∠EDF的平分线吗?如果是,请给予证明;如果不是,请说明理由.23.(6分)如图,D是△ABC中BC边上一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.24.(8分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8 cm2,求阴影部分的面积S阴影.25.(8分) 在等腰三角形ABC中,一腰AC上的中线BD将该三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边长.参考答案1-5ACBAA 6-10DCCBC11. 高,90°12. △ABC,△BCF和△AFC13. 514. AF(BF),CD,AC15. 50°,100°16. 617. 118. 30°19. 解:∵BD=3,CD=1,∴BC=3-1=2.∴S△ABC=12BC·AD=12×2×2=2.20. 解:(1)如图所示.AM为△ABD的边BD上的高.(2)∵AD是△ABC的边BC上的中线,△ABD的面积为6,∴△ABC的面积为12.∵BD边上的高AM为3,∴BC=12×2÷3=8.21. 解:(1)中线AD如图.(2)△ABD的高BE及△ACD的高CF如图.22. 解:DO是∠EDF的平分线.证明:∵AD是∠CAB的平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA.∴DO是∠EDF的平分线.23. 解:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD,∴AD是△ABC的角平分线.24. 解:∵D是边BC的中点,∴S△ABD=S△ACD=12S△ABC=12×8=4(cm2),∵E是AD的中点,∴S△BDE=12S△ABD=2 cm2,S△CDE=12S△ACD=2 cm2,∴S△BEC=S△BDE+S△CDE=4 cm2,又∵F 是CE 的中点,∴S 阴影=12S △BEC =2 cm 2 25. 解:设腰长为x cm.①当腰长与腰长的一半是9 cm 时,x +12x =9, 解得x =6.∴底边长为15-12×6=12(cm). ∵6+6=12,∴6 cm ,6 cm ,12 cm 不能组成三角形.②当腰长与腰长的一半是15 cm 时,x +12x =15, 解得x =10.∴底边长为9-12×10=4(cm). ∵10+4>10,∴10 cm ,10 cm ,4cm 能组成三角形. 综上所述,三角形的腰长为10 cm ,底边长为4 cm.。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (19)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (19)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图,已知ABC 的面积是24,点D 是BC 的中点,:1:2AE EC =,则CDE △的面积是_____【答案】8.【解析】【分析】先根据三角形中线分得的两部分三角形面积相等得出CDA ∆的面积,再根据等高的三角形面积之比等于底边之比即可得出CDE △面积.【详解】∵ABC ∆的面积是24,点D 是BC 的中点 ∴1122CDA ABC S S ∆∆== ∵:1:2AE EC =∴:3:2AC EC =∵当CDE ∆与CDA ∆分别以EC 和AC 为底边时同高∴:3:2CDA CDE S S ∆∆=∴8CDE S ∆=故答案为:8.【点睛】本题考查与中线有关的三角形面积问题,抓住等高三角形面积之比等于底边之比是解题关键.82.在ABC 中,AD 是BC 边上的中线,已知7AB cm =,5AC cm =.则ABD △与ACD 的周长差为____.【答案】2cm【解析】【分析】先根据三角形中线定义得到BD =CD ,然后根据三角形周长定义求△ABD 与△ACD 的周长差即可.【详解】∵AD 是BC 边上的中线,∴BD =CD ,∴△ABD 和△ACD 的周长差=AB +AD +BD ﹣AC ﹣AD ﹣CD =AB ﹣AC =7﹣5=2(cm ).故答案为:2cm .【点睛】本题考查了三角形的角平分线、中线和高.掌握三角形中线的定义是解答本题的关键.83.在ABC 中,14AB =,12AC =,AD 为中线,则ABD △与ACD 的周长之差________.【答案】2【解析】【分析】根据三角形中线的概念得到BD=DC ,△ABD 的周长等于AB+AD+BD ,△ACD 的周长等于AD+DC+AC ,把两个周长作差即可得出结果.【详解】解:如图所示∵AD 是△ABC 的中线∴BD=DC∵ABD CAB AD BD =++,ADC C AC AD DC =++ ∴14122ABD ADC C C AB AC -=-=-=故答案为:2.【点睛】本题主要考查的是三角形的中线性质,掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线是解题的关键.84.(1)如图,在ABC 中,,,D E F 分别为,,BC AD CE 的中点,且24ABC S cm =,则S =阴影______2cm .(2)如图,在ABC 中,AD 为中线,DE AC ⊥于点E ,DF AB ⊥于点F ,AB=6,AC=8,DF=3,则DE =________.【答案】194【解析】【分析】 (1)根据三角形的面积公式,知△BCE 的面积是△ABC 的面积的一半,进一步求得阴影部分的面积是△BEC 的面积的一半;(2)根据中线的性质得到△ABD 和△ADC 的面积相等,然后根据三角形面积公式列方程计算即可.【详解】(1)∵点E 是AD 的中点,∴△BDE 的面积是△ABD 的面积的一半,△CDE 的面积是△ACD 的面积的一半.则△BCE 的面积是△ABC 的面积的一半,即为2cm 2.∵点F 是CE 的中点,∴阴影部分的面积是△BCE 的面积的一半,即为1cm 2.(2)∵AD 是中线,∴ABD ACD S S ∆∆=, ∴12AB •DF =12AC •DE , ∴AB •DF =AC •DE ,∴6×3=8×DE ,∴DE =94. 故答案为:1,94. 【点睛】本题考查了三角形中线的性质和三角形的面积公式,掌握三角形的中线把三角形的面积分成相等的两部分的性质是解答本题的关键.85.如图,在ABC ∆的中线AD 、CE 相交于点F ,若四边形BDFE 的面积是2,则ACF ∆的面积是__________.【答案】2【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可得出结论【详解】解: ∵AD 和CE 是△ABC 的两条中线,12∴====ABD ACD BCE ACE ABC S S S S S ∴=ABD ACE S S 四边形BD +=ABD AFE FE S SS +=AEC AFE AFC SS S 2四边形BD ==AFC FE S S故答案为:2【点睛】本题主要考查了三角形的面积,解题的关键是利用三角形中线的性质找出三角形面积关系.86.如图,已知D E 、分别为ABC 的边AC BC 、的中点,AF 为ABD △的中线,连接EF ,若四边形AFEC 的面积为10,则ABC 的面积为______.【答案】16【解析】【分析】连接DE ,设DEF S x ∆=,根据等底同高的三角形的面积相等即可得到结论. 【详解】解:连接DE ,设DEF S x ∆=,∵D 、E 分别为△ABC 的边AC 、BC 的中点,AF 为△ABD 的中线, ∴BEF DEF S S x ∆∆==,∴BDE DEF S 2S 2x ∆∆==,∴CDE BDE S S 2x ∆∆==,∴ABD BCD S S 4x ∆∆==,∴ADF S 2x ∆=,∴四边形AFEC 的面积=2x+3x=5x=10,∴x=2,∴△ABC 的面积为:8x=16,故答案为:16.【点睛】本题主要考查了三角形的中线与三角形的面积,掌握三角形的中线平分三角形的面积是解题的关键.87.如果一个梯形的上底长为a ,下底长为b (a<b ),那么它的一条对角线把它分成的两部分的面积比为__________.【答案】a :b【解析】【分析】根据三角形面积公式求解即可.【详解】设梯形的高为h 一部分的面积12ah = 另一部分的面积12bh = ∴它的一条对角线把它分成的两部分的面积比为a :b故答案为:a :b .【点睛】本题考查了梯形的面积问题,掌握三角形面积公式是解题的关键.88.如图,ABC 中,D 为BC 上一点,且212ABC S cm =△,12BD BC =,则BC 边上的中线为________,ABD S =△_______2cm .【答案】AD 6【解析】【分析】根据三角形的中线的定义和性质,即可求解.【详解】∵ABC 中,D 为BC 上一点,12BD BC =, ∴点D 是BC 的中点,即:AD 是BC 边上的中线,∵∆ABD 与∆ABC 的高相同,12BD BC =, ∴ABD S =△122211262ABC S cm cm ⨯==△. 故答案是:AD ;6.89.如图,ABC ∆的面积是10,D 是AB 边上任意一点,E 是CD 中点,F 是BE 中点,ABF ∆的面积是__________.【答案】2.5【解析】【分析】连接AE ,根据中点平分三角形的面积即可求出ABF ∆的面积.【详解】连接AE∵E 是CD 中点 ∴1122ADE ACD BDE BCD S S S S ==△△△△, ∴1115222ADE BDE ACD BCD ABC S S S S S +=+==△△△△△ ∴5ABE S =△∵F 是BE 中点 ∴1 2.52ABF ABE S S ==△△ 故答案为:2.5.【点睛】本题考查了三角形的面积问题,掌握中点平分三角形的面积是解题的关键.90.如图,已知ABC 的面积是60,若CD BE 、分别是ABC 的边AB AC 、上的中线,则四边形ADOE 的面积为___________.【答案】20【解析】【分析】根据三角形的中线能把三角形的面积平分,设BOD OEC ∆∆、的面积分别为x 、y ,列二元一次方程即可.【详解】连接OA ,设BOD OEC ∆∆、的面积分别为x 、y.∵CD BE 、分别是ABC ∆的边AB AC 、上的中线,∴30,30S ABE S BEC S ADC S BDC ∆∆∆∆====且=S AOD=x S BOD OEC S AOE y ∆∆∆∆==、S故可列方程230230x y x y +=⎧⎨+=⎩,解得10x y ==, ∴四边形ADOE 的面积为x+y=20, 故答案为:20.【点睛】此题考查三角形的中线,解题关键在于建立相应的二元一次方程组.。

人教版数学八年级上册 三角形的高、中线、角平分线 专题训练

人教版数学八年级上册  三角形的高、中线、角平分线   专题训练

∵AD⊥BC,∴∠ADE=90°. ∴∠B+∠BAD=90°. ∴∠BAD=90°-∠B. ∴∠DAE=∠BAE-∠BAD=90°-12(∠B+∠C)-(90°-∠B) =12(∠B-∠C). ∵∠B-∠C=40°,∴∠DAE=12×40°=20°.
16.如图,AE,AD 分别是△ABC 的高和角平分线,且∠B=36°, ∠C=75°.求∠DAE 的度数.
9.如图,在△ABC 中,AB=AC,DE⊥AB,DF⊥AC,BG⊥ AC,垂足分别为点 E,F,G.求证 DE+DF=BG. 证明:连接 AD. ∵S△ABC=S△ABD+S△ADC, ∴12AC·BG=12AB·DE+12AC·DF. 又∵AB=AC,∴DE+DF=BG.
10.如图,△ABC 的三边的中线 AD,BE,CF 的公共点为 G,
(1)求△ABC 的面积及 AC 边上的高 BE 的长;
解:S△ABC=12BC·AD=12×4×4=8. ∵S△ABC=12AC·BE=12×5×BE=8,∴BE=156.
(2)求 AD∶BE 的值. 解:AD∶BE=4∶156=54
8. 如图,已知△ABC. (1)画出 BC 边上的高 AD 和中线 AE;
解:在△ABC 中,∠BAC=180°-∠B-∠C=180°-36°-75° =69°. ∵AE,AD 分别是△ABC 的高和角平分线, ∴∠AED=90°,∠BAD=∠CAD=12∠BAC=34.5°.
∵∠ADE 是△ABD 的外角, ∴∠ADE=∠B+∠BAD=36°+34.5°=70.5°. 在 Rt△ADE 中,∠DAE=90°-∠ADE=19.5°.
(3)若 BN⊥AD 交 AD 的延长线于 N,求证 BN=CM.
证明:由题意知 S△ABD=S△ACD=12S△ABC. ∵S△ABD=12AD·BN,S△ACD=12AD·CM, ∴12AD·BN=12AD·CM. ∴BN=CM.

人教版八年级上册数学三角形的高、中线与角平分线练习题

人教版八年级上册数学三角形的高、中线与角平分线练习题

人教版八年级上册数学三角形的高、中线与角平分线练习题一、选择题1.下列图形中三角形的个数是()A.4个 B.6个 C.9个 D.10个2.下列长度的三条线段,能组成三角形的是( )A.1cm,2 cm,3cm B.2cm,3 cm,6 cmC.4cm,6 cm,8cm D.5cm,6 cm,12cm3.已知三条线段的比是:①1:3:4;②1:4:6;③3:3:6;④6:6:10;⑤3:4:5.其中可构成三角形的有( )A.1个B.2个C.3个 C.4个4.(2012浙江义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是【】A.2 B.3 C.4 D.85.已知等腰三角形的周长为24,一边长是4,则另一边长是()A. 16B.10C. 10或16D. 无法确定6.(2013•海南)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<37.可以把一个三角形分成面积相等的两部分的线段是()A.三角形的高 B.三角形的角平分线C.三角形的中线D.无法确定8.在三角形中,交点一定在三角形内部的有()①三角形的三条高线②三角形的三条中线③三角形的三条角平分线④三角形的外角平分线.A.①②③④ B.①②③ C.①④ D.②③9如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C.钝角三角形D.不能确定10.下图中,正确画出△ABC的 AC边上的高的是()A B C D二、填空题A1.如图,图中有个三角形,它们分别E是 . G FC2.△ABC的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 ,则a= cm , b= cm , c= cm.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.如图,在△ABC中,BC边上的高是,在△AEC中,AE边上的高是,EC边上的高是 .EFD CBA5.AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD•与△ACD的周长之差为 .三、解答题1.已知三角形三边的比是3:4:5,且最大边长与最小边长的差是4,求这个三角形的三边的长.2.已知等腰三角形两边长分别为a和b,且满足︱a-1︱+(2a+3b-11)2=0,求这个等腰三角形的周长.3.如图,在⊿ABC中, BC边上有n个点(包括B,C两点),则图中共有个三角形.4.如图,已知:在三角形ABC 中,∠C=90º,CD 是斜边AB 上的高,AB=5,BC=4,AC=3,求高CD 的长度.5.在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.能力提升1.若a 、b 、c 是△ABC 的三边,请化简|a-b-c|+|b-c-a|+|c-a-b|.1.如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2FEC A2.如图,在ABC ∆中,2,3AC cm BC cm ==,ABC ∆的高AD 与BE 的比是多少?(友情提示:利用三角形的面积公式)B C AD E。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (41)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (41)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)一、单选题1.如图,小聪把一块含有30°角的直角三角尺ABC的两个顶点A,C放在长方形纸片DEFG的对边上,若AC平分∠BAE,则∠DAB的度数是()A.100°B.150°C.130°D.120°【答案】D【解析】【分析】利用角平分线定义求得∠BAC=∠CAE=30°,再利用平角定义即可解答.【详解】∵AC平分∠BAE∴∠BAC=∠CAE=30°∵∠DAB+∠BAC+∠CAE=180°∴∠DAB=120°故选D【点睛】本题考查了角平分线的定义以及平角的定义,熟练掌握相关定理是解题关键.2.如图,32ABC ︒∠=,50CBD ︒∠=,BE 平分ABD ∠,则CBE ∠的度数为( )A .8︒B .18︒C .9︒D .10︒【答案】C【解析】【分析】 根据题意,由角度相加,得到∠ABD 的度数,由角平分线性质,得到∠ABE 的度数,然后求出∠CBE.【详解】解:∵32ABC ︒∠=,50CBD ︒∠=,∴∠ABD=82°,∵BE 平分ABD ∠,∴∠ABE=41°,∴∠CBE=41329︒-︒=︒;故选择:C.【点睛】本题考查了角平分线的性质,解题的关键是正确的进行角度的运算.3.下面四个图形中,线段BD 是△ABC 的高的是( )A.B.C.D.【答案】A【解析】【分析】根据三角形高线的定义进行判断.【详解】解:线段BD是△ABC的高,则过点B作对边AC的垂线,垂线段BD为△ABC 的高.故选:A.【点睛】本题考查了三角形高线的定义:三角形有三条高线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.4.如图,已知CD是△ABC的中线,E为CD的中点,若△ABC的面积为1,则△ACE的面积为()A.12B.13C.14D.15【答案】C【分析】根据中线平分三角形的面积,CD为△ABC的中线,E是CD的中点,△ABC 的面积为1,即可求出△ACE的面积.【详解】解:∵CD为△ABC的中线,△ABC的面积为1,∴△ADC的面积为12,∵E是CD的中点,∴△ACE的面积为14,故选C.【点睛】本题考查三角形中线平分三角形的面积,熟练掌握三角形中线平分三角形的面积是解决本题的关键.5.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上取一点F,使得OF=12AF若S△ABC =12,则四边形OCDF的面积为()A.2 B.83C.3 D.103【答案】B 【解析】重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心, ∴13AOC S =ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S+DOF S =83. 故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.6.如图,在Rt △ABC 中,∠C =90°,以原点A 为圆心,适当的长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点E ,作射线AE 交BC 于点D ,若BD =5,AB =15,△ABD 的面积30,则AC +CD 的值是( )A .16B .14C .12D .【答案】A【分析】过D点作DF⊥AB,垂足为F,利用三角形ABD的面积,求出CD=DF=4,得到BC=9,再利用勾股定理求出AC,最后即可得答案【详解】过D点作DF⊥AB,垂足为F∵S△ABD=30∴12AB·DF=30∴DF=4根据作图得到AD是∠CAB的角平分线∴CD=DF=4∵BD=5∴BC=5+4=9在Rt△ABC中,12=∴AC+CD=12+4=16故选A【点睛】本题主要考查角平分线性质与勾股定理,解题关键在于能够做出正确辅助线7.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且S△ABC=4,则S△BEF的等于()A.12B.1 C.2 D.3【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形可得S△ABD=12S△ABC,S△ACD=12S△ABC,S△BDE=12S△ABD,S△CDE=12S△ACD,然后求出S△BCE=12S△ABC,再根据S△BEF=12S△BCE列式求解即可.【详解】解:∵点D是BC的中点,∴S△ABD=12S△ABC,S△ACD=12S△ABC,∵点E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△BCE=S△BDE+S△CDE=12(S△ABD+S△ACD)=12S△ABC,∵点F是CE的中点,∴S △BEF =12S △BCE =12×12S △ABC =12×12×4=1. 故选:B .【点睛】本题考查了三角形中线的性质,熟知三角形的中线把三角形分成两个面积相等的三角形是解题关键.8.在△ABC 中,D 是BC 延长线上一点,且BC =m •BD ,过D 点作直线AB ,AC 的垂线,垂足分别为E 、F ,若AB =n •AC .则DE DF =( ) A .1(1)n m + B .1m(1n)- C .1(1)n m - D .1(1)n m - 【答案】C【解析】【分析】连接AD ,根据BC =m •BD ,得到CD =(1﹣m )BD ,根据同高的三角形,底之比等于面积之比得到S △ACD =(1﹣m )S △ABD ,根据三角形的面积公式得到()111,22AC DF m AB DE ⋅⋅=-⋅⋅把AB =n •AC ,代入即可求解. 【详解】解:连接AD ,∵BC =m •BD ,∴CD =(1﹣m )BD∴S △ACD =(1﹣m )S △ABD ,又∵11,,22ABD ACD S S AB DE AC DF =⋅⋅=⋅⋅ ∴()111,22AC DF m AB DE ⋅⋅=-⋅⋅ ∵AB =n •AC ,∴AC •DF =(1﹣m )n •AC •DE∴DF =(1﹣m )n •DE∴1.(1)n DE DF m =- 故选C .【点睛】考查三角形的面积公式,掌握同高的三角形,底之比等于面积之比是解题的关键.9.如图,已知点O 在直线AB 上,90COE ︒∠=,OD 平分AOE ∠,25COD ︒∠=,则BOD ∠的度数为( )A.65︒B.100︒C.115︒D.130︒【答案】C【解析】【分析】先根据∠COE=90°,∠COD=25°,求得∠DOE=90°-25°=65°,再根据OD平分∠AOE,得出∠AOD=∠DOE=65°,最后得出∠BOD=180°-∠AOD=115°.【详解】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°-25°=65°,∵OD平分∠AOE,∴∠AOD=∠DOE=65°,∴∠BOD=180°-∠AOD=115°,故选:C.【点睛】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD的度数,再根据邻补角进行计算.10.下列说法错误的是()A.三角形三条高交于三角形内一点B.三角形三条中线交于三角形内一点C.三角形三条角平分线交于三角形内一点 D.三角形的中线、角平分线、高都是线段【答案】A【解析】【分析】根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【详解】A. 三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项符合题意;B. 三角形的三条中线交于三角形内一点,故本选项不符合;C. 三角形的三条角平分线交于一点,是三角形的内心,故本选项不符合;D. 三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项不符合;故选:A.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握各性质定义.。

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题(解析版)

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题(解析版)

人教版八年级数学上11.1.2三角形的高、中线、角平分线同步练习题一.选择题1、下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.答案:D分析:本题考查了三角形的高线.解答:△ABC中AC边上的高是过点B且垂直于AC边(或AC边延长线)的线段,只有D 选项正确.选D.2、下列说法正确的是()A. 三角形三条高都在三角形内B. 三角形三条中线相交于一点C. 三角形的三条角平分线可能在三角形内,也可能在三角形外D. 三角形的角平分线是射线答案:B分析:本题考查了三角形的高线、中线、角平分线.解答:∵钝角三角形的三条高有2条在三角形的外部,∴A错误;∵三角形三条中线相交于一点,∴B正确;∵三角形的三条角平分线都在在三角形内,∴C错误;∵三角形的角平分线、高、中线都是线段,∴D错误;选:B.3、如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A. DE是△BCD的中线B. BD是△ABC的中线C. AD=DC,BE=ECD. AD=EC,DC=BE答案:D分析:本题考查了三角形的中线.解答:∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.4、三角形一边上的中线把原三角形一定分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形答案:B分析:本题考查了三角形的中线.解答:三角形一边上的中线把原三角形一定分成两个面积相等的三角形.选B.5、如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD 的度数是()A. 20°B. 30°C. 45°D. 60°答案:A分析:本题考查了三角形的角平分线.解答:∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=12∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=12∠BAD=20°.选A.6、在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;①∠ABE=∠CBE;①BD=DC;①AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③答案:D分析:本题考查了三角形的中线、角平分线.解答:如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是①①.选D.7、三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能答案:B分析:本题考查了三角形的高线.解答:由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.8、如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;①BO 是△ABD的中线;①DE是△ADC的中线;①ED是△EBC的角平分线.4个结论中正确的有()A. 1个B. 2个C. 3个D. 4个答案:B分析:本题考查了三角形的高线、中线、角平分线.解答:(1)∵AD是△ABC的角平分线,可得∠BAO=∠CAO,∴①“AO是△ABE的角平分线”这种说法是正确的;(2)由BE是△ABC的中线可得AE=CE,但不能确定AO=DO,∴①“BO是△ABD的中线”这种说法是错误的;(3)由BE是△ABC的中线可得AE=CE,∴①“DE是△ADC的中线”这种说法是正确的;(4)∵由题中条件不能得到∠ADE=∠CDE,∴①“ED是△EBC的角平分线”这种说法是错误的;即上述说法中正确的个数为:2.二、填空题9、如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:①点A与点B的距离是线段AB的长;①点A到直线CD的距离是线段AD的长;①线段CD是△ABC边AB上的高;①线段CD是△BCD边BD上的高.上述说法中,正确的个数为______个答案:4分析:本题考查了三角形的高线、点到直线的距离.解答:(1)根据“连接两点的线段的长度叫做两点间的距离”可知:①中的说法是正确的;(2)根据“直线为一点到直线的垂线段的长度叫做这点到直线的距离”可知:①中的说法正确;(3)根据三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:①中的说法正确;(4)根据三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:①中的说法正确;即上述说法中正确的个数为4.10、如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是______cm.答案:6分析:由三角形一边上的中线把三角形分成的两个新三角形的周长差等于原三角形中另外两边的差.解答:∵CD是△ABC的中线,∴AD=BD.∵C△ACD=AC+AD+CD,C△BCD=BC+BD+CD,∴C△ACD-C△BCD=(AC+AD+CD-(BC+BD+CD)=AC+AD+CD-BC-BD-CD=AC-BC=9-3=6(cm).11、已知,AD是△ABC的一条高,如果∠BAD=65°,∠CAD=30°,则∠BAC=______.答案:95°或35°.分析:本题考查了三角形的高线.解答:三角形的高可能在三角形内部,也可能在三角形的外部,要分两种情况讨论:①当AD 在三角形的内部时,∠BAC=∠BAD+∠CAD=65°+30°=95°; 当AD在三角形的外部时,∠BAC=∠BAD-∠CAD=65°-30°=35°.12、如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有______个直角三角形.答案:3分析:本题考查了直角三角形的判定.解答:∵在△ABC中,AC⊥BC,CD⊥AB,∴∠ACB=∠ADC=∠BDC=90°,∴△ABC、△ADC、△BDC都是直角三角形.即图中共有3个直角三角形.13、如图,在△ABC中,BD是角平分线,BE是中线,若AC=24cm,则AE=______cm,若∠ABC=72°,则∠ABD=______度.答案:12 36分析:本题考查了三角形的角平分线、中线.解答:∵在△ABC中,BD是角平分线,BE是中线,∴AE=12AC=12(cm),∠ABD=12∠ABC=36°.14、如图所示.在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8cm2,则S阴影等于______cm2.答案:1分析:根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.解答:解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.三、解答题15、如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.答案:见解答.分析:由DE∥AC交AB于点E可得∠CAD=∠EDA,结合∠EDA=∠EAD,可得∠CAD=∠EAD,即可得到结论.解答:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD.∴AD是△ABC的角平分线.16、如图,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,BE的长为多少?答案:9分析:由已知易得:S△ABC=12AC⋅BE=12BC⋅AD,代入BC=12,AC=8,AD=6即可解得BE的长.解答:∵在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,∴S△ABC=12BC⋅AD=11262⨯⨯=36,又∵S△ABC=12 AC·BE,∴12×8×BE=36,解得:BE=9.17、如图,在3×2的正方形网格中,小正方形的边长为1,以图中A,B,C,D,E中的三点为顶点的三角形中,面积为1的三角形有哪些?答案:△ABC,△ADE,△BCE,△ACD.分析:根据不在同一直线上的三个点可构成一个三角形分析可知,以A、B、C、D、E中的三点为顶点的三角形共有9个,再根据题目中的已知条件计算每个三角形的面积可得答案.解答:以A、B、C、D、E中的三点为顶点的三角形有:△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,△BCD,△BCE,△BDE,共9个;再根据小正方形的边长为1,计算可得其中面积为1的三角形有:△ABC,△ADE,△BCE,△ACD.18、如图,已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,求AC的长.答案:3cm分析:由AD是△ABC的中线可得CD=BD,从而可得C△ABD-C△ACD=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,由AB=5,可解得AC=3(cm).解答:∵AD为△ABC的中线,∴BD=CD.∵△ACD的周长比△ABD的周长少2cm,∴(AB+BD+AD)-(AC+AD+CD)=AB-AC=2cm,∴AC=AB-2=5-2=3(cm).19、张大爷的四个儿子都长大成人了,也该分家了,于是张大爷准备把如图所示的一块三角形的田地平均分给四个儿子,四个儿子要求田地的形状仍然是三角形,请你帮助张大爷提出一种平分的方案.答案:见解答.分析:此题答案不唯一,(1)可根据等底、等高的三角形面积相等,把其中一边均分成4份,连接分点和对角的顶点即可;(2)根据三角形一边的中线把三角形分成面积相等的两个三角形,作一边上的中线,再作由这条中线分成的两个三角形的中线即可.解答:答案不唯一,第一种方案:如图1,四等分一条边构成的四个三角形;第二种方案:如图2,作△ABC的一条中线,再作由中线分出的两个三角形的中线就可分成四个面积相等的三角形.20、如图,AD是∠CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.答案:是,理由见解答分析:由DE∥AB,DF∥AC,可得∠EDA=∠DAF,∠FDA=∠EAD,再结合∠EAD=∠F AD,就可得∠EDA=∠FDA,从而得到DO平分∠EDF.解答:DO是∠EDF的角平分线,理由如下:∵AD是∠CAB的角平分线,∴∠EAD=∠F AD.∵DE∥AB,DF∥AC,∴∠EDA=∠F AD,∠FDA=∠EAD.∴∠EDA=∠FDA,∴DO是∠EDF的角平分线.。

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项都含有三角形故利用了三角形的稳定性;而B选项中用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图人字梯中间设计一“拉杆” 在使用梯子时固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定那么三角形的形状和大小就完全确定了三角形的这个特征叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性即可求解.【详解】解:自行车的主框架采用了三角形结构这样设计的依据是三角形具有稳定性故答案为:稳定性.【点睛】本题考查的是三角形的性质掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边能构成三角形的是().A.123B.345C.4511D.633【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3不符合题意;B、3+4>5符合题意;C、4+5<11不符合题意;D、3+3=6不符合题意;故选B.【点睛】本题考查构成三角形的条件熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.348B.5611C.5610D.1073【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.解:A、3+4<8不符合三角形三边关系故不能构成三角形;B、5+6=11不符合三角形三边关系故不能构成三角形;C、5+6>10符合三角形三边关系故能构成三角形;D、3+7=10不符合三角形三边关系故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中三条边长分别为3和6第三边长为奇数那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6所以6-3<第三边<6+3所以3<第三边<9因为第三边长为奇数∴第三边的长为5或7故选:A.【点睛】本题考查了三角形的三边关系掌握三角形任意两边之和大于第三边任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3x14若x为正整数则这样的三角形个数为()A.4B.5C.6D.7【解析】【分析】直接根据三角形的三边关系求出x的取值范围进而可得出结论.【详解】解:三角形三边长分别为3x14x<<.x143143∴-<<+即1117x为正整数12x=13141516即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系熟知三角形两边之和大于第三边两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知只有选项B中的线段BD是∴ABC的高故选:B.【点睛】考查了三角形的高的概念掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图 CD ∴AB 于点D 已知∴ABC 是钝角 则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线∴A 错误 不符合题意;∴ 线段CD 是ABC 的AB 边上的高线∴B 正确 符合题意;∴ 线段AD 是ACD 的CD 边上的高线∴C 错误 不符合题意;∴线段AD 是ACD 的CD 边上的高线∴D 错误 不符合题意;故选B .【点睛】本题考查了三角形高线的理解 熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图 在直角三角形ABC 中 90ACB ∠=︒ AC =3BC =4 AB =5则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中 90ACB ∠=︒ ∴1122AC BC AB CD ⨯=⨯ ∴AC =3 BC =4 AB =5 ∴1134522CD ⨯⨯=⨯⨯ ∴CD =125故答案为:125. 【点睛】本题考查求直角三角形斜边上的高 用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图 点A 、点B 是直线l 上两点 10AB = 点M 在直线l 外 6MB = 8MA = 90AMB ∠=︒ 若点P 为直线l 上一动点 连接MP 则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时 MP 有最小值 再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时 MP 有最小值10AB = 6MB = 8MA = 90AMB ∠=︒AB MP AM BM ∴⋅=⋅即1068MP =⨯解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短 三角形的面积 找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图 已知BD 是∴ABC 的中线 AB =5 BC =3 且∴ABD 的周长为12 则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD = 再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线 即点D 是线段AC 的中点AD CD ∴=5AB = ABD △的周长为1212AB BD AD ∴++= 即512BD AD ++=解得:7BD AD +=7BD CD ∴+=则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点 掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中 BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm AB 与AC 的和为11cm 则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD = 然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差 然后代入数据计算即可得解.【详解】如图1 图2∴AD 是BC 边上的中线∴BD CD =∴中线AD 将ABC 分成的两个新三角形的周长差为5cm∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=∴5AB AC -=或者5AC AB -=∴AB 与AC 的和为11cm∴11AB AC +=∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图D E分别是∴ABC边AB BC上的点AD=2BD BE=CE设∴ADF的面积为S1∴FCE的面积为S2若S△ABC=16则S1-S2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD所以求出三角形ABE的面积和三角形BCD的面积即可因为AD=2BD BE=CE且S△ABC=16就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE∴BE=12BC∴S△ABC=16∴S△ABE=12S△ABC=8.∴AD=2BD S△ABC=16∴S△BCD=13S△ABC=163∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=8 3故答案为83.【点睛】本题考查三角形的面积关键知道当高相等时面积等于底边的比据此可求出三角形的面积然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图AD 是∴ABC 的中线BE 是∴ABD 的中线EF ⊥BC 于点F.若24ABCS=BD =4则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC S △BDE =12S △ABD ;所以S △BDE =14S △ABC 再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线 S △ABC =24∴S △ABD =12S △ABC =12同理 BE 是∴ABD 的中线 612BDE ABD SS ==∴S △BDE =12BD •EF∴12BD •EF =6 即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积 三角形的中线特点 理解三角形高的定义 根据三角形的面积公式求解 是解题的关键.考点五 三角形的角平分线例题:(2022·全国·八年级)如图 在ABC 中 90CAB ∠=︒ AD 是高 CF 是中线 BE 是角平分线 BE 交AD 于G 交CF 于H 下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90° AD是高可得∴AEG=90°−∴ABE∴DGB=90°−∴DBG又因为BE是角平分线可得∴ABE=∴DBE故能得到∴AEG=∴DGB再根据对顶角相等即可求证该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴EAG+∴DAB=90° ∴DBA+∴DAB=90° 可得∴EAG=∴DBA因为∴DBA=2∴EBC故能得到该说法正确;④根据中线平分面积可得该说法正确.【详解】解:①∴∴CAB=90° AD是高∴∴AEG=90°−∴ABE∴DGB=90°−∴DBG∴BE是角平分线∴∴ABE=∴DBE∴∴AEG=∴DGB∴∴DGB=∴AGE∴∴AEG=∴AGE故该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴∴EAG+∴DAB=90° ∴DBA+∴DAB=90°∴∴EAG=∴DBA∴∴DBA=2∴EBC∴∴EAG=2∴EBC故该说法正确;④根据中线平分面积可得S△ACF=S△BCF故该说法正确.故选:C.【点睛】本题考查了三角形的高中线角平分线的性质解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图在∴ABC中∴C=90° D E是AC上两点且AE=DE BD平分∴EBC那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE∴BE是∴ABD的中线故本选项不符合题意;B、∴BD平分∴EBC∴BD是∴BCE的角平分线故本选项不符合题意;C、∴BD平分∴EBC∴∴2=∴3但不能推出∴2、∴3和∴1相等故本选项符合题意;D、∴S△AEB=12×AE×BC S△EDB=12×DE×BC AE=DE∴S△AEB=S△EDB故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义熟练掌握三角形中连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图AD BE CF依次是ABC的高、中线和角平分线下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交 连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中 连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线 顶点和垂足间的线段叫做三角形的高线 简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线 所以AE =CE 故本表达式正确;B 、AD 是△ABC 的高 所以∴ADC =90 故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE 故本表达式错误;D 、CF 是△ABC 的角平分线 所以∴ACB =2∴ACF 故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义 是基础题 熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线 则2AB =______ BD =______ 12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线 则1∠=______ 132∠=______ 2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点 进而得到答案.(2)根据角平分线定义 从一个角的顶点出发 把这个角分成两个相等的角的射线 叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线∴AB =2AF =2BF ;∴AD 是BC 边上的中线∴BD =CD∴BE 是AC 边上的中线∴AE =12AC(2)∴AD 是BAC ∠的角平分线∴12∠=∠∴BE 是ABC ∠的角平分线 ∴132∠=ABC ∠ ∴CF 是ACB ∠的角平分线∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高即过点A作BC边的垂线.∴只有选项A符合题意故选:A.【点睛】本题考查了三角形高线的画法从三角形的一个顶点向对边作垂线顶点与垂足间的线段叫做三角形的高线锐角三角形的三条高线都在三角形的内部钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上小亮经研究发现:在如图所示的ABC中连接点A和BC上的一点D线段AD等分ABC的面积则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积∴∴ABD的面积等于∴ACD的面积∴两个三角形的高为同一条高∴BD=CD∴AD为∴ABC的中线故选:B.【点睛】题目主要考查三角形中线的性质理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识即可一一判定【详解】解:A、利用的是“两点确定一条直线” 故该选项不符合题意;B、利用的是“两点之间线段最短” 故该选项不符合题意;C、窗户的支架是三角形利用的是“三角形的稳定性” 故该选项符合题意;D、利用的是“垂线段最短” 故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图BD是ABC的边AC上的中线AE是ABD△的边BD上的中线BF是ABE△的边AE上的中线若ABC的面积是32则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线∴11321622ABD BCD ABCS S S===⨯=△△∴AE是ABD△的边BD上的中线∴1116822ABE ADE ABDS S S===⨯=又∴BF 是ABE △的边AE 上的中线 则CF 是ACE 的边AE 上的中线 ∴118422BEF ABF ABE S S S ===⨯= 182CEF ACF ADE CED ACE S S S S S =====则4812BEF CEF S SS =+=+=阴影故选:B .【点睛】 本题考查了中线的性质 清晰明确三角形之间的等量关系 进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC 小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ②BC 边上的角平分线AE ③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中 所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线 角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠 其折痕即为BC 边上的中线 故①符合题意;折叠后使B 点在AC 边上 且折痕通过A 点 则其折痕即为BC 边上的角平分线 故②符合题意; 折叠后使B 点在BC 边上 且折痕通过A 点 则其折痕即为BC 边上的高 故③符合题意;故选D . 【点睛】本题考查三角形中线 角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm xcm 4cm 则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边 任意两边之差小于第三边”可得到4343x -<<+∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系 熟记“三角形任意两边之和大于第三边 任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长 a b 、满足()2610a b -+-= c 为偶数则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值 再根据三角形的任意两边之和大于第三边 两边之差小于第三边求出c 的取值范围 再根据c 是偶数求出c 的值.【详解】解:∴a b 满足()2610a b -+-=∴a -6=0 b -1=0解得a =6 b =1∴6-1=5 6+1=7∴5<c <7又∴c 为偶数∴c =6故答案为:6【点睛】本题考查非负数的性质:偶次方 解题的关键是明确题意 明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高手机成为一种生活中不可缺少的东西手机很方便携带但唯一的缺点就是没有固定的支点.为了解决这一问题某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机这是利用了三角形的稳定性故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图AB∴BD 于点B AC∴CD 于点C且AC 与BD 交于点E已知AE=10DE=5CD=4则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高然后利用三角形面积求解即可.【详解】解:∴AB∴BD AC∴CD∴AB 是∴ADE 的边DE 上的高 CD 是边AE 上的高∴S △AED =1122DE AB AE CD ⋅=⋅ ∴10485AE CD AB DE ⋅⨯=== 故答案为:8.【点睛】本题考查三角形高的定义 三角形的面积等知识 掌握基本概念是解题关键 学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图 在ABC 中 2AB AC == P 是BC 边上的任意一点 PE AB ⊥于点E PF AC ⊥于点F .若ABC S = 则PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ 结合已知条件 即可求得PE PF +的值. 【详解】解:如图 连接APPE AB ⊥于点E PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC == ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【点睛】本题考查了三角形的高掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中BC=8AB=1;(1)若AC是整数求AC的长;(2)已知BD是∴ABC的中线若∴ABD的周长为17求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边两边之差小于第三边”得7<AC<9根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD根据∴ABD的周长为17和AB=1得AD+BD=16即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB∴7<AC<9∴AC是整数∴AC=8.(2)解:如图所示∴BD是∴ABC的中线∴AD=CD∴∴ABD的周长为17∴AB +AD +BD =17∴AB =1∴AD +BD =16∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形 解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c -=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形 求出三角形的周长;若不能构成三角形 请说明理由.【答案】(1)a = 5b = c =(2)能构成三角形 周长为(51【解析】【分析】(1)根据非负数之和等于零 则每个非负数等于零 分别建立方程求解即可;(2)先比较长三边的大小 再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥ 0 0c -≥a 、b 、c 满足(20a c -=∴0a = 50b -= 0c -解得a = 5b = c =(2)解:∴81825<<∴5即a c b <<∴5=>∴能构成三角形三角形的周长)5551a b c =++===. 【点睛】本题考查了非负数的性质 二次根式有意义的条件和构成三角形的条件 解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm 则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中 AB =AC 周长为14cm BD 是AC 边上的中线 △ABD 比△BCD 周长长4cm 求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6 AC =6 BC =2.【解析】【分析】(1)根据三角形三边关系 先求出三角形第三边长的范围 即可求出周长范围.(2)根据三角形中线的定义可得,AD CD = 从而可得4,AB BC -=再根据ABC 的周长是14 以及,AB AC = 可得214AB BC +=进行计算即可解答. 【详解】解:(1)设第三边长为x 根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD是AC边上的中线,AD CD∴=∴△ABD比△BCD周长长4cm()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是1414,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系等腰三角形的性质熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图在直角三角形ABC中∴BAC=90° AD是BC边上的高CE 是AB边上的中线AB=12cm BC=20cm AC=16cm求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC然后把AB=12cm BC=20cm AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分 所以S △BCE =12S △ABC .【详解】解:(1)∴∴BAC =90° AD 是BC 边上的高 ∴12AD •BC =12AB •AC∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质 涉及等积法 是重要考点 掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图 在6×10的网格中 每一小格均为正方形且边长是1 已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D 连接CD 使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点 取格点D 满足3BD AD = 则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图 AE 即为BC 上的高.(2)如图 利用网格特点 可得3BD AD =∴D 即为所求作的点 满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高 三角形的面积的计算 熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图 在ABC 中 CD 、CE 分别是ABC 的高和角平分线 ,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒ 求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值 再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒ 40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒CE 是ACB ∠的平分线∴1352ACE ACB ∠=∠=︒.CD 是高线∴90ADC ∠=︒∴9020ACD BAC ∠=︒-∠=︒∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠= B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+CE 是ACB ∠的平分线∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦.CD 是高线∴90ADC ∠=︒∴9090ACD BAC α∠=︒-∠=︒- ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线 高线以及角的转换 掌握角平分线 高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图 ∴ABC 中 ∴BAC =60º AD 平分∴BAC 点E 在AB 上 EG ∴ADEF ∴AD 垂足为F .(1)求∴1和∴2的度数.(2)联结DE 若S △ADE =S 梯形EFDG 猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等 理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠ 然后在直角三角形中利用两锐角互余即可求得∴2 再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG 结合图形即可求解.(1)∴∴BAC =60º AD 平分∴BAC ∴1302BAD BAC ∠=∠=︒ 又∴EF ∴AD∴29060BAD ∠=︒-∠=︒ ∴EG ∴AD∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD∴S △ADE =12AD EF ⋅ S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG∴AD =AF +DF∴DF +EG =AF +DF即AF =EG .【点睛】本题考查了平行线的性质 角平分线的定义以及三角形和梯形的面积公式 熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图 AD 是∴ABC 的边BC 上的中线 已知AB =5 AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中 若AB 边上的高为2 求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h 根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5 AC =3∴5353BC -<<+即28BC <<故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++∴ACD 的周长为AC AD CD ++∴AD 是∴ABC 的边BC 上的中线∴BD CD =∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=故答案为:2;(3)设AC 边上的高为h 根据题意得:11222AB AC h ⨯=⨯ 即1152322h ⨯⨯=⨯⨯ 解得103h =.【点睛】本题考查了三角形三边关系 三角形的中线 三角形的高等知识点 熟练掌握基础知识是解本题的关键.。

八年级数学三角形全等(倍长中线)(人教版)(专题)(含答案)

八年级数学三角形全等(倍长中线)(人教版)(专题)(含答案)
A.AF+FC>AB B.AB=AF+FC
C.AF+FC<AB D.AF=AB+CF
答案:B
解题思路:
平行夹中点,考虑延长证全等,
延长AE交DF的延长线于点M,
延长之后证全等.
如图,延长AE交DF的延长线于点M.
∵E为BC的中点
∴BE=CE
∵AB∥CD
∴∠1=∠M
在△ABE和△MCE中
∴△ABE≌△MCE(AAS)
结合已知条件可知10-8 <CE<10+8,
所以2 <AB<18.
故选A.
试题难度:三颗星知识点:略
4.已知,在△ABC中,AB=5,中线AD=7,则边AC的取值范围是( )
A.1<AC<29 B.9<AC<19
C.5<AC<19 D.4<AC<24
答案:B
解题思路:
解:如图,延长AD到点E,使DE=AD,连接CE.
1.因为AD为△ABC的中线,考虑________________________________(辅助线叙述);
2.进而利用全等三角形的判定_________,证明_______≌_______;
3.由全等可得________________;
4.观察图形,2AD放在△_______中,利用三角形的三边关系,可得2<5.以上空缺处依次所填最恰当的是( )<5.
A.①延长AD到F,使DF=AD;
②SAS,△BDF,△CDA;
③∠DBF=∠C
④ABF
B.①延长AD到F,使DF=AD,连接BF;
②SAS,△BDF,△CDA;
③FB=AC

人教版八年级数学上册:三角形全等之倍长中线(习题及答案)

人教版八年级数学上册:三角形全等之倍长中线(习题及答案)

三角形全等之倍长中线(习题)➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .A D CE F【思路分析】 读题标注:??FE C D BA见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:A B DCE F??GG??FECDBA (这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .A B D CE F??G在△DEF 和△CEG 中, ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△CEG (SAS ) ∴DF =CG ,∠DFE =∠G ∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.D CBA2. 已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F . 求证:AB =EF .F E DCBA3. 已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°. 求证:EF =2AD .4. 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF =CG .FED C B A G FED CBA5. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF ⊥EF .➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .CDB A比较下列两种不同的证明方法,并回答问题.方法1:如图,延长AD 到E ,使DE =AD ,连接BEFE DB CA在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC∴∠E =∠2在△BDE 和△CDA 中2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:21ECDB A 21ECDB ACD12AB.DCB A【参考答案】➢巩固练习1. 22.证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明△ADG≌△EDF,转角证明AB=EF)3.证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明△ABD≌△GCD,△EAF≌△GCA)4.证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明△BFE≌△CHE,转角证明BF=CG)5.证明略(提示:延长AF交BC的延长线于点G,证明△ADF≌△GCF,转角证明AF⊥EF)➢思考小结1.倍长中线SAS AAS 角2.证明略。

人教版八年级上册数学三角形的高、中线与角平分线同步练习(含答案)

人教版八年级上册数学三角形的高、中线与角平分线同步练习(含答案)

人教版八年级上册数学11.1.2三角形的高、中线与角平分线同步练习一、单选题1.如图,在△ABC中,AD、CE是中线,若四边形BDFE的面积是6,则△ABC的面积为()A.12B.15C.18D.242.如图,线段AD把ABC分成面积相等的两部分,则线段AD是()A.ABC的中线B.ABC的高C.ABC的角平分线D.以上都不对3.如图,A、B、C分别是DB、EC、F A的中点,若△DEF的面积为21,那么△ABC 的面积是()A.6B.5C.4D.34.如图,在△ABC中,BP平分△ABC,AP BP于点P,连接PC,若△P AB的面积为26cm,△PBC的面积为2cm.8cm,则△P AC的面积为()2A .2B .2.5C .3D .4 5.如图,已知AM 是△ABC 的中线,点P 是AC 边上一动点,若△ABC 的面积为10,AC =4,则MP 的最小值为( )A .5B .2.5C .1.4D .1.25 6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定 7.如图,AD 、BE 、CF 是△ABC 三边的中线,若S △ABC =12,则图中的阴影部分的面积是( )A .3B .4C .5D .6 8.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高,下列各式中错误的是( )A .2BC CD =B .12BAE BAC ∠=∠ C .90AFB ∠=︒D .AE CE =二、填空题9.如图,在△ABC 中,D 是BC 上的一点,且BC =4BD ,E 是AC 的中点,BE 与AD 相交于点F ,若△BDF 的面积为1,则△ABC 的面积为_________.10.如图,△ABC 的面积为25cm 2,BP 平分△ABC ,过点A 作AP △BP 于点P ,则△PBC 的面积为________;11.如图,△ABC 的中线BD 、CE 相交于点F ,若四边形AEFD 的面积为6,则△CBF 的面积为_________.12.如图,点D 是ABC ∆的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,且ABC ∆的面积为40,则∆BEF 的面积=_________.13.如图,在ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,2BD DC =,8,3BGD AGE S S ==,则ABC 的面积是_________.14.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且232cm ABC S =,则阴影部分的面积为______2cm .15.如图,在ABC ∆中,点D 在BC 上,点E 是AD 的中点,点F 在BE 上,且2EF BF =,若5∆=BCF S ,则ABC S ∆=________.16.如图,在ABC 中,G 是边BC 上任意一点,D 、E 、F 分别是AG 、BD 、CE 的中点,48ABC S =△,则DEF S △的值为______.三、解答题17.如图, △ABC 中,AE ,CD 是△ABC 的两条高,AB =4,CD =2 (1)请画出AE ,CD ;(2)求△ABC 的面积;(3)若AE =3,求BC 的长.18.如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.19.如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.(1)求△ABC的面积;(2)求AD的长.20.如图,已知AD、AE分别是ABC的高和中线,ABE△的面积2=,12cmAB=.求:CAB∠=︒,6cm4.8cmAD=,90(1)BC的长;(2)ABC的周长.参考答案:1.C2.A3.D4.A5.B6.C7.B8.D9.2010.212.5cm11.612.1013.3014.815.3016.617.(2)4;(3)8 318.48AC=,28AB=19.(1)27;(2)4.520.(1)10cmBC=;(2)ABC的周长=24cm.答案第1页,共1页。

12-2三角形全等的判定(倍长中线)练习人教版数学八年级上册

12-2三角形全等的判定(倍长中线)练习人教版数学八年级上册

12.2 三角形全等的判定(倍长中线)一、单选题1.在学完八上《三角形》一章后,某班组织了一次数学活动课,老师让同学们自己谈谈对三角形相关知识的理解.小峰说:“存在这样的三角形,他的三条高的比为1:2:3”.小慧说:“存在这样的三角形,其一边上的中线不小于其他两边和的一半”. 对以上两位同学的说法,你认为( )A .两人都不正确B .小慧正确,小峰不正确C .小峰正确,小慧不正确D .两人都正确2.已知△ABC 中,AB=5,AC=7,则BC 边上的中线a 的取值范围是( ) A .1<a <6 B .5<a <7 C .2<a <12 D .10<a <14 3.AD 是∆ABC 中 BC 边上的中线,若 AB = 3 , AD = 4 ,则 AC 的取值范围是( ) A .1 < AC < 7 B .0.5 < AC < 3.5 C .5 < AC < 11 D .2.5 < AC < 5.5 4.三角形两边长为4和6,则第三边上的中线x 的取值范围是:()A .2<x <10B .1<x <5C .x >55.在△ABC 中,AB =5,AC =3,AD 为BC 边的中线,则AD 的长x 的取值范围( ) A .58x ≤≤ B .47x ≤≤ C .14x << D .7922x << 6.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A .1AB 29<<B .4AB 24<<C .5AB 19<<D .9AB 19<<7.如图,在△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长的取值范围是( )A .6<AD<8B .2<AD<4C .1<AD<7D .无法确定 8.如图,AD 是ABC ∆的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,若EF=AF , BE=7.5, CF=6,则EF=( ).A .2.5B .2C .1.5D .19.如图所示,△ABC 中,AB =3,AC =7,则BC 边上的中线AD 的取值范围是( )A .4<AD <10B .0<AD <10C .3<AD <7 D .2<AD <510.如图,在ABC 中,D 为BC 的中点,若3,4AC AD ==.则AB 的长不可能...是()A .5B .7C .8D .911.已知AD 是△ABC 中BC 边的中线,若AB =4,AD =3,则AC 的长可以是( ) A .11 B .11 C .10 D .912.如图,在△ABC 中,AB=8,AC=5,AD 是△ABC 的中线,则AD 的取值范围是()A .3<AD<13B .1.5<AD<6.5C .2.5<AD<7.5D .10<AD<16二、填空题13.如图,在ABC 中,9AB =,3AC =,D 为BC 中点,则线段AD 的范围是______.14.在ABC 中,5AB =,3AC =,AD 是ABC 的中线,设AD 长为m ,则m 的取值范围是______.15.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 16.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__.17.如图,△ABC 中,BC 边上的中线AD 将△BAC 分成了两角△BAD 、∠DAC 分别为70°和40°,若中线AD 长为2.4cm ,则AC 长为________cm.三、解答题18.如图,ABC ∆中,3AB =,4AC =,AD 为中线,求中线AD 的取值范围.19.已知:如图,D 是△ABC 边BC 上一点,且CD =AB ,△BDA =△BAD ,AE 是△ABD 的中线.求证:AC =2AE .20.如图,在ABC △和A B C '''中,AC A C ''=,'AB AB'=,D 、D 分别为BC 、B C ''的中点,且AD A D ''=,求证:ABC △△A B C '''.21.已知,在Rt ABC △中,90BAC ∠=︒,点D 为边AB 的中点,AE CD ⊥分别交CD ,BC 于点F ,E .(1)如图1,△若AB AC =,请直接写出EAC BCD ∠-∠=______;△连接DE ,若2AE DE =,求证:DEB AEC ∠=∠;(2)如图2,连接FB ,若FB AC =,试探究线段CF 和DF 之间的数量关系,并说明理由.22.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.(探究与发现)(1)如图1,AD 是ABC 的中线,延长AD 至点E ,使ED AD =,连接BE ,证明:ACD EBD △≌△. (理解与应用)(2)如图2,EP 是DEF 的中线,若5EF =,3DE =,设EP x =,则x 的取值范围是________. (3)如图3,AD 是ABC 的中线,E 、F 分别在AB 、AC 上,且DE DF ⊥,求证:BE CF EF +>.参考答案1.A解:假设存在这样的三角形,他的三条高的比为1:2:3,根据等积法,得到此三角形三边比为6:3:2,这与三角形三边关系相矛盾,故假设错误,所以这样的三角形不存在;假设存在这样的三角形,其一边上的中线不小于其他两边和的一半,延长中线成2倍,利用三角形全等,可得到三角形中线的2倍不小于(大于等于)其他两边之和,这与三角形三边关系矛盾,故假设错误,所以这样的三角形不存在;故选A.2.A解:延长AE到D,使AE=DE,连接BD.△AE是中线,△BE=CE,△AEC=△DEB,△△AEC△△DEB△(SAS),△BD=AC=7,又AE=a,△2<2a<12,△1<a<6.故选A.3.C解:如图,延长AD到E,使DE=AD=4,△AD是BC边上的中线,△BD=CD,在△ABD和△ECD中,△BD CDADB EDC DE AD=⎧⎪∠=∠⎨⎪=⎩,△△ABD△△ECD(SAS),△CE=AB=3,△AB=3,AD=4,△AE−CE<AC<AE+EC,即8−3<AC<11,△5<AC<11,故选C.4.B解:如右图所示,AD是BC上的中线,AB=4,AC=6,延长AD到E,使DE=AD,连接BE,△D是BC中点,△BD=CD,又△△ADC=△BDE,AD=DE,△△ADC△△EDB,△BE=AC,在△ABE中,6-4<2AD<4+6,即1<AD<5,故选B.5.C解:延长中线AD到E,使DE=AD,连结CE,△AD为BC中线,△BD=CD,△△ADB=△EDC,△△ABD△△ECD(SAS),△CE=AB=5,△AE=2AD,在△AEC中,CE-AC<AE<CE+AC,即2<2AD<8,△1<AD<4.故选择:C.6.D解:延长AD到E,使DE=AD,连接BE在△ADC和△EDB中AD=DE,△ADC=△BDE,CD=BD△△ADC△△EDB(SAS)△AC=BE(全等三角形的对应边相等)△AC=5,AD=7△BE=5,AE=14在△ABE中,AE-BE<AB<AE+BE△AB边的取值范围是:9<AB<19故选D7.C解:延长AD到E,使AD=DE,连接BE,如图所示:△AD=DE,△ADC=△BDE,BD=DC,△△ADC△△EDB(SAS)△BE=AC=6,在△AEB中,AB-BE<AE<AB+BE,即8-6<2AD<8+6,△1<AD<7,故选:C.8.C解:如图,延长AD,使DG=AD,连接BG,△AD是△ABC的中线,△BD=CD,且DG=AD,△ADC=△BDG,△△ADC△△GDB(SAS),△AC=DG=CF+AF=6+AF,△DAC=△G,△EF=AF,△△DAC=△AEF,△△G=△AEF=△BEG,△BE=BG=7.5,△6+AF=BG=7.5,△AF=1.5=EF,故选择:C.9.D解:延长AD到E点,使AD=DE,连接EC △AD是中线△BD=CD又△ADB=△EDC,AD=DE△△ABD△△ECD△AB=CE=3在△ACE 中,AC=7,CE=3△7-3<AE <7+3,即4<AE <10△2AD=AE△2<AD <5故选D10.A解:延长AD 到E ,使AD =DE =4,连接BE ,△D 是BC 的中点,△BD =CD又△BDE =△CDA△△ADC △△EDB ,△BE =AC =3由三角形三边关系得,AE BE AB AE BE -<<+即:511AB <<故选:A11.D解:延长AD至E,使DE=AD=3,连接CE.△BD=CD,△ADB=△EDC,AD=DE,△△ABD△△ECD,△CE=AB=4.在△ACE中,AE=2AD=6,CE=4AE-CE<AC<AE+CE,即6-4<AC<6+4,△2<AC<10.△AC的长可以是9故选:D.12.B解:延长AD到E,使AD=DE,连结BE.△AD是△ABC的中线,△BD=CD.在△ADC和△EDB中,CD BD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩,△△ADC△△EDB (SAS ),△AC=BE .△AB -BE <AE <AB+BE ,△AB -AC <2AD <AB+AC .△AB=8,AC=5,△1.5<AD <6.5.故选:B13.36AD <<解:如图,延长AD 至E ,使DE AD =, AD 是ABC ∆中BC 边上的中线,BD CD ∴=,在ABD ∆和ECD ∆中,AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD ECD SAS ∴∆≅∆,9CE AB ∴==,3AC =,9312∴+=,936-=,612AE ∴<<,36AD ∴<<.故答案为:36AD <<.14.14m <<解:如图,延长AD 至点E ,使AD ED =,连接CE ,则22AE AD m ==, AD 是ABC 的中线,BD CD ∴=,在ABD △和ECD 中,AD ED ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD ECD SAS ∴≅,5CE AB ∴==,在ACE △中,由三角形的三边关系定理得:CE AC AE CE AC -<<+, 3AC =,53253m ∴-<<+,解得14m <<,故答案为:14m <<.15.15a <<解:延长AD 至点E ,使得DE=AD ,△点D 是BC 的中点,△BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,△△ABD△△CDE (SAS ),△AB=CE ,△△ACE 中,AC -CE <AE <AC+CE ,即:AC -AB <AE <AC+AB , △2<AE <10,△1<AD <5.故答案为:1<AD <5.16.32;解:如图:延长AD 至G 使AD DG =,连接BG 在ACD ∆和GBD ∆中:CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩△ACD GBD ∆≅∆△,CAD G AC BG ∠=∠=△BE AC =△BE BG =△G BEG ∠=∠△BEG AEF ∠=∠△AEF EAF ∠=∠△EF AF =△AF CF BF EF +=-即69AF EF +=- △32AF = 17.4.8解:延长AD 到E ,取DE=AE ,连接CE ,如图所示,在△ABD 和△ECD 中,BD=CD BDA=CDE AD=ED ⎧⎪∠∠⎨⎪⎩△()ABD ECD SAS ≅△△E=△BAD=70°在△AEC 中,7040=71801800︒︒︒︒︒∠=-∠-∠=--ACE E DAC △△E=△ACE ,△AC=AE=2AD=4.8cm故答案为4.818.1722AD << 解:延长AD 至点E ,使DE AD =,连接CE ,AD 是中线,BD CD ∴=,在ABD △和ECD 中,AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD CDE SAS ∴≅,4AB EC ∴==,在ACE 中,AC CE AE AC CE -<<+,43243AD ∴-<<+,127AD ∴<<, ∴1722AD <<. 19.见解析.解:延长AE 到F ,使EF=AE ,连接DF△AE 是△ABD 的中线.△BE=ED在△ABE 和△FDE 中,BE DE AEB DEF AE EF =⎧⎪∠=∠⎨⎪=⎩△△ABE△△FDE (SAS )△AB=DF ,△BAE=△EFD△△ADB 是△ADC 的外角△△DAC+△ACD=△ADB=△BAD△△BAE+△EAD=△BAD△BAE=△EFD△△EFD+△EAD=△DAC+△ACD△△ADF=△ADC△AB=DC△DF=DC在△ADF 和△ADC 中,AD AD ADF ADC FD DC =⎧⎪∠=∠⎨⎪=⎩△△ADF△△ADC (SAS )△AF=AC△AF=AE+EF ,AE=ED△AC=2AE20.详见解析解:如图,分别延长AD 、A D ''到E ,E ',使得AD DE =,A D D E ''''=, 连接BE 、B E '',在△ACD 与△EDB 中AD DE ADC BDE CD BD =⎧⎪∠=∠⎨⎪=⎩△△ACD△△EDB (SAS )同理可证A C D E B D ≅'''''',△AC=EB ,A C E B ='''';在△ABE 与A B E '''中,AB A B BE B E AE A E '''''=⎧'⎪=⎨⎪=⎩△△ABE A B E '≅''(SSS )△BAD B A D '''∠=∠,'E E ∠=∠△'''DAC D A C ∠=∠,△△BAC=△BAD+△DAC ,B A C B A D D'A'C'∠∠∠'''''+'=, △BAC B A C ∠∠'''=;在△ABC 与A'B'C'中B AC AB A B BAC AC A C '''''''=⎧⎪∠=∠⎨⎪=⎩△△ABC A'B'C'≅(SAS )21.(1)△45°;△见解析;(2)2CF DF =,理由见解析 解:(1)△△90EAC ACD ∠+∠=︒,90AEC BCD ∠+∠=︒ △EAC BCD AEC ACD ∠-∠=∠-∠△90EAC BAE ∠+∠=︒△ACD BAE ∠=∠又△AEC B BAE ∠=∠+∠△EAC BCD B BAE ACD ∠-∠=∠+∠-∠△45EAC BCD B ∠-∠=∠=︒故答案为45︒.△如图,延长ED 至点G ,使得DG DE =,连接AG ,△点D 为AB 的中点,△BD AD =,又△ADG BDE ∠=∠,△ADG △BDE ,△DGA DEB ∠=∠,△//AG BC ,△GAE AEC ∠=∠,又△2AE DE =,△AE EG =,△DGA GAE ∠=∠,△DEB AEC ∠=∠.(2)2CF DF =.如图,延长CD 至点H ,使得DH DF =,连接BH ,△AD BD =,ADF BDH ∠=∠, △HDB △FDA △,△BH AF =,90H AFD AFC ∠=∠=∠=︒, △BF AC =.△Rt HBF △△Rt FAC △,△2CF HF DF ==.22.(1)见解析;(2)14x <<;(3)见解析 解:(1)CD BD =,ADC EDB ∠=∠,AD ED =, ACD EBD ∴≌,(2)14x <<;如图,延长EP 至点Q ,使PQ PE =,连接FQ ,在PDE ∆与PQF ∆中,。

八年级数学上册第十一章三角形第2课时三角形的高中线与角平分线习题新版新人教版

八年级数学上册第十一章三角形第2课时三角形的高中线与角平分线习题新版新人教版
10, BD =4,则 CD = 6或14 .
【点拨】
当高 AD 在△ ABC 的内部时,如图①.∵ BC =10,
BD =4,∴ CD = BC - BD =10-4=6.当高 AD 在△
ABC 的外部时,如图②.∵ BC =10, BD =4,∴ CD =
BC + BD =10+4=14.综上, CD =6或14.
∠ BAC .
(1)若∠ C =70°,∠ B =40°,求∠ DAE 的度数;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
【解】由已知可得,∠ BAC =180°-40°-70°=
70°.

∵ AE 平分∠ BAC ,∴∠ CAE = ∠ BAC =35°.

∵ AD ⊥ BC ,∴∠ ADC =90°,∴∠ CAD =20°,


∴ AB ·ED = AC ·DF ,






即 ×6× ED = ×4× DF ,∴
1
2
3
4
5
6
7
8
9


= .


10
11
12
13
14
15
14. 如图,在△ ABC 中,∠ C =90°, AC =3, BC =4,
AB =5,点 D 是 AC 上一点,作 DE ⊥ AB 于点 E ,且 CD
15
2. [母题教材P5练习T2(1)] 如图, AD 是△ ABC 的中线,则
下列结论正确的是(
B )
A. ∠ BAD =∠ CAD

人教版八年级数学上册三角的高、中线与角平分线同步练习题

人教版八年级数学上册三角的高、中线与角平分线同步练习题

人教版八年级数学试题11.1 与三角形有关的线段(2)一、选择题:1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线B.是边BB ′上的高C.是∠BAB ′的角平分线D.以上三种性质合一B 'C B AED C B AFECA(1) (2) (3)2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法不正确的是( ) A.DE 是△BCD 的中线 B.BD 是△ABC 的中线 C.AD=DC,BD=EC D.∠C 的对边是DE3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2 D.14cm 24.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )A.AH<AE<ADB.AH<AD<AEC.AH ≤AD ≤AED.AH ≤AE ≤AD5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.24 二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______, 三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____. 三、解答题1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.EBA2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.参考答案:一、1.D 2.D 3.B 4.D 5.B二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD=13cm习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题含答案

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题含答案

2022—2023学年人教版数学八年级上册三角形的高、中线与角平分线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,△ABC中BC边上的高和△AEC中AE边上的高分别是()A.EF和CD B.BC和CD C.AB和CD D.AB和EF2.如图,ABC的面积是2,AD是ABC的中线,13AF AD=,12CE EF=,则CDE△的面积为()A.29B.16C.23D.493.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为()A.S△ABC >S△DEF B.S△ABC <S△DEFC.S△ABC =S△DEF D.不能确定4.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是8cm2,则阴影部分面积等于()A .2cm 2B .1.5cm 2C .1cm 2D .0.5cm 25.如图,BD 是ABC 的边AC 上的中线,AE 是ABD △的边BD 上的中线,BF 是ABE △的边AE 上的中线,若ABC 的面积是32,则阴影部分的面积是( )A .9B .12C .18D .206.请你量一量如图ABC 中BC 边上的高的长度,下列最接近的是( )A .0.5cmB .0.7cmC .1.5cmD .2cm7.如图,已知D 、E 分别为△ABC 的边BC 、AC 的中点,连接AD 、DE ,AF 为△ADE 的中线.若四边形ABDF 的面积为10,则△ABC 的面积为( )A .12B .16C .18D .208.已知A ,B 两点在数轴上的位置如图所示,原点为O ,现A 点以2m/s 的速度向左运动,B 点以1m/s 的速度向左运动,若A ,B 两点同时出发,当OA :OB =1:2时,用时为( )A .2sB .14sC .73s 或1sD .12s 或2s二、填空题 9.填空:(1)如图(1),,AD BE CF 是ABC 的三条中线,则2AB =______,BD =______,12AE =______.(2)如图(2),,AD BE CF 是ABC 的三条角平分线,则1∠=______,132∠=______,2ACB ∠=______.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角有一个角为45︒,则BAC ∠等于______.11.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________12.如图,在ABC 中,90,BAC AD ∠=︒是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是____________.△ABE △的面积等于BCE 的面积;△AFG AGF ∠=∠;△2FAG ACF ∠=∠;△CG 是ACD △的角平分线13.如图,AD 是△ABC 的中线,BE 是△ABD 的中线,EF ⊥BC 于点F.若24ABCS=,BD = 4 ,则EF 长为___________.14.若AD是△ABC的高,△BAD=70°,△CAD=20°,则△BAC的度数为_____.15.连结三角形的一个顶点和它________________的________叫做三角形这边上的中线.如图,若BE是ABC中AC边上的中线,则AE________12EC=________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为__________.三、解答题17.如图,△ABE中,△E=90°,AC是△BAE的角平分线.(1)若△B =40°,求△BAC 的度数;(2)若D 是BC 的中点,△ADC 的面积为16,AE =8,求BC 的长.18.如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.19.在平面内,分别用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下.问:(1)4根火柴棒能搭成三角形吗?(2)8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图. 20.如图,在正方形网格中有一个ABC ,按要求进行作图(只用直尺)(1)画出将ABC向右平移6格,再向上平移3格后的DEF;(2)画出ABC中AC边上的高BH;(3)请在图中直接标记出3个使BCP的面积等于3的格点1P、2P、3P.参考答案:1.C【分析】根据三角形高的定义,△ABC中BC边上的高为从BC边相对的顶点A向BC边作的垂线段,△AEC中AE边上的高为从AE边相对的顶点C向AE边作的垂线段,观察图形,找出符合要求的线段即可.【详解】解:根据三角形高的定义可知,AB是△ABC中BC边上的高,CD是△AEC中AE 边上的高,故选C.【点睛】本题考查三角形高的定义:从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.2.A【分析】根据中线的性质即可求出S△ACD,然后根据等高时,面积之比等于底之比,即可依此求出S△CDF,S△CDE.【详解】解:△△ABC的面积是2,AD是△ABC的中线,△S△ACD=12S△ABC=1,△AF=13 AD,△DF=23AD,△S△CDF=23S△ACD=23×1=23,△CE=12EF,△CE=13 CF△S△CDE=13S△CDF=13×23=29,故选:A.【点睛】此题考查的是三角形的面积关系,掌握中线的性质和等高时,面积之比等于底之比是解决此题的关键.3.C【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【详解】解:如图,过点A、D分别作AG△BC,DH△EF,垂足分别为G、H,在△ABG 和△DHE 中,AB =DE =5, △B =50°,△DEH =180°-130°=50°, △△B =△DEH ,△AGB =△DHE =90°, △△AGB △△DHE (AAS), △AG =DH . △BC =4,EF =4, △S △ABC =S △DEF . 故选:C .【点睛】要题考查全等三角形的判定和性质,等底等高两三角形面积相等.证明△AGB △△DHE 是解题的关键. 4.A【分析】先由D 为BC 中点,求出△ABD 和△ACD 面积,再由点E 为AD 中点求出△BCE 面积,再根据F 是CE 中点,知阴影部分面积等于△BCE 面积的一半,即可求解. 【详解】解:△D 是BC 中点,△ABC 的面积是8cm 2, △1=42ABD ACD ABC S S S ==△△△cm 2, △E 是AD 中点,△1=22ABE BDE ABD S S S ==△△△cm 2,1=22ACECDEACDS SS ==cm 2,△4CBE S =△cm 2, △F 为CE 中点, △1=22CBE S S =△阴影cm 2, 故选:A .【点睛】本题考查了三角形面积的等积变换,掌握三角形的中线将三角形分成面积相等的两部分是解题关键.5.B【分析】利用中线等分三角形的面积进行求解即可. 【详解】△BD 是ABC 的边AC 上的中线,△11321622ABD BCD ABC S S S ===⨯=△△,△AE 是ABD △的边BD 上的中线, △1116822ABEADEABDSSS ===⨯=, 又△BF 是ABE △的边AE 上的中线,则CF 是ACE 的边AE 上的中线, △118422BEFABFABESSS ===⨯=,182CEFACFADECEDACES SSSS =====,则4812BEFCEFS SS =+=+=阴影,故选:B .【点睛】本题考查了中线的性质,清晰明确三角形之间的等量关系,进行等量代换是解题的关键. 6.D【分析】作出三角形的高,然后利用刻度尺量取即可. 【详解】解:如图所示,过点A 作AO △BC ,用刻度尺直接量得AO 更接近2cm , 故选:D .【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键. 7.B【分析】根据三角形的中线平分三角形的面积即可得到结论. 【详解】设AEF S x =△, △AF 为△ADE 的中线. △,2AEFADFADESSx Sx ===△E 分别为△ABC 的边AC 的中点,△2,4ADECDECDASSx Sx ===△D 分别为△ABC 的边BC 的中点, △4,8CDABDAABCSSx Sx ===△四边形ABDF 的面积=510FDABDAS Sx +==解得2x = △816ABCSx ==故选:B【点睛】本题考查了三角形的面积,熟练三角形的中线平分三角形的面积是解题的关键. 8.C【分析】设A ,B 两点同时出发运动的时间为t s ,分类讨论△当A 点在O 点右侧时和△当A 点在O 点左侧时,分别用t 表示出OA 和OB ,再列出等式,解出t 即可. 【详解】设A ,B 两点同时出发运动的时间为t s , 分类讨论△当A 点在O 点右侧时,即32t <时, 此时1OB t =+,32OA t =-, △OA :OB =1:2 △(32)t -:(1)t +=1:2 解得:312t =<,符合题意; △当A 点在O 点左侧时,即32t >, 此时1OB t =+,23OA t =-, △OA :OB =1:2 △(23)t -:(1)t +=1:2 解得:7332t =>,符合题意. 综上可知1t =或73t =时,OA :OB =1:2 故选C .【点睛】本题主要考查数轴上的动点问题,利用分类讨论的思想是解答本题的关键. 9. AF 或BF CD AC 2∠ ABC ∠ 4∠【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点,进而得到答案.(2)根据角平分线定义,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线即可解答.【详解】解:(1)△CF 是AB 边上的中线,△AB =2AF =2BF ;△AD 是BC 边上的中线,△BD =CD ,△BE 是AC 边上的中线,△AE =12AC ,(2)△AD 是BAC ∠的角平分线,△12∠=∠ ,△BE 是ABC ∠的角平分线, △132∠=ABC ∠, △CF 是ACB ∠的角平分线,△2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线,解题的关键是掌握三角形的中线及角平分线的定义.10.45°或135°【分析】分两种情况:(1)当△A 为锐角时,如图1,(2)当△A 为钝角时,如图2,根据三角形的内角和计算得出结果.【详解】解:分两种情况:(1)当△A 为锐角时,如图1,△△DOC =45°,△△EOD =135°,△BD 、CE 是△ABC 的高,△△AEC =△ADB =90°,△△EAO +△AEO +△AOE =180°=△DAO +△DOA +△ADO ,△△AEO +△EAD +△ADO +△EOD =360°△△A =360°−90°−90°−135°=45°;(2)当△A 为钝角时,如图2,△△F =45°,△ADF =△AEF =90°,同理△DAE =360°−90°−90°−45°=135°,△△BAC =△DAE =135°,则△BAC 的度数为45°或135°,故答案为:45°或135°.【点睛】本题考查了三角形的高和三角形的内角和,明确三角形内角和,三角形的高所构成了两个直角;本题是易错题,容易漏解,要分锐角三角形和钝角三角形两种情况进行计算. 11.10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM△BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .△OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,△OM OE ON 5===,又 AC △BD ,OM AC ⊥,△OM BD ⊥,又ON BD ⊥,△M ,O ,N 三点共线,△ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.12.△△△△【分析】根据等底同高的三角形的面积相等即可判断△;根据直角三角形两锐角互余求出△ABC =△CAD ,根据三角形的外角性质即可推出△;根据直角三角形两锐角互余求出△BAD =△ACD ,根据角平分线定义即可判断△;根据三角形的角平分线的定义判断△即可.【详解】解:△BE 是中线,△AE =CE ,△△ABE 的面积=△BCE 的面积(等底同高的三角形的面积相等),△正确;△CF 是角平分线,△△ACF =△BCF ,△AD 为高,△△ADC =90°,△△BAC =90°,△△ABC +△ACB =90°,△ACB +△CAD =90°,△△ABC =△CAD ,△△AFG =△ABC +△BCF ,△AGF =△CAD +△ACF ,△△AFG =△AGF ,△正确;△AD 为高,△△ADB =90°,△△BAC =90°,△△ABC +△ACB =90°,△ABC +△BAD =90°,△△ACB =△BAD ,△CF 是△ACB 的平分线,△△ACB =2△ACF ,△△BAD =2△ACF ,即△F AG =2△ACF ,△正确;△CF 是△ACB 的平分线,CF 交AD 于点G ,△CG 是△ACD 的角平分线,△正确;故答案为:△△△△.【点睛】本题考查了直角三角形两锐角互余,三角形的外角性质,三角形的角平分线、中线、高线等知识点,能综合运用定理进行推理是解此题的关键.13.3【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可.【详解】解:△AD 是△ABC 的中线,S △ABC =24,△S △ABD =12S △ABC =12,同理,BE 是△ABD 的中线,612BDE ABD SS ==,△S △BDE =12BD •EF ,△12BD •EF =6, 即1462EF ⨯⨯= △EF =3.故答案为:3.【点睛】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.14.90°或50°【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】解:△如图1,当高AD 在△ABC 的内部时,△BAC =△BAD +△CAD =70°+20°=90°;△如图2,当高AD 在△ABC 的外部时,△BAC =△BAD -△CAD =70°-20°=50°,综上所述,△BAC 的度数为90°或50°.故答案为:90°或50°.【点睛】本题考查了三角形的高线,难点在于要分情况讨论.15. 所对边的中点 线段 = AC【分析】根据三角形中线的定义,即可求解.【详解】解:连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线. △BE 是ABC 中AC 边上的中线, △12AE EC AC == 故答案为:所对边的中点;线段;=;AC ;【点睛】本题主要考查了三角形的中线,熟练掌握连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线是解题的关键.16.3.【分析】如图,连接,,,OC OD CD 证明//,CD AB 再证明32OCD S S π=阴影扇形=,从而可以列方程求解半径.【详解】解:如图,连接,,,OC OD CD点C 、D 分别是半圆AOB 上的三等分点,60,AOC COD DOB ∴∠=∠=∠=︒,OC OD =COD ∴为等边三角形,60,OCD ∴∠=︒,AOC DCO ∴∠=∠,COD BCD S S ∴=32OCD S S π∴=阴影扇形=, 2603,3602OA ππ•∴= 解得:3,OA = (负根舍去),故答案为:3.【点睛】本题考查的圆的基本性质,弧,弦,圆心角之间的关系,平行线的判定与性质,扇形面积的计算,掌握以上知识是解题的关键.17.(1)25BAC ∠=︒;(2)8BC =【分析】(1)先利用互余计算出△BAE =50°,再利用角平分线的定义得到△BAC =12△BAE =25°;(2)先根据三角形面积公式得出DC ,利用D 是BC 的中点得到BC 即可.(1)解:△△B =40°,△E =90°,△△BAE =90°﹣40°=50°,△AC 是△BAE 的角平分线,△△BAC =12△BAE =25°;(2)△S △ADC =12DC •AE , △12×DC ×8=16,△D 是BC 的中点,△BC =2CD =8.【点睛】本题考查了角平分线的定义,线段的中点,角平分线的定义的正确运用是解题的关键.18.48AC =,28AB =【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=△2AC BC =,D 为BC 中点△244AC BC CD BD === △156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.19.(1)4根火柴棒不能搭成三角形(2)8根火柴棒能搭成一种三角形,12根火柴棒能搭成三种不同的三角形,画图见解析【分析】(1)把4分成3个数只能分成1,1,2三个数,故4根火柴棒不能搭成三角形;(2)利用三角形三边关系定理求解即可.(1)解:△把4分成3个数只能分成1,1,2三个数,而1+1=2,△4根火柴棒不能搭成三角形;(2)△ 8根火柴棒能搭成一种三角形,示意图如下:△12根火柴棒能搭成三种不同的三角形,其边长分别为:(4,4,4),(5,5,2),(3,4,5),示意图如下:【点睛】本题主要考查了三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.20.(1)见解析(2)见解析(3)见解析【分析】(1)按要求分别画出平移A、B、C三点后的点D、E、F,并依次连接,即得到△ABC 平移后的△DEF;(2)按要求画即可;(3)作三格点1P、2P、3P,使CP1=CP3=BP2=3即可.(1)平移后的△DEF如下图所示:(2)所画的高BH如下图所示:(3)由于CP1=CP3=BP2=3,则此三点1P、2P、3P满足题意.【点睛】本题考查了作图:作图形的平移,画三角形边上的高、三角形的面积,学会利用数形结合是解题的关键.。

人教版八年级数学上册第一单元《三角形的高、中线与角平分线》同步练习含参考答案

人教版八年级数学上册第一单元《三角形的高、中线与角平分线》同步练习含参考答案

人教版八年级数学上册第一单元《三角形的高、中线与角平分线》同步练习一、选择题1.三角形三条高的交点一定在( )A .三角形内部B .三角形外部C .三角形内部或外部D .以上说法都不完整 2.下列命题正确的是( )A .三角形的三条边上的高交于三角形内部一点,到三个顶点的距离相等B .三角形的三条中线交于三角形内部一点,到三个顶点距离相等C .三角形的三条角平分线交于三角形内部一点,到三边的距离相等D .三角形的三边中垂线交于三角形内部一点,到三边的距离相等 3.如图,CM 是ABC ∆的中线,BCM ∆的周长比ACM ∆的周长大3cm ,8cm BC =,则 AC 的长为( )A .3cmB .4cmC .5cmD .6cm 4.如图,所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则△ABC 的重心是( ).A .点DB .点EC .点FD .点G 5.如图,ABC ∆中,点D 、E 、F 分别在边BC 、AB 、AC 上,D 是BC 的中点,2,2AE BE CF AF ==,四边形AEDF 的面积为6,则ABC ∆的面积为( ) A .8B .9C .10D .12二、填空题6.如图,点O 在ABC 内部,且到三边的距离相等.且∠A=70°,则∠BOC=______°. 7.在直角三角形中,,,,是边的中线,则边上的高为 ,的面积_ _. 第5题图 第3题图 第4题图8.已知,如图所示,,,,,于点D ,则___________9.(1)线段是的角平分线,那么____.(2)线段是的中线,那么____.10.如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积________.三、解答题11.解不等式组:331213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩①②,12.如图,BM是ABC的中线,AB=5cm,BC=3cm,那么ABM与BCM的周长的差是多少?第6题图第7题图第8题图第10题图参考答案1.【答案】D【分析】分别指出锐角三角形,直角三角形,和钝角三角形的三条高线交点的位置即可求解.【详解】解:锐角三角形三角形三条高的交点在三角形内部,直角三角形三角形三条高的交点在三角形直角顶点,钝角三角形三角形三条高所在直线的交点在三角形外部,综上所述,A、B、C说法都不完整.2.【答案】C【分析】根据三角形的角平分线的性质、线段垂直平分线的性质判断即可.【详解】A、三角形的三条边上的高交于一点,到三个顶点的距离不一定相等,本选项说法错误;B、三角形的三条中线交于三角形内部一点,到三个顶点距离不一定相等,本选项说法错误;C、三角形的三条角平分线交于三角形内部一点,到三边的距离相等,本选项说法正确;D、三角形的三边中垂线交于一点,到三个顶点的距离相等,本选项说法错误.3.【答案】C【分析】根据三角形中线的特点进行解答即可.【详解】解:∵CM为△ABC的AB边上的中线,∴AM=BM,∵△BCM的周长比△ACM的周长大3cm,∴(BC+BM+CM)-(AC+AM+CM)=3cm,∴BC-AC=3cm,∵BC=8cm,∴AC=5cm,4.【答案】A【分析】结合题意,根据三角形重心的定义分析,即可得到答案.【详解】根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD 经过△ABC 的BC 边上的中线∴点D 是△ABC 重心.5.【答案】D【分析】连接AD ,设ABC 的面积为S ,用S 表示出ADE 和ADF 的面积,再由面积的和差列出S 的方程便可得解.【详解】解:连接AD ,设ABC 的面积为S ,∵D 是BC 的中点, ∴12ABD ACD S S S ==△△, ∵AE =2BE ,CF =2AF ,∴22113323ADE ABD S S S S ==⨯=△△, 11113326ADF ACD S S S S ==⨯=△△, ∵四边形AEDF 的面积为6,∴11636S S +=, ∴S =12,6.【答案】125【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠BOC .【详解】解:∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB ,∴∠BOC =180°-(∠OBC +∠OCB )=180°-12(∠ABC +∠ACB ) =180°-12(180°-∠A ) =180°-12⨯(180°-70°)=125°,7.4 3【分析】根据三角形的高线的定义知BC是边AC上的高线.由三角形中线的定义知AD=BD,则△ACD 与△BCD的等底同高的两个三角形,它们的面积相等.【详解】如图,,,是边上的高,即边上的高为,又是边的中线,,.故答案是:4;3.8.【分析】根据△ABC面积=即可求得CD的长;【详解】∵,,,,∴∴AB•CD=AC•BC,故答案为:9.【分析】(1)根据角平分线定义即可求解;(2)根据中点定义即可求解.【详解】解:(1)线段是的角平分线,那么.故答案为:,;(2)线段是的中线,那么.故答案为:,.10.6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:∵AD是BC上的中线,△ABC的面积是24,∴S△ABD=S△ACD=S△ABC=12,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD=6,故答案为:6.11.解:由①得:x≤1,由②得:x>−2,∴不等式组的解集为−2<x≤1.12.【答案】2cm.【分析】先根据中线的定义得出MA=MC,再求出两三角形的周长差即可.【详解】解:∵BM是△ABC的中线,∴MA=MC,∴△ABM的周长﹣△BCM的周长=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2(cm).答:△ABM与△BCM的周长是差是2cm.。

八年级数学三角形的中位线定理(人教版)(基础)(含答案)

八年级数学三角形的中位线定理(人教版)(基础)(含答案)

三角形的中位线定理(人教版)(基础)一、单选题(共8道,每道10分)1.已知,在长方形ABCD中,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.当P在BC的中点,点R从点D向点C移动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定答案:A解题思路:如图,连接AR,∵E,F分别是AP,RP的中点∴EF是△APR的中位线∴在点R从点D向点C移动的过程中,AR逐渐增大∴在点R从点D向点C移动的过程中,EF的长逐渐增大故选A试题难度:三颗星知识点:略2.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是( )A.30°B.100°C.120°D.140°答案:C解题思路:∵P,E,F分别是BD,AB,CD的中点∴PE是△ABD的中位线,PF是△BCD的中位线∴PE∥AD,,PF∥BC,∵AD=BC∴PE=PF∴∠PFE=∠PEF=30°∴∠EPF=120°故选C试题难度:三颗星知识点:略3.如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,…,以此类推,则第5个三角形的周长为( )A. B.1C.2D.4答案:C解题思路:如图,记第2个三角形的周长为C2,第3个三角形的周长为C3,…以此类推,第5个三角形的周长为C5.记AB,AC,BC的中点分别为D,E,F∴DE,EF,DF分别是△ABC的中位线∴AB=2EF,AC=2DF,BC=2DE∵AB+AC+BC=32∴EF+DF+DE=16,即C2=16同理,,,.故选C试题难度:三颗星知识点:略4.如图,在△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F.若BC=6,则DF的长是( )A.2B.C.3D.4答案:C解题思路:∵D,E分别是BC,AC的中点∴DE是△ABC的中位线∴DE∥AB∴∠DFB=∠ABF又∵BF平分∠ABC∴∠DBF=∠ABF∴∠DFB=∠DBF∴DB=DF∵BC=6∴DF=DB=3故选C试题难度:三颗星知识点:略5.如图,在△ABC中,D,E分别是边AC,AB的中点.若BD平分∠ABC,则下列结论错误的是( )A.BC=2BEB.∠A=∠EDAC.BC=2ADD.BD⊥AC答案:C解题思路:∵D,E分别是边AC,AB的中点∴DE∥BC,且BC=2DE∴∠BDE=∠CBD∵BD平分∠ABC∴∠CBD=∠DBE=∠BDE∴BE=DE=AE∴AB=2BE,BC=2DE=2BE,故A正确;∴AB=BC∴∠A=∠C=∠EDA,故B正确;∵AE=DE,与AD不一定相等,故C错误;∵AB=BC,点D是AC的中点∴BD⊥AC,故D正确.故选C试题难度:三颗星知识点:略6.如图,在四边形ABCD中,对角线AC,BD交于点O,已知AC=BD,M,N分别是AD,BC 的中点,MN与AC,BD分别交于点E,F,则△OEF是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案:B解题思路:如图,取CD的中点G,连接MG,NG.∵M,G分别是AD,CD的中点,∴MG是△ACD的中位线,∴MG∥AC,,同理可证:NG∥BD,,∵AC=BD,∴MG=NG,∴∠GMN=∠GNM,∵MG∥AC,NG∥BD,∴∠GMN=∠OEF,∠GNM=∠OFE,∴∠OEF=∠OFE,∴△OEF是等腰三角形,∵题干中没有涉及到有特殊的角度存在,∴不能证明△OEF三边相等或者∠EOF为直角,故选B.试题难度:三颗星知识点:略7.如图,在△ABC中,,在BC上取点D,使DC=AC,作CE⊥AD于E,点F是AB 的中点,连接EF,则为( )A.1:2B.1:3C.1:4D.3:4答案:B解题思路:如图,连接DF,∵AC=CD,CE⊥AD∴E为AD中点∵F为AB中点∴EF是△ABD的中位线∴EF∥BD且设△AEF边EF上的高为h,则∴故选B试题难度:三颗星知识点:略8.如图,在△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为( )A.3B.2C. D.1答案:C解题思路:如图,延长CF,交AB于点G,连接DF,∵AE是角平分线,CF⊥AE,易证△ACG为等腰三角形,AC=AG,∴点F为CG的中点,又∵点D是BC中点,∴DF是△CBG的中位线,∴故选C.试题难度:三颗星知识点:略二、填空题(共2道,每道10分)9.如图,在Rt△ABC中,∠C=90°,∠B=30°,点D,E分别是AC,BC的中点,连接DE.若AD=1,则DE的长为____.答案:2解题思路:∵点D是AC的中点,AD=1∴AC=2AD=2,在Rt△ABC中,∠C=90°,∠B=30°∴AB=2AC=4∵点D,E分别是AC,BC的中点∴DE是△ABC的中位线∴试题难度:知识点:略10.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,,则BD=____.答案:3解题思路:∵点E,F分别是AC,DC的中点∴EF是△ACD的中位线∴∵∴AD=3∵CD是△ABC的中线∴BD=AD=3试题难度:知识点:略。

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (90)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案) (90)

人教版_部编版八年级数学上册第十一章第一节三角形的高、中线与角平分线试题(含答案)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高.(2)若△ABC 的面积为10,求△ADC 的面积.(3)若△ABD 的面积为6,且BD 边上的高为3,求BC 的长.【答案】(1)如图所示见解析;(2)5;(3)8.【解析】【分析】(1)根据三角形中高的定义来作高线;(2)根据三角形的中线将三角形分成面积相等的两部分即可求解;(3)先求出△ABC的面积,再根据三角形的面积公式求得即可.【详解】(1)如图所示:(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC 的面积=1△ABC的面积=5.2(3)∵AD是△ABC的边BC上的中线,△ABD的面积为6,∴△ABC的面积为12.∵BD边上的高为3,∴BC=12×2÷3=8.【点睛】本题考查了三角形的角平分线、中线和高.(1)理解三角形高的定义;(2)熟悉三角形中线的性质;(3)根据三角形的面积公式求解.92.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分成6和12两部分,求三角形三边的长.【答案】三角形的三边长分别为8,8,2.它们都能构成三角形.【解析】【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.【详解】解:如图,设AB=AC=a,BC=b,则有a+12a=6且12a+b=12;或a+12a=12且12a+b=6,得到a=4,b=10或a=8,b=2,∵4+4<10不满足三角形两边之和大于第三边,应舍去.故三角形的三边长分别为8,8,2.它们都能构成三角形.【点睛】三角形的中线即三角形一个顶点与对边中点所连接的线段.93.如图,△ABC 是直角三角形,∠BAC=90°,AD 、AE 分别是△ABC 的高和中线,AB=3,AC=4,BC=5.求线段AD 的长和△ABE 的面积。

人教版八年级数学上册:第十二章第2节 中点问题-中线倍长(三角形全等的判定)

人教版八年级数学上册:第十二章第2节  中点问题-中线倍长(三角形全等的判定)

D
C
∴ AB=CE ,∠E=∠BAD
∴ABII CE
E
中点问题(一)
——中线倍长法
武汉市79中学
二、例题讲解
例1、△ABC中,D为BC的中点
(1)求证:AB+AC>2AD
(2)若AB=5,AC=3,求中线
AD的取值范围.
A
5
3
B
D
C
3
E
(1)
证明:延长AD至E,使DE=AD,连接BE
∵D为BC的中点,
2.三角形全等证明的方法,注意第一 次全等得到的结论,作为条件用于第 二次全等。
∵CF⊥AD,BE⊥AD
∴∠CFD=∠E=9o° 又∵∠FDC= ∠EDB B ∴△FDC≌△EDB ( AAS) ∴FD= ED,FC=EB
F
D
C
E
∠FCD=∠EBD
2、如图,AD是△ABC的中线,过
点C作CE∥AB交AD延长线于点E, 问:有没有全等的三角形?
A
解:∵AD是△ABC的中线 ∴BD=DC
∴DB=CD,
在△ADC和△EDB中
AD=DE
∠ADC=∠BDE
DB=CD
∴△ADC≌△EDB(SAS), ∴BE=AC,
5
在△ABE中,∵AB+BE>AE,
A 3
∴AB+AC>2AD;
B
(2)∵AB=5,AC=3,
D
C
∴5-3<2AD<5+3,
3
∴1<AD<4.
E
例2、AE是△ABD的中线,AB=CD, ∠BDA=∠BAD,求证:AC=2AE
人教版八年级数学上册:第十二章 全等三角形
12.2三角形全等的判定 中点问题-中线倍长

最新人教版八年级上册数学作业第十一章三角形第3课时三角形的中线、角平分线及稳定性

最新人教版八年级上册数学作业第十一章三角形第3课时三角形的中线、角平分线及稳定性

中线,若AE=2,AF=3,且△ABC的周长为15,则
5
BC=______________.
C组
9. 如图F3-8,在△ABC中(AC>AB),AC=2BC,BC边上的
中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.
解:∵AD是BC边上的中线,
∴BD=CD.
设BD=CD=x,
AB=y,则AC=2BC=4BD=4x.
3
45°
5. 如图F3-4,在△ABC中,AD,AE分别是边BC上的中线与
高,AE=4,CD的长为5,求△ABC的面积.
解:∵AD是边BC上的中线,CD的长为5,
∴BC=2CD=10.


∴S△ABC= BC·AE= ×10×4=20.


B组
6. 如图F3-5,∠1=∠2,∠3=∠4,则下列结论正确的有
( C )
①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平
分∠DAC;⑤AE平分∠BAC.
A. 4个
B. 3个
C. 2个
D. 1个
7. 如图F3-6,△ABC的面积为15,AD是BC边的中线,E为
AD的中点,则△DCE的面积为
_____________.
8. 如图F3-7,已知在△ABC中,CF,BE分别是AB,AC边上的
第十一章
第3课时
三角形
三角形的中线、角平分线及稳定性
A组
1. 如图F3-1,为了使一扇旧木门不变形,木工师傅在木门
的背面加钉了一根木条,这样做的道理是
A. 两点之间,线段最短
B. 垂线段最短
C. 三角形具有稳定性
D. 两直线平行,内错角相等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于三角形中线的题目
三角形的中线能将原三角形平分成两个面积相等的三角形。

关于这一条性质考察的题目较多,也很灵活,但实质上并不难。

回忆:为什么三角形的中线能将原三角形平分成两个面积相等的三角形。

答:因为三角形的一条中线能将这个三角形的底边分成相等的两部分,而高是相等的,所以三角形的一条中线能将这个三角形分成面积相等的两个三角形。

推论:一条线段将三角形分为两个三角形,如果两个三角形的面积相等,那么这条线段必为三角形的中线。

B
如图所示,AD为BC边上的中线,则BD=CD,过点A作AE⊥
BC于点E,则S△ABD=1
2BD •AE
=
1
2CD •AE
=S△ACD
(钝角三角形的高一定要会画,因为在以后证明三角形全等时通常需要构造这样的辅助线)
知识点应用:
例一:如图(下页),在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,则S△BEF=_________
B
(同学们来做这道题)
分析:出现了中点则出现了中线,出现了中线则会平分三角形的面积,按着一条线应该可以解决。

我们可采用分析法的思路,由果索因,想知道S △BEF ,由于F 为中点,则BF 为中线, 则S △BEF =S △BCF ,则只需知道S △BEC ,除以2即可。

而S △BEC=S △BED+S △CED ,由BE ,CE 为中线 S △BED= 12S △ABD ,S △CED= 12S △ACD, S △ABD+S △ACD =S △ABC =4,回归到已知条件,问题解决。

解: S △ABC=4⇒S △ABD+S △ACD=4
BE ,CE 为中线⇒S △BED = 12S △ABD ,S △CED = 12S △ACD
⇒S △BEC=S △BED+S △CED=12S △ABC=12
×4=2 BF 为中线⇒S △BEF = 12
S △BEC
S △BEF =1
由此可见如果遇到几何证明题或计算题我们可采取由果索因进行分析,这样的逻辑性较明确,在将推理过程由因到果写出来。

通过此题推理过程你发现了什么?
(D 为BC 的中点我们没有用,也就是说点D 在BC 边上移动不改变S △BEF 的大小,以下图为例)
GBH 的面积 = 11.82 厘米2
BEF 的面积 = 11.82 厘米2
B
作业:变式训练,如图,S
△ABC =1,若S △BDE =S △DEC =S △ACE , 则S △
ADE =_________
B 思考:我们知道中线将三角形面积分为1:1两部分,如上图,若点D 将B
C 边分为1:2的比例,那么S △AB
D 与 S △ADC 有何关系?。

相关文档
最新文档