【学案】频数分布表和直方图
7.4频数分布表和频数分布直方图
(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60
数
()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次
频
数
七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图
频
数 10
频数分布表与直方图
THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。
频数分布图与直方图教案
频数分布图与直方图教案教案标题:频数分布图与直方图教案一、教学目标:1. 了解频数分布图和直方图的定义和作用;2. 能够根据给定数据绘制频数分布图和直方图;3. 掌握如何解读频数分布图和直方图。
二、教学准备:1. 教学工具:黑板、白板、投影仪;2. 学生用品:纸张、铅笔、直尺;3. 教学资源:相关数据表格。
三、教学过程:步骤一:导入1. 介绍频数分布图和直方图的概念,并提出学生可能已经接触过的相关内容;2. 引导学生思考频数分布图和直方图在统计学中的重要性和作用。
步骤二:讲解1. 解释频数分布图和直方图的定义,频数分布图是以数据值为横轴、频数为纵轴的统计图形,直方图是将数据分成若干等距的组并表示各组频数的图形;2. 清晰说明频数分布图和直方图的绘制步骤和技巧,如数据的分组、确定组距等。
步骤三:示范1. 通过简单的实例展示绘制频数分布图和直方图的过程;2. 鼓励学生积极参与,并在黑板上协助绘制示范图。
步骤四:练习1. 提供一组数据,要求学生按照所学方法绘制频数分布图和直方图;2. 学生完成后互相交流和比较结果,讨论可能存在的差异并解释原因。
步骤五:解读与讨论1. 引导学生解读频数分布图和直方图,分析其特征和意义;2. 提出一些问题,让学生根据图形进行分析和推理,如找出众数、判断数据的分布趋势等。
步骤六:拓展与应用1. 给出多个数据集,要求学生根据问题绘制相应的频数分布图和直方图;2. 学生可以选择自己感兴趣的主题,收集相关数据进行图形展示和分析。
四、教学总结:1. 综合总结频数分布图和直方图的定义、绘制步骤和解读方法;2. 强调学生在实际生活和学习中使用频数分布图和直方图的重要性;3. 鼓励学生继续提高绘制和解读频数分布图和直方图的能力。
五、教学延伸:1. 鼓励学生使用电子表格软件进行数据处理和图形绘制;2. 引导学生学习其他统计图表,如饼图、折线图等;3. 提供更多实际问题,引导学生将统计图形应用于解决问题。
[数学]-7.4 频数分布表与频数分布直方图(原卷版)
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。
【学案】频数分布表和直方图
频数分布表和直方图学习目标 1、理解频数、频数分布的意义,学会制作频数分布表; 2、学会画频数分布直方图. 学习重点 数据整理的几个重要步骤.学习难点对数据的分组及频数分布表的制作.学 习 过 程备 注一、自主学习 探究新知【问题】为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:)如下,158 158 160 168 159 159 151158 159 168 158 154 158 154 169 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156 166选择身高在哪个范围的学生参加呢?【分析】为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.为此我们把这些数据适当分组来进行整理. 1、计算最大值与最小值的差(极差)最小值是 ,最大值是 ,它们的差是 . 说明身高的变化范围是 . 2、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.从最小值起每隔3作为一组,即组距为 ,那么组数为:组距最小值最大值 =因为327是分数,所以将数据分成8组.所以组数为8,组距为3将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173. 【注意】①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多.3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).用表格整理可得频数分布表:身高分组 划计 频数 152149〈≤x 155152〈≤x 158155〈≤x 161158〈≤x 164161〈≤x 167164〈≤x 170167〈≤x 173170〈≤x 合计注:画记也可以写成频数累计.从表格中你能看出应从哪个范围内选队员吗?可以看出,身高在155≤x <158,158≤x <161,161≤x <164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155至164(不含164)的学生中选队员.4、画频数分布直方图为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图.上面小长方形的面积表示什么意义?小长方形的面积=×=.可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少.等距分组时,各小长方形的面积(频数)与高的比是常数(组距).因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数.、二、自主应用巩固新知为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.56.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65.36.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05.56.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75.8 5.3 7.06.0 6.0 5.9 5.4 6.0 5.2 6.06.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3列出样本的频数分布表,画出频数分布直方图.探究:将课本例题中的组距改为0.5,重新分组列频数分布表,画频数分布直方图,并说出大麦穗的分布情况.⑴计算最大值与最小值的差⑵决定组距和组数,以0.5为组距⑶列频数分布表分组划记频数0.4〈≤x5.4≤x5.4〈0.5≤x0.5〈5.5≤x5.5〈0.6≤x5.60.6〈≤x5.6〈0.7≤x5.70.7〈合计⑷画频数分布直方图仔细观察上面的表和图,这组数据的分布规律是怎样的?麦穗长度大部分落在至之间,其他区域较少.长度在范围内的麦穗个数最多,有个,长度在范围内的麦穗个数很少,总共只有个.【随堂练习】P21 大家谈谈三、自主总结拓展新知主要学习的是频数分布直方图的特点和作用,能从解决实际问题的需要出发,制作频数统计图,以及频数分布折线图与前面的折线统计图描述数据有一定的差异,折线统计图是描述总体数据的变化趋势,而频数折线统计图是描述各个范围内频数的分布情况.四、自我练习1、P22 练习2、课后习题1、2。
江苏省赣榆县七年级数学下册 12.3《频数分布表和频数分布直方图》教案二 苏科版
课题
课
时
分
配
本课(章节)需 5 课时
本节课为第 3课时
第3课时为习题课
频数分布表与频数分布直方图(2)
教学目标
1.理解频数与频率的实际意义
2.能根据需要合理分组并填写频数分布表、画出频数分布直方图
重点合理分组并填写频数分布表
难点能根据需要合理分组并填写频数分布表、画出频数分布直方图
教学方法讲练结合、探索交流课型活动课教具投影仪教师活动学生活动课堂练习:
1.某班一次数学测验成绩如下:
64 85 92 54 70 82 62 70 92 79 82 81 68 77 82 80 95
62 70 90 71 71 88 82 87 91 89 86 68 72 84 88 76 88
97 54 67 75 78
要求:
(1)将上述数据整理成频数分布表,并绘制频数分布直方图及频
数分布折线图;
(2)制图后4人小组讨论大部分同学处于哪个阶段?成绩的整体分布情况怎样?
2.数学活动:把班级分成4大组,分别投掷一枚均匀的骰子10次、30次、70次、100次,记录每次朝上的点数,并将结
果填入下表:
根据表中的数据,说一说你的发现或猜想,如果有兴趣,
在做100次甚至200次或者更多次,检验一下你的猜想是否正确。
数学活动:动手分组、制图讨论后举手回答
10次30次70次100次频数频率频数频率频数频率频数频率1点
2点
3点
4点
5点
6点。
7.4频数分布表和频数分布直方图
吴塘初级中学学案设计时间: 2014 年 12 月 30 日学案设计人:姜胜学案序列号:根据频数分布表,用横轴表示各分组数据,纵轴表示各组数据的频数,绘制条形统计图:直观地呈现频数的和.像这样的条形统计图称为。
注:(1)、用频数分布表整理数据的步骤:1.计算最大值与最小值的差;2.决定组距与组数;3.决定分点; 4.列频数分布表.(2)条形统计图与频数分布直方图之间的区别与联系条形统计图与频数分布直方图都能从不同的角度直观、形象地描述、分析数据.它们具有各自的特点.条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量特征.频数分布直方图用横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.频数分布直方图是特殊的条形统计图,条形统计图各个“条形”之间都有间隙,频数分布直方图各个“条形”之间没有间隙.三、例题精讲例为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参赛,为了了解此次竞赛的成绩,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成的频数分布表和频数分布直方图(如图①),解答下列问题.(1)补全频数分布表;(2)补全频数分布直方图;(3)在全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的学生约有多少人?课后作业7.4频数分布表和频数分布直方图课后练习1.已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可以分成( ) A.10组B.9组C.8组D.7组2.某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;若某一小组的频数为4,则该小组的频率为_______;若视力在0.95~1.15这一小组的频率为0.3,则可估计该校九年级学生视力在0.95~1.15范围内的人数约为________.3.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图.请根据频数分布直方图计算,仰卧起坐的次数在15~20次之间的频率是( )A.0.1 B.0.17 C.0.33 D.0.44.某校七年级(3)班有50名学生,他们的上学方式为步行、骑车、乘车,根据表中可得( ) A.a=18,d=24% B.a=18,d=40% C.a=12,b=24% D.a=12,b=40%5.八年级(1)班全体学生参加了学校举办的安全知识竞赛.如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数).若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班总人数的百分比是_______.6.时代中学举行了一次科普知识竞赛,满分为100分,学生的最低得分为31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.若参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为_______.7.随着车辆的增加,交通违规的现象越来越严重,交警对在某雷达测速区监测到的一组汽车的速度数据进行整理,得到其频数及频率如下表:注:30~40为速度大于30千米/时而小于40千米/时,其他类同.(1)请你把表中的数据填写完整; (2)补全如图所示的频数分布直方图; (3)如果汽车速度不低于60千米/时即为违章,那么违章车辆一共有多少辆? 8.勤劳是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整小时数),所得数据统计如下表:(1)抽取的样本容量是_______;(2)根据表中的数据补全频数分布直方图;(3)若该校有学生1260名,则大约有多少名学生寒 假在家做家务的时间在40.5~100.5小时之间?9.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量 , 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)人数(个)181512 9 6 3图11根据以上图表,回答下列问题:(1)M=______,m=_______,N=______,n=________;(2)补全频数分布直方图。
人教版数学七年级下册第十章:10.2直方图学案(解析版)
直方图知识集结知识元频数分布表——组数、组距知识讲解频数分布表1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
2.组数:分成组的个数叫做组数。
例题精讲频数分布表——组数、组距例1.一组数据有若干个,最大值为125,最小值103,取组距为3,则可以分成().A.6组B.7组C.8组D.9组【解析】题干解析:解:由题意可得,极差为:125﹣103=22,∵组距为3,22÷3=7…1,∴可以分成8组,故选C.例2.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成().A.6组B.7组C.8组D.9组【解析】题干解析:解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40﹣16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故选B.频数分布表——频数知识讲解频数:各小组内的数据的个数叫做频数。
例题精讲频数分布表——频数例1.在频数分布直方图中,各小长方形的高等于相应组的().A.组距B.组数C.频数D.频率【解析】题干解析:解:在频数分布直方图中,各小长方形的高等于相应组的频数;故选C.例2.在全国初中数学竞赛中,某市有40名同学进入复赛,把他们的成绩分为六组,第一组至第四组的频数分别为10,5,7,6,第五组的频数所占的百分比是20%,则第六组的频数是.【答案】12050【解析】题干解析:解:第五组的频数:40×20%=8,第六组的频数是:40﹣10﹣5﹣6﹣7﹣8=4,故答案为:4.频数分布表的应用知识讲解频数分布表数据的频数分布表反映了在一组数据中各数据的分布情况。
要全面的掌握一组数据,必须分析这组数据中各个数据的分布情况。
例题精讲频数分布表的应用例1.在我校政教处“学习先进人物,树立远大理想优秀论文评比”活动中,对收集到的60篇论文进行评比,将评比成绩分成五组画出如图所示的频数分布直方图.由频数直方图可得,这次评比中被评为优秀的论文(第四、五组)共有篇.【答案】30【解析】题干解析:解:由频数分布直方图知第一、二、三、四组的论文篇数分别为:3、6、21、12,所以第五组的论文篇数为:60﹣3﹣6﹣21﹣12=18.第四、五组的论文篇数和为:12+18=30.故填30.例2.为了了解中学生的身体发育情况,对某中学同龄的50名男生的身高进行了测量,结果如下(单位:cm):162、166、163、174、175、172、177、161、171、172、172、175、169、157、173、173、166、174、166、169、160、158、159、166、167、182、166、175、167、174、179、173、180、172、173、174、165、172、163、165、170、175、170、171、176、169、171、167、165、177如果按照3cm的组距分组,可以分成9组:156.5~159.5、159.5~162.5、162.5~165.5、165.5~168.5、168.5~171.5、171.5~174.5、174.5~177.5、177.5~180.5、180.5~183.5(1)落在哪个小组的人数最多?是多少?(2)落在哪个小组的人数最少?是多少?【答案】解:如图所示:分组频数156.5~159.5 3159.5~162.5 3162.5~165.5 5165.5~168.5 8168.5~171.5 8171.5~174.5 12174.5~177.5 8177.5~180.5 2180.5~183.5 1171.5~174.5小组的人数最多,是12人;(2)落在180.5~183.5小组的人数最少,是1人.【解析】题干解析:根据已知数据,绘制频数分布表,进而分析各组人数情况即可.频数分布直方图的应用——选择、填空知识讲解考查读频数分布直方图的能力和利用统计图获取信息的能力.例题精讲频数分布直方图的应用——选择、填空例1.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是().A.5~10元B.10~15元C.15~20元D.20~25元【解析】题干解析:解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.例2.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为.【答案】90%【解析】题干解析:解:达标学生所占比例为(15+20+10)÷(15+20+10+5)=90%,故答案为:90%赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有人.【答案】27【解析】题干解析:直方图一共分为5组,明显知道第一、二、三组的分数都低于90分;其中第四组89.5~109.5有24人,第五组109.5~129.5有3人,这两组的分数都不低于90分,所以成绩不低于90分的有24+3=27(人).频数分布直方图的应用——应用题知识讲解考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.例题精讲频数分布直方图的应用——应用题某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.(1)在频数分布表中,a= ,b= ;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?【答案】解:(1)总人数=20÷10%=200.∴a=200×30%=60,b=1﹣10%﹣20%﹣35%﹣30%=5%,故答案为60, 5%.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.【解析】题干解析:(1)根据百分比=所占人数总人数,每组百分比之和为1即可解决问题;(2)根据a=60,画出条形图即可解决问题;(3)根据百分比=所占人数总人数,求出力正常的人数即可解决问题例2.某校为了了解本校初三学生一天中在家里做作业所用的时间,对本校初三学生进行抽样调查,并把调查所得的数据(时间)进行整理,分成5组,绘制了统计图,请结合图中信息,回答:(1)被调查的学生有多少人?(2)在被调查的学生中,做作业的时间超过150分钟的人数占被调查学生数的百分之几?【答案】解:(1)3+4+6+8+9=30(人).即被调查的学生有30人.(2)1230×100%=40%,即做作业的时间超过150分钟的人数占被调查学生数的40%.【解析】题干解析:(1)把统计图中给出的所有人数相加既得被调查的学生数;(2)用做作业的时间超过150分钟的人数÷被调查学生数=所占百分数.例3.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.【答案】(1)普高人数为30,占50%,所以样本容量为60;(2)普高人数为30,占50%,对应的圆心角=360×50%=180°,这60人中25人报考职高的人数为25人,占2560≈42%,对应的圆心角=360×42%=151.2°,其他约占8%,其他人数=60×8%=5人,对应的圆心角=360×8%=28.8°;如图:(3)∵三年级共有学生540人,按照直方图可知有2560的人报考职高,∴全年级约有540×2560=225人.【解析】题干解析:根据扇形图和条形图综合分析可得普高人数为30,占50%,所以样本容量=频数÷所占百分比;计算出这60人中25人报考职高占的比例及其他的比例,占2560≈42%,据此可补全扇形图和条形图;按照职高生所占的比例可估计出全年级报考职高人数=总人数×所占比例.当堂练习单选题练习1.某个样本的频数分布直方图中一共有4组,从左至右的组别中,处于中间的值依次为5,8,11,14(每一组包括前一个边界值,不包括后一个边界值),频数依次为5,4,6,5.则频数为4的一组为().A.6.5﹣9.5B.9.5﹣12.5练习2.在频数分布直方图中,各小长方形的高等于相应组的().练习3.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成().练习4.列频数分布表考查50名学生年龄时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是1,9,15,5,则第四组的频数是().练习5.下列说法不正确的是().练习1.某班数学期中测试情况的统计图如图所示,可知这个班有人,分数在段的人数最多.练习 3.在频数分布直方图中,已知123≤x<133和133≤x<143两组的频数和是24,且它们对应的条形高之比是1:3,则在123≤x<133中的数据个数是.在样本频数分布直方图中,有11个小长方形,若中间的小长方形的面积等于其他10个小长方形面积和的14,且样本数据有160个,则中间一组的频数为.解答题练习1.练习1:某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.课外阅读时间频数分布表课外阅读时间t 频数百分比10≤t<30 4 8%30≤t<50 8 16%50≤t<70 a40%70≤t<90 16 b90≤t<110 2 4%合计50 100%(1)a= ,b= ;(2)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?练习2:26名学生的身高分别为(身高:cm):160;162;160;162;160;159;159;169;172;160;161;150;166;165;159;154;155;158;174;161;170;156;167;168;163;162.现要列出频数分布表,请你确定起点和分点数据.练习3:某中学对八年级学生进行了一次“你最喜欢的课堂教学方式”问卷调查.根据收回的问卷,绘制了“频数分布表”和“频数分布直方图”,请你根据图表中提供的信息,解答下列问题.频数分布表①补全“频数分布表”;②在“频数分布直方图”中,将代号为“C”,“D”的部分补充完整;③这次对八年级的问卷调查是普查还是抽样调查?④这所中学八年级共有多少学生?⑤你最喜欢上述哪种教学方式(若你喜欢的教学方式表中没列举,可以将你喜欢的方式列举出来)?练习4.练习4:某中学七年级(3)班体育委员统计了全班同学60秒跳绳的次数,并列出下列下面的频数分布表:次数 80≤x≤100 100≤x≤120 120≤x≤140 140≤x≤160 160≤x≤180频数 5 10 13 18 4(1)根据图中的信息填空:全班同学共有人;跳绳的次数x在100≤x≤140范围内的同学有人.(2)在备用图中画出频数分布直方图表示上面的信息;(3)若七年级学生60秒跳绳次数(x)达标要求是:x<120为不合格;120≤x≤140合格;140≤x≤160为良;x≥160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议七年级同学应该加强体育锻炼.练习5.练习5:某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如图不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人,女生有人;(2)扇形统计图中a= ,b= ;(3)补全条形统计图(不必写出计算过程).单选题:ACBDD填空题:50 90-99 6 32 练习1:【答案】解:(1)∵总人数=50人,∴a=50×40%=20,b=1650×100%=32%,故答案为20,32%.(3)900×2016250++=684(名),答:估计该校有684名学生平均每天的课外阅读时间不少于50min.【解析】题干解析:(1)利用百分比=所占人数总人数,计算即可;(2)用一般估计总体的思想思考问题即可.练习2:【答案】起点为149.5,分五组:149.5﹣154.5,154.5﹣159.5,159.5﹣164.5,164.5﹣169.5,169.5﹣174.5.【解析】题干解析:该数据中最小值为150,最大值为174,相差24,可取区间为[149.5,174.5],并分为5个区间即可.练习3:【答案】①总人数为20÷10%=200人,代号为B的百分数:80÷200=40%,代号为C、D的频数:200×15%=30人,200×25%=50人;代号为E的百分数:20÷200=10%,②③答:普查④20+80+30+50+20=200(人).故八年级共有学生200人.⑤我最喜欢“老师提出问题,学生探索思考”这种教学方式.因为这种教学方式更能增强我的自学探究能力.【解析】题干解析:①②总人数为20÷0.10=200人,则代号为C、D的人数为200×0.15=30人;200×0.25=50人;补全图即可;所查的人数为总人数,故为普查;将这五种情况加起来即可;我最喜欢“老师提出问题,学生探索思考”这种教学方式练习4:【答案】(1)总人数=5+10+13+18+4=50;跳绳的次数x在100≤x≤140范围内的同学有23人;(2)图如右边所示:(3)七年级同学应该加强体育锻炼(只要合理即可).【解析】题干解析:由图可知:全班同学共有5+10+13+18+4=50人;跳绳的次数x在100≤x≤140范围内的同学有10+13=23人;七年级同学应该加强体育锻炼(只要合理即可).练习5:【答案】(1) 300,200;(2)12,62(3)补图如图所示:【解析】题干解析:(1)男生人数为20+40+60+180=300,女生人数为500-300=200,故答案为:300,200;(2)8分对应百分数为(40+20)÷500=12%,10分对应百分数为1-10%-12%-16%=62%,故答案为:a=12,b=62.(3)由扇形图可知8分以下的占10%,所以8分的人数为500×10%=50人,由条形图可知8分以下的男生为20人,所以可求出8分的女生人数为30人;由(2)可知10分的学生占62%,所以10分的学生共有500×62%=310人,由条形图可看出10分的男生有180人,所以10分的女生为310-180=130人,故可补全条形图。
频数分布直方图教案
《频数分布直方图》教案城南学校息教学难点:直方图与条形图的区别和尝试绘制直方图媒体运用:Powerpoint幻灯片,实物展示台教学过程:导语:(激情谈话,指出统计图与现实生活的密切联系)复习提问:1.我们已学过了哪几种统计图?它们各有什么特点?2.你能从下面三个统计图中获得哪些信息?(一)某班一次数学测验成绩:63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.大部分同学处于哪个分数段?成绩的整体分布情况怎样?先将成绩按10分的距离分段,统计每个分数段学生出现的频数,(2)有关“碟片播放时间”的调查统计图,仔细观察,你在图中找到了哪些信息,请与你的同伴交流。
教师针对学生的答题情况给予评价并揭示本节新授课题(板书:12.1.3 直方图)。
观察与思考:1.上面表格有什么特点?与前面学过的表格有什么不同?教师根据学生的发言讲解组数、组距、频数分布表等概念。
(板书:组数、组距、频数分布表)2.从这个频数分布表中你能获得哪些信息?教师对学生的回答,给予鼓励性评价。
归纳小结:从这个频数分布表中可以清楚地看出在不同范围内的学生人数。
观察探索,初步认识直方图为了更直观地描述表中的数据老师画出了统计图,从图中可以清楚地看出79.5分到89.5分这个分数段的学生数最多,90分以上的同学较少,不及格的学生数最少.观察与思考:1.这个统计图在构成上有什么特征?2.统计图的横轴和纵轴各表表示什么?教师根据学生的回答归纳总结:每个长方形的高代表对应组的频数。
我们称这样的统计图为频数分布直方图。
(板书:频数分布直方图)教师强调两点:一是各长方形之间是连续排列,没有空隙的;二是直方图实际上是用长方形的面积表示频数的,只有当长方形的宽相等时,才可以用长方形的高表示频数。
12.3频数分布表和频数分布直方图(2)
频数分布直方图学案班级姓名学号学习目标1、经历数据的收集、整理、描述与分析的过程,并在统计活动中进一步发展学生的统计意识和数据处理能力。
2、能说出频数、频率的意义,了解频数分布的意义和作用,会列出频数分布表,制作频数分布直方图和频数折线图。
3、能根据统计结果做出合理的判断和预测,并能解决简单的实际问题,体会统计对决策的作用。
学习难点:能根据统计结果做出合理的判断和预测,并能解决简单的实际问题,体会统计对决策的作用。
教学过程一、教学引入:你知道七年级学生的身高在什么范围内吗?你知道整体分布情况如何吗?你可以如何解决这个问题呢?二、动手做一做:小明抽样测量了南外七年级50名同学的身高,结果如下(单位:cm):150 148 159 156 157 163 156 164 156 159169 163 170 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 163 172 156 165 157 164152 156 153 164 165 162 167 151 161 1621、在这组数据中163厘米的频数是多少?频率呢?2、绘制频数分布表、频数分布直方图与频数分布折线图解:(1) 计算最大值与最小值的差;注:最大值与最小值的差叫___________。
(2) 决定组距和组数;注:每组两个端点之间的距离称为组距。
(3) 决定分点;(4) 列出频数分布表;注:像上述这样的表就是频数分布表。
(5) 绘制频数分布直方图注:横轴表示成绩(单位:分),纵轴表示学生人数。
注:有时为了更好地刻画数据的总体规律,将每个小长方形上面一条边的中点顺次用折线连接起来,就得到频数折线图。
二、想一想:条形统计图、扇形统计图、折线统计图和频数分布直方图,从不同的角度清楚、有效地描述数据。
请你说说它们各有什么特点?并与同学交流。
《频数分布表和频数分布直方图》word教案 (公开课获奖)2022苏教版 (3)
7.4 频数分布表和频数分布直方图学习目标:1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.通过经历调查、统计、研讨等活动,开展学生实践能力与合作意识;3.通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.重点、难点:了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.决定组距与组数,数据分布规律。
一.【预学指导】七年级学生的身高在什么范围内?整体情况如何?首先,抽样测量某中学七年级40名同学的身高,结果如下(单位:cm):144 148 159 156 157 163 156 164 156 159169 163 156 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 162 172 156 165 157 161问:①上述共有______个数据;②这些数据中最小值是________,最大值是_______,它们相差________;③研究这些数据,大局部数据大概在怎样的范围?怎么分析?二.【问题探究】问题1:某中学为了了解八年级学生身高的范围和整体分布情况,抽样调查了八年级50名同学的身高,结果如下〔单位:cm〕:150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162怎样描述、分析这50名学生身高的分布情况?1. 组距:每组两个端点之间的距离;注意:为了使每个数据都落在相应的组内,可取比数据多一位小数来分组,并把第1组的起点略微减小一点,把上述数据“划记〞到相应的组中,得到相应数据出现的频数.2. 频数分布图(左以下图);频数分布直方图(右以下图).3.频数折线图.将每个小长方形上面一条边的中点顺次用折线连接起来的频数分布直方图.问题2:问题讨论.1、用频数分布表整理数据的步骤如何?2、绘制频数分布表时,如何分组?3、根据上面的频数分布表、频数分布直方图,你能获得哪些信息?对该校八年级学生身高的整体分布情况能做出怎样的估计?4、条形统计图、频数分布直方图,从不同的角度直观、形象地描述、分析数据.请比拟它们各自的特点.三.【拓展提升】1.根据某班40名同学的体重频数分布直方图,答复以下问题:〔1〕体重在哪个范围内的人数最多?〔2〕体重超过的同学占全班同学的百分之几?2.100个数据的分组及各组的频数如下:59.5~61.5 2 61.5~63.5 563.5~65.5 9 65.5~67.5 1567.5~69.5 21 69.5~71.5 1971.5~73.5 13 73.5~75.5 975.5~77.5 5 77.5~79.5 22试画出这组数据的频数分布直方图.四.【课堂小结】1.频数分布表和频数分布直方图的作用是什么?2.频数分布直方图的特点是什么?五.【反应练习】1.一组数据有80个,其中最大值为140,最小值为40,取组距为10,那么可以分成( )A.10组 B.9组 C.8组 D.7组2.在对n个数据整理时,把这些数据分成7组,那么各组的频数之和、频率之和为( )A.n和1 B.n和n C.1和n D.1和13. 某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;假设某一小组的频数为4,那么该小组的频率为_______;假设~这一小组的频率为,那么可估计该校九年级学生视力~范围内的人数约为________.4.某校八年级学生进行体育测试,八年级(2)班男生的立定跳远成绩绘制成如图l2—23所示的频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答以下问题.(1)该班有多少名男生?(2)假设立定跳远的成绩在米以上(包括米)为合格,那么该班的这项测试合格率是多少?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
八年级数学下册 7.4 频数分布表和频数分布直方图导学案(无答案)苏科版(2021年整理)
江苏省宜兴市八年级数学下册7.4 频数分布表和频数分布直方图导学案(无答案)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省宜兴市八年级数学下册7.4 频数分布表和频数分布直方图导学案(无答案)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省宜兴市八年级数学下册7.4 频数分布表和频数分布直方图导学案(无答案)(新版)苏科版的全部内容。
7。
4频数分布表与频数分布直方图课前参与一。
预习内容:认真阅读课本2825~P P二.尝试探索:1、为了解某校八年级学生的身高发育情况,你认为应如何做?可以从什么方面了解?2、阅读课本P25第一段调查数据,完成下列问题:①50名学生中最低身高是 cm ,最高身高是 cm,你是如何确定的?②根据上面两个数据你能得到什么结果?是多少?③如果想知道学生的身高在不同高度的分布情况,上述数据能得到吗?课中参与小结:对于③我们只是知道50名学生身高变化总范围。
有时只知道这一点往往还不够,还希望知道身高在哪个小范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这50名学生的身高数据在各个小范围内所占的比的大小。
阅读P25讨论:思考交流:1、要想知道哪个小范围学生多,哪个少,你认为首先应该怎么做?2、如何确定每个小范围?3、如何确定每个小范围中学生人数?你会吗?试试看把每个小范围中学生数放入表格中,我们把这个表格称为:频数分布表:归纳:确定数据的频数分布表的步骤是什么?根据数据的表示方式,我们还可以采用频数分布直方图表示,课本P26小结:频数分布直方图直观地给出了样本中学生身高处于各个组内的人数,由此可估计该年级学生身高的整体分布状况.思考:画数据的频数分布直方图的步骤是什么?课后参与1.已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可以分成 A.10组 B.9组 C.8组 D.7组 ( )2.在对n个数据整理时,把这些数据分成7组,则各组的频数之和、频率之和为A.n和1 B.n和n C.1和n D.1和1 ( )3.在数字l241421235623412141中,“1”出现的频数是______,“2"出现的频数是________,“4”出现的频率是_______,“3”出现的频率是_______.4.下表是某班学生在一次身高测量中得到的统计结果:请回答:(1)这个班总人数是_______人;身高______、_____人数最多,分别是______人、_______人.(2)身高最高、最低的分别是______米、________米,他们分别是_______人、_______人.最高的与最低的相差_______米.5.下表是对某班50名学生如何到校问题进行的~次调查结果,根据表中已知数据填表:6。
7.4频数分布表和频数分布直方图 最新精品导学案
7.4频数分布表和频数分布直方图【学习目标】1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.能根据统计结果做出合理的判断和预测,并能解决简单的实际问题.【学习重点】了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.【学习难点】决定组距与组数,数据分布规律.【学习过程】一、自主预习研读课本P25-30,思考并向组长口头回答下列问题:1.用频数分布表整理数据的步骤如何?绘制频数分布表时,如何分组?2.根据图7-6中的频数分布表、频数分布直方图你能获得哪些信息?对该校八年级学生的身高的整体分布情况能做出怎样的评估?3.体会条形统计图、频数分布直方图的关系,比较它们的异同.二、合作探究例1.根据某班40名同学的体重频数分布直方图回答(1)体重在人数最多;(2)体重超过59.5kg的同学有人.(例2图)(例2图位置)例2.某校抽检60个学生的体重如下(单位:kg):38,32,39,40,35,45,37,38,40,29,39,41, 37,42,39,34,36,39,42,36,44,33,29,40,35,39,37,46,39,31,39,36, 42,38,41,36,44,34,38,38,41,39,39,34,36,48,30,39,37,42,42,45,34,48, 43,35,39,44,43,44.(1)把表格填写完整;(2)根据上表绘制频数分布直方图.分组合计划记频数三、变式拓展例3.(2016山东聊城)为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动.为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?四、成长笔记1.获得一组数据的频数分布的一般步骤是:(1)计算与的差;(2)确定组距与;(3)决定;(4)列;(5)画.2.在频数分布直方图中,各小组频数(小长方形的高)之和等于;各小组的频率之和等于 .五、课堂反馈1.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为3:4:2:1,则第一小组的频率为,第二小组的频数为.2.某地区为了增强市民的法制观念,抽调了一部分市民进行了一次知识竞赛,竞赛成绩(得分取整数)进行整理后分成五组,并绘制成频数分布直方图,请结合直方图提供的信息填空:⑴共抽取了_______人参赛;⑵60.5~70.5这一分数段的频数是________,频率是________.3.完成课本27-28页练习与习题.4.研读课本29-30页阅读材料“学会读统计图”.【课后作业】班级【温故知新】姓名1.已知20个数据:28、31、29、33、27、32、29、31、29、27、32、34、29、31、34、33、30、28、32、33.在30.5-32.5这一组的频数与频率分别为()A.5,0.25 B.4,0.20 C.6,0.30 D.6,0.752.为了帮助班上的两名贫困学生解决经济困难,班上的20名学生捐出了自己的零花钱,他们的捐款数如下(单位:元):19,20,25,30,28,27,26,21,20,22,24,23,25,29,27,28,27,30,19,20.班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心.制图时必须先计算出最大值与最小值的差为_________;若取组距为2,则应分成_______组;若第一组的起点定为18.5,则在26.5~28.5范围内的频数为_______.3.给出下面一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28,试将上述数据分成4组,列出频数分布表并画出频数分布直方图.4.(2016·泰州)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如下不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18 a围棋类14 0.28戏剧类8 0.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校喜爱围棋的学生大约有多少人?【探究应用】5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过15分钟的频率是()A.0.1 B.0.4 C.0.5 D.0.96.(2016·福建莆田)在大课间活动中,同学们积极参加体育锻炼.小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.(第6题图)(第7题图)7.(2018•高邮期末)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在15~20之间的频率为.8.(2016·贵州毕节·改编)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有________名学生参加;(2)直接写出表中a=______,b=_______;(3)尝试画出相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为_______.7.4频数分布表和频数分布直方图组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a0.32五90≤x<100 8 0.161.C 点拨:其中在30.5~32.5组的共有6个,则30.5~32.5这组的频率是60.3020=. 2.11,6,5 点拨:(1)该组数据中,最大的数,30,最小的数为19,∴极差301911=-=;(2)Q115.52=,∴若取选定组距为2,则此20个数据将分成6组;(3)在26.528.5--范围内的频数有28,27,27,28,27共5个数,即频数为5. 3.解:将这组数据从小到大依次排列为:21,22,23,24,24,25,25,25,25,25,26,26,26,27,27,28,28,29,29,30. 可以看出:这组数据的最大值为30,最小值为21,相差9,按“组距”为3分为4组,制作频数分布表和频数分布直方图如下:频数分布直方图分组 频数 20.5-23.5 3 23.5-26.5 10 26.5-29.5 6 29.5-32.51合计 20(第3题表) (第3题图) (第4题图)4.解:(1)0.36 点拨:140.2850÷=,18500.36a =÷=;(2)500.2010b =⨯=,如图所示;(3)15000.28420⨯=,答:估计该校最喜爱围棋的学生大约有420人.5.D 点拨:Q 不超过15分钟的通话次数为2016945++=次,通话总次数为20169550+++=次,∴通话时间不超过15min 的频率为450.950=,故选:D . 6.480 解:总人数是:1020%50÷=(人),第四小组的人数是:50410166410-----=,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:1064120048050++⨯=. 7.0.1 解析:学生仰卧起坐次数在15~20之间的频率是:30.130=. 8.解:(1)由表格可得,本次决赛的学生数为:100.250÷=,故答案为:50;(2)500.3216a =⨯=,14500.28b =÷=,故答案为:16,0.28; (3)频数分布直方图如下图所示;(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.320.16)100%48%+⨯=,故答案为:48%.。
10.2.1频数分布直方图学案
10.2 直方图学案班级姓名 2011年月日三维目标:1、使学生了解描述数据的另一种统计图——直方图,通过事例掌握用直方图的几个重要步骤,理解组距、频数、频数分布的意义,能绘制频数分布图。
2、感受数据整理的过程,体会表格在数据整理中的作用。
3、感受统计在生产生活中的作用,增强学习数学的兴趣。
初步建立统计的概念,培养调查研究的良好习惯和科学态度。
重、难点:探究用频数分布直方图描述数据的方法。
通过频数分布直方图在数据中所起的作用,反应数据中蕴涵的的规律,感受和体会统计结果对决策的意义和作用。
自学过程:一、基本概念:(阅读课本163---166页)直方图:组距:频数:频率:二、动手做一做:问题1: 为了参加全校各个年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位:cm)如下:1、在这组数据中163厘米的频数是多少?频率呢?2、绘制频数分布表、频数分布直方图与频数分布折线图解:(1) 计算最大值与最小值的差;注:每组两个端点之间的距离称为组距。
(3) 决定分点;(4) 列出频数分布表;注:像上述这样的表就是频数分布表。
(5) 绘制频数分布直方图注:横轴表示成绩(单位:分),纵轴表示学生人数。
三、小试锋芒:在对七年级某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题。
(1)该班有名学生;(2)70.5~80.5这一组的频数是,频率是;直击中考:【2008:泰州】为了增强环保意识,6月5日“世界环保日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制躁声污染”课题学习研究小组,抽样调查了全市40个躁声测量点在某时刻的躁声声组(单位:dB),将调查的数据进行处理(设所测数据是正整数)得到频数分布表如下:请你根据表中提供的信息解答下列问题:(1)频数分布表中的a= ,b= ,c= ;(2)补全完整如图所示的频数分布直方图;(3)如果全市共有200个测试点,那么在这一时刻躁声声级小于75dB的测量点约有多少个?。
频数分布表与频数分布直方图
大数据整合与共享
未来将有更多的数据整合和共享平台出现,频数分布表与频数分布直方图将作为重要的数据分析工具, 为全球范围内的数据共享和分析提供支持。
谢谢
THANKS
频数分布直方图的优点
可以直观地看出数据的分布趋势和异常值,便于进行定性分析;通过颜色的深浅、柱子的高低可以快 速判断数据的集中和离散程度。缺点:无法详细记录每个数据值的频数,定量分析时需要结合其他工 具或方法。
04 频数分布表与频数分布直方图的应用
CHAPTER
在统计学中的应用
描述数据分布特征
频数分布表和直方图可以清晰地展示数据的 分布情况,帮助我们了解数据集中和离散的 程度。
数据探索和可视化
通过频数分布直方图,我们可以直观地了解数据 的分布情况,进一步探索数据之间的关系和规律。
3
对比不同数据集
通过比较不同数据集的频数分布表和直方图,我 们可以发现它们之间的差异和相似之处,进而进 行数据分析和解释。
在实际生活中的应用
人口普查数据统计
在人口普查中,频数分布表和直 方图被广泛应用于展示不同地区、
03 频数分布表与频数分布直方图的比较
CHAPTER
特点比较
频数分布表
以表格形式展示数据的频数分布情况 ,可以清晰地看出数据的数量和分布 特征。
频数分布直方图
以图形方式展示数据的频数分布情况 ,可以直观地看出数据的分布趋势和 异常值。
应用场景比较
频数分布表
适用于需要详细了解数据分布情况,进行定量分析的场景。例如,在市场调研中,可以使用频数分布表来分析不 同年龄段、性别等人群的数量分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频数分布表和直方图
学习目标 1、理解频数、频数分布的意义,学会制作频数分布表; 2、学会画频数分布直方图. 学习重点 数据整理的几个重要步骤.
学习难点
对数据的分组及频数分布表的制作.
学 习 过 程
备 注
一、自主学习 探究新知
【问题】为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:)如下,
158 158 160 168 159 159 151
158 159 168 158 154 158 154 169 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156 166
选择身高在哪个范围的学生参加呢?
【分析】为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.
为此我们把这些数据适当分组来进行整理. 1、计算最大值与最小值的差(极差)
最小值是 ,最大值是 ,它们的差是 . 说明身高的变化范围是 . 2、决定组距与组数
把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.
从最小值起每隔3作为一组,即组距为 ,那么组数为:
组距
最小值
最大值 =
因为3
2
7是分数,所以将数据分成8组.所以组数为8,组距为3
将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173. 【注意】①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多.
3、频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).用表格整理可得频数分布表:
身高分组 划计 频数 152149〈≤x 155152〈≤x 158155〈≤x 161158〈≤x 164161〈≤x 167164〈≤x 170167〈≤x 173170〈≤x 合计
注:画记也可以写成频数累计.
从表格中你能看出应从哪个范围内选队员吗?
可以看出,身高在155≤x <158,158≤x <161,161≤x <164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155至164(不含164)的学生中选队员.
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图.
上面小长方形的面积表示什么意义?
小长方形的面积=×=.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少.
等距分组时,各小长方形的面积(频数)与高的比是常数(组距).因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数.、
二、自主应用巩固新知
为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5
6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0
7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7
7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3
6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.5
6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0
6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
列出样本的频数分布表,画出频数分布直方图.
探究:将课本例题中的组距改为0.5,重新分组列频数分布表,画频数分布直方图,并说出大麦穗的分布情况.
⑴计算最大值与最小值的差
⑵决定组距和组数,以0.5为组距
⑶列频数分布表
分组划记频数
0.4〈
≤x
5.4
≤x
5.4〈
0.5
≤x
0.5〈
5.5
≤x
5.5〈
0.6
≤x
5.6
0.6〈
≤x
5.6〈
0.7
≤x
5.7
0.7〈
合计
⑷画频数分布直方图
仔细观察上面的表和图,这组数据的分布规律是怎样的?
麦穗长度大部分落在至之间,其他区域较少.长度在范
围内的麦穗个数最多,有个,长度在范围内的麦穗个数很
少,总共只有个.
【随堂练习】
P21 大家谈谈
三、自主总结拓展新知
主要学习的是频数分布直方图的特点和作用,能从解决实际问题的需要出发,制作频数统计图,以及频数分布折线图与前面的折线统计图描述数据有一定的差异,折线统计图是描述总体数据的变化趋势,而频数折线统计图是描述各个范围内频数的分布情况.
四、自我练习
1、P22 练习
2、课后习题1、2。