机电传动控制课件-第1章 绪论

合集下载

机电传动控制课件讲解

机电传动控制课件讲解

第一节 常用低压电器
第一节 常用低压电器
直流接触器 直流接触器的主触头用来通断直流主电路。和交
流接触器不向,直流接触器的铁心中不会产生涡 流和磁滞损耗,放不会发热。为了便于加工,铁 心用整块电工软钢制成。为使线圈散热良好,通 常将线圈绕制成长而薄的圆筒状,且不设线圈骨 架,使线圈和铁心直接接触。 由于直流接触器的线圈卞通以直流电,故没有较 大的启动电流冲击,铁心和衔铁也44会因电源频 率的变化而产生猛烈的撞击,因此直流接触器的 寿命比交流接触器长,适用于可靠性要求高或要 求频繁动作的场合。
第一节 常用低压电器
接触器
第一节 常用低压电器
构造
常开、常闭触点在动作时都行动,但一般先“断开” 后“闭合”
第一节 常用低压电器
常闭触点
常开触点
接触器原理示意图
线圈电源
第一节 常用低压电器
第一节 常用低压电器
交流接触器 交流接触器的主触头用于接通和分断交流主
电路,当交变磁通穿过铁心时,特产生涡流和隘 滞损耗.使铁心发热。为了减少因涡流和磁滞损 耗造成的能量损失,铁心用硅钢片冲制后叠铆而 成。为了便于散热,线圈在骨架上绕成扁而厚的 圆筒形状,并与铁心隔离。交流接触器的线团匝 数较少,故电阻小,当线圈通电而衔铁尚未吸合 的瞬间,电流将达到工作电流的10。15倍。如果 衔铁被卡住而不能吸合,或频繁动作,线圈将有 可能被烧毁。所以,对于要求频繁启停的控制系 统不宜采用交流接触器。
第一节 机电传动及其控制系统的发展概况
瑞士IBAG公司电主轴结构
第一节 机电传动及其控制系统的发展概况
二、机电传动控制系统的发展
1.继电接触器控制
20世纪20~30年代
2.顺序控制

《机电传动控制》PPT课件

《机电传动控制》PPT课件
都要靠电动机及其控制系统来实现。
机电传动控制的任务
一、机电传动的特点
• 5、机电传动系统构成:
电动机。产生原动力 生产机械。拖动对象 传动机构。传递机械能 电气控制设备。控制电动机运转 电源。对电动机和电气控制设备供电
一、机电传动的特点
• 它们之间的关系可表示为
电源
自控设 备
电动机
传动机构
的需要。
电动机
二、机电传动系统发展概况
• 1、传动方式经历了三个阶段:
成组拖动 单机拖动 多电机拖动
二、机电传动系统发展概况
传动方式 成组拖动:一台电动机带动一根天轴,再由天轴
通过带轮和传动带分别拖动各生产机械。特点: 效率低,故障影响广。
单机拖动:一台电动机拖动一个机械。特点:如
一 机电传动系统的动力学方程
电动机 (M)
TL
生产机械
TM
MM
+TL
单轴拖动系统
一 机电传动系统的动力学方程
• 单轴(单级)机电传动系统的运动方程
• 由牛顿第二定律
TM
TL

J
d
dt
(1.1)
J m 2 mD2 / 4
G mg TM----电动机转矩
GD2 J
4g
(1.2)
TL----负载转矩 GD2---飞轮矩
2 n
60
(1.3)
TM
TL

GD2 375
dn dt
(1.4)
n-----转速
t-----时间 ω 为角速度
375 4g 60
2
单位 :
米 秒分
• GD2=4J
• GD2是一个整体,不是G与D2 的乘积, GD2 由产品样本或机械手册上查出。 GD2 中的 D 为回转直径,不是实际直径。

机电传动1第一章 绪论

机电传动1第一章 绪论
机电传动控制
前期基础课程
• 理论力学 • 电工学 • 电子技术
第一章 绪论
• 机电系统的组成 • 机电传动控制的目的和任务 • 机电传动控制的发展状况 • 课程的性质和任务 • 课程气控 制系统
机电传动 系统
(电动机)
机电传动控制
机械运 动部件
1.2 机电传动控制的目的和任务
机电传动发展 成组拖动:一台电机拖动一根天轴,由天轴通过传动装置(皮带轮和皮
带)拖动多个生产机械。 优缺点:生产效率低,劳动条件差,电机发生故障会造成成组生产机械
停车。
机电传动发展 单电动机拖动:用一台电机拖动一台生产机械。 优缺点:当一台生产机械运动部件较多时,机械传动机构非常复杂。
机电传动发展
多电动机拖动:一台生产机械的每一个运动部件分别由一台专门的电动机拖动。 如数控机床、加工中心。 优缺点:控制灵活。
控制系统的发展状况
① 简单的接触器-继电器控制(速度慢,精度差); ② 电机放大机控制(控制系统由断续控制发展到连续
控制); ③ 大功率可控整流元件晶闸管控制(可控硅);方便
成绩评定方式
• 总课时:46,其中授课40(4时/周×10周),实验6;
• 平时成绩:作业+考勤
• 实验成绩:三个试验(直流电机、交流电机 、
PLC)
• 试卷成绩(80% ,闭卷 )
1.4 课程的性质和任务
• 技术的高水平,产品的高质量 • 机、电、液、计算机综合控制技术的掌握 • 强电控制技术系统化
1.5 本课程的学习内容
一、机电传动的动力学基础 二、电动机:直流电机,交流电机,控制电机; 三、 控制电器及控制系统:继电器—接触器控制,PLC; 四、电力电子学 五、 直流、交流调速控制系统。

《机电传动控制》课件

《机电传动控制》课件

感应电机
基于电磁感应原理,具有成本低 、可靠性高的优点,在工业自动 化、家用电器等领域广泛应用。
先进控制算法的研究与应用
滑模控制
01
通过在状态空间中设计滑模面并选择合适的切换规则,实现对
系统状态的快速响应和鲁棒性。
模糊控制
02
பைடு நூலகம்
利用模糊集合理论将不确定性因素转化为可计算的语言变量,
实现对复杂系统的有效控制。
03
机电传动控制系统的设计与实现
系统需求分析与设计
需求分析
明确系统的功能要求、性能指标和约束条件,为后续 设计提供依据。
总体设计
根据需求分析,确定系统的总体架构、组成模块和相 互关系。
详细设计
对每个模块进行详细设计,包括电路设计、机械结构 设计、软件设计等。
控制算法的选择与实现
算法选择
根据系统需求和性能要求, 选择合适的控制算法,如PID 控制、模糊控制等。
机床的运动状态和加工参数。
数控机床控制系统的应用范围包括航空、航天、汽车、模具等领域,为 现代制造业的发展提供了重要的技术支持。
智能家居控制系统
智能家居控制系统是实现家庭智能化和舒适化的重要手段 之一,它通过控制家庭设备的开关、调节设备的运行状态 和参数等,为家庭生活提供便利和舒适。
智能家居控制系统通常采用无线通信和网络技术,实现家 庭设备的互联互通和控制,同时通过传感器和执行器,实 时监测和调整家庭设备的运行状态和环境参数。
步进电机
利用脉冲信号控制电机转子步 进旋转的原理,实现精确的角
度和位置控制。
伺服电机
利用伺服系统控制电机旋转角 度和速度的原理,实现高精度
和高动态性能的控制。
控制器类型与工作原理

第一章 机电传动与控制ppt课件

第一章 机电传动与控制ppt课件

身框架,机械连接等。材料,工艺,性能和水平的提高。
适应产品的高效,多功能,可靠,结构上,小型,轻量
和美观等要求。
(2)。能源部分
为系统提供能量和动力,使系统正常运行。常用
主要能源:电源,气压源和液压源等
2019/10/11
10
(3)。测试传感部分
对系统运行中所需要的本身和外界环境的各种参数 及状态进行检测,变成可识别的信号。传输到信息处理 单元。经过分析和处理后,产生相应的控制信息。
11
(5)。控制及信息处理单元
将各传感信息和外部命令进行集中存储,分析,加工,并 按一定的程序和节奏发出相应的指令。控制整个系统有目 的运行。
组成:计算机,可编程控制器PLC,数控装置,逻辑电路, I/O,A/D,D/A。
要求:处理速度快,可靠性高,抗干扰能力强。完善的系 自我诊断功能。 智能化,小型化,轻量化,标准化等。
(4)。驱动机构执行机构
提供动力,驱动各种执行机构,来完成各种动作 和功能。 要求:高效率,快速响应特性。对外部适应性和可靠性。
根据控制信息和指令,完成要求的动作。 执行机构是运动部件:机械,电磁,电液等。
要考虑匹配性,改善性能,提高刚度,减轻重量, 实现模块化,标准化和系列化。提高整体的可靠性。
2019/10/11
2019/10/11
8
软件程控和微电子电路的逻辑,有目的信息流向导引下, 相互协调,有机融合和集成。形成物质,能量和信息 的有序规则运动。在高功能,高质量,高可靠性,低 能耗的意义上,实现特定功能价值的系统工程技术。
A.机电一体化技术
它是微电子技术,计算机技术,信息技术与机械 技术相结合的,新兴的综合性的高新技术与微电子技 术的有机结合。

机电传动控制课件__第1章

机电传动控制课件__第1章


第一章 绪论
直流电机:采用直流电源,调速特性好,但换相电
刷影响其容量、使用范围和寿命。
交流电机:采用交流电源,克服了直流电机的缺点,
现代交流调速技术的发展使其成为主流。
步进电机:运动距离和输入脉冲成正比,控制方便,
但功率和精度较差。
问题:在矿井下施工,宜
采用何种电动机?
第一章 绪论
直 流 、 交 流 电 机 比 较
第一章 绪论
根据磁滞回线形状的不同,铁磁材料可分为硬
磁材料(hard magnetic material)和软磁材料(soft magnetic material)。 硬磁材料的磁滞回线胖宽,剩磁、矫顽力大,
如钨钢、钴钢、镍铝钴合金、钕铁硼等。一般用来
制造永久磁铁。
第一章 绪论
软磁材料的磁滞回线瘦窄,剩磁、矫顽力小, 如硅钢片、铸钢等。由于电机铁心采用软磁材料制 成,其磁滞回线瘦窄,在进行磁路计算时,为了简 化计算,不考虑磁滞现象,而用基本磁化曲线来表 示B与H之间的关系,故通常所讲的铁磁材料的磁化 曲线是指基本磁化曲线。
第一章 绪论 第一章 概 述 • 机电传动的定义是什么? • 机电传动的作用是什么? • 机电传动的发展过程及趋势是什么? • 什么是成组拖动、单电机拖动、多电机拖动? 优缺点是什么? • 机电传动控制系统的发展过程与趋势是什么?
第一章 绪论
机电传动定义和目的
※定义:以
电动机为原动机(动力源)驱动生产机
械的系统的总称。 ※目的:将电能转换为机械能,实现生产机械的启 动、停止及速度调节,满足各种生产工艺过程的要 求,保证生产过程的正常进行。 广义任务:使机械设备、生产线、车间、整个工厂 实现自动化; 狭义任务:电动机驱动生产机械,实现产品数量的 增加、质量的提高、成本的降低、劳动条件的改善 及能量的合理利用。

程宪平机电传动与控制(第三版)课件

程宪平机电传动与控制(第三版)课件

控制系统的设计方法
经典控制理论设计方法
经典控制理论主要采用根轨迹法和频 率法等设计控制器,以达到系统的稳 定性、快速性和准确性要求。
现代控制理论设计方法
现代控制理论主要采用状态空间法设 计控制器,以达到最优控制和自适应 控制等高级控制目标。
05
机电传动控制系统实例
Chapter
数控机床的传动控制系统实例
电动机的发明和应用,使得机械传动 和控制技术进入电气时代。
机电传动与控制的重要性
01
提高生产效率
通过精确的传动和控 制,实现自动化生产 ,提高生产效率。
02
保证产品质量
精确的传动和控制技 术可以保证产品质量 的稳定性和一致性。
03
降低能耗
优化传动和控制方式 ,降低能源消耗,实 现节能减排。
04
提高安全性
1 2
控制系统的定义
控制系统是由控制器、受控对象和反馈通路组成 的整体。
控制系统的分类
按照不同的分类标准,如控制方式、控制精度、 控制速度等,可以将控制系统分为多种类型。
3
控制系统的基本组成
控制系统由控制器、受控对象和反馈通路三部分 组成,其中控制器负责调节受控对象的输出,使 其达到预定的目标值。
控制系统的数学模型
自动化生产线的传动控制系统实例
自动化生产线概述
自动化生产线是一种高度自动化的生产流程,通过自动化 设备实现生产过程的连续性和高效性。
自动化生产线的传动系统
自动化生产线的传动系统主要包括传送带、提升机和传动 装置等部分,通过精确控制实现生产线的连续运转。
自动化生产线的控制技术
自动化生产线的控制技术主要包括可编程逻辑控制器、分 布式控制系统和传感器等,实现对生产线的精确控制。

机电传动控制课件第1章

机电传动控制课件第1章

计算机控制:
微处理器取代模拟电路作为电动机控制 器,可使电路更简单、实现较复杂的控制 、无零点飘移、控制精度高、可提供人机 交互界面、能多机联网工作等
数字伺服控制:
伺服系统:
是使物体的位置、方位、状态等输出被控量能够跟 随输入目标值(或给定值)任意变化的自动控制系统。
当今世界伺服驱动的主流及发展方向是交流伺服系统,采 用嵌入式控制器的电动机数字交流伺服系统的出现,使机电 传动控制技术进入了信息化时代
第1章 概述
传动 ——运动的传递
(1)机械传动 (2〕流体传动
第1章 概述
1.1 基本概念:(什么是机电传动?)
生产机械组成: 工作机构、传动机构、 原动机、控制系统。
机电传动:原动机为电 动机时,由电动机通过 传动机构带动工作机构 进行工作。
机电传动系统
“机电传动”部分
包括电动机、电动机和运动部件相互联系的传 动机构及电气控制电路
课程的性质与任务
• 机电一体化技术的主要课程,是以驱动 系统为主导,以控制为主线,将元、器 件与控制系统有机结合的综合性课程。
• 通过本门课程的学习,希望同学们掌握 机电传动系统中主要运用到得元、器件 原理,了解机电传动系统的设计,尤其 是其控制电路设计的主要思路。
(1)成组拖动(初期):一台电动机拖动一根 天轴,由天轴通过皮带轮和皮带分别拖动各生产 机械,一旦电动机出了故障,成组生产机械停车。
(2)单电机拖动:一台电动机拖动一 台生产机械,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。
20世纪40-50年代:老式切削机床 现今:一些中小型通用机床,运动部件较少
“机电传动控制”部分
电梯
机电传动系统的任务

《机电传动控制》教学课件—第1章 绪论

《机电传动控制》教学课件—第1章  绪论

把上述各种参量的关系用方程式表示出来,则有:
TM
TL
J
dω dt
(式1-1)
TM ——电动机的输出转矩(亦称驱动转矩,N·m);
TL ——生产机械的负载转矩(N·m);
J ——机电传动系统的转动惯量(kg·m2);
——机电传动系统的角速度(rad/s);
t ——时间(s)
TM
TL
J
dω dt
成组驱动属于电动机稀缺、昂贵时期的无奈之举,现今 已经被淘汰。
(2)单电机驱动
单电机驱动是指每一 台生产机械,都由一台电 动机单独驱动,较成组驱 动已有很大进步。
但是,当生产机械的 运动部件较多时,则需要设 置分动箱、离合器等机构, 总体结构仍嫌复杂,无法满 足生产工艺的特殊要求。
图1-3 单电机驱动(立式钻床)
程的方法
1.1 机电传动系统
1.1.1机电传动系统与机电传动控制 1. 机电传动系统的组成
机电传动系统一般由电力供应系统、电气控制系统、机 电传动机构及生产机械组成(图1-1)。
图1-1 机电传动系统的组成
2. 机电传动控制
电气控制系统和机电传动机构是机电传动系统的重要组 成部分,也是机电传动控制学科的主要研究内容。
因此,在生产工艺要求复杂多变的场合,可编程序控制 器可以大显身手,并已经成为机电传动控制系统的主流控制 器件。
图1-6 可编程序控制器控制系统
(3)数字控制系统
自1952年美国出现第一台数控铣床,1958年出现加工 中心之后,计算机数字控制(Computerized Numerical Control ,CNC)技术开始逐渐普及。
柔性制造系统FMS与计算机辅助设计(Computer Aided Design ,CAD)、计算机辅助制造(Computer Aided Manufacturing,CAM)相融合,又促使工业生产向计算机 集成制造系统(Computer/contemporary Integrated Manufacturing Systems,CIMS)迈进。

《机电传动控制》课件第1章

《机电传动控制》课件第1章
电气控制系统和液压、气动控制系统将充分发挥各自的
自20世纪70年代以来,单片机发展很快。由于单片机的 结构和指令系统都是针对工业控制的要求而设计的,其成本 低、集成度高,可灵活地组成各种智能控制装置,解决从简 单到复杂的各种任务,实现较佳的性能价格比,而且从单片 机芯片的设计制造开始,就考虑了工业控制环境的适应性, 因而它的抗干扰能力较强,特别适合于在机电一体化产品中 应用,在机电传动与控制中也有许多应用。
5. 信息处理与控制装置(控制功能) 机电传动控制系统的核心是信息处理与控制。机电传动 控制系统的各个部分必须以控制论为指导,由控制器(继电器、 可编程控制器、微处理器、单片机、计算机等)实现协调与匹 配,使整体处于最优工况,实现相应的功能。在现代机电一 体化产品中,机电传动系统中控制部分的成本已占总成本的 50%。特别是近年来随着微电子技术、计算机技术的迅速发 展, 越来越多的控制器使用具有微处理器、计算机的控制系 统,输入/
机械制造自动化的高级阶段是实现设计、制造一体化, 即利用计算机辅助设计(CAD)与计算机辅助制造(CAM)形成 产品设计和制造过程的完整系统,对产品构思和设计直至装 配、试验和质量管理这一全过程实现自动化。为了实现制造 过程的高效率、高柔性、高质量,研制计算机集成生产系统
(CIMS)
近些年来,许多工业部门和技术领域对高响应、高精度、 高功率-重量比、大功率和低成本控制系统提出的要求,促使 了液压、气动控制系统的迅速发展。液压、气动控制系统和 电气控制系统一样,由于各自的特点,在不同的行业得到了
所谓单电动机拖动,就是用一台电动机拖动一台生产机 械,它虽较成组拖动前进了一步,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。多电动机拖动即一 台生产机械的每一个运动部件分别由一台专门的电动机拖动。 例如,龙门刨床的刨台、左右垂直刀架与侧刀架、横梁及其 夹紧机构,均分别由一台电动机拖动。这种拖动方式不仅大 大简化了生产机械的传动机构,而且控制灵活,为生产机械 的自动化提供了有利的条件。所以,现代化机电传动基本上

《机电传动控制教案》课件

《机电传动控制教案》课件

《机电传动控制教案》课件第一章:机电传动控制概述1.1 机电传动的概念1.2 机电传动控制的作用1.3 机电传动控制的发展趋势第二章:机电传动元件2.1 电动机的基本原理与结构2.2 常用电动机及其特性2.3 机电传动元件的选型与安装第三章:机电传动控制系统3.1 机电传动控制系统的组成3.2 控制器的选择与设置3.3 传感器的选择与安装3.4 执行器的选择与安装第四章:机电传动控制策略4.1 速度控制4.2 位置控制4.3 力矩控制4.4 节能控制第五章:机电传动控制实例分析5.1 电梯控制系统5.2 数控机床控制系统5.3 控制系统5.4 电动汽车控制系统本教案旨在帮助学生了解机电传动控制的基本概念、元件、控制系统及策略,并通过实例分析使学生能够将理论知识应用于实际工程中。

希望对您有所帮助!第六章:机电传动控制系统的稳定性与动态响应6.1 系统稳定性的概念6.2 机电传动控制系统的建模6.3 系统动态响应的分析6.4 稳定性分析在控制系统设计中的应用第七章:机电传动控制系统的性能优化7.1 系统性能指标7.2 控制器参数优化方法7.3 系统辨识与参数估计7.4 性能优化算法及其应用第八章:故障诊断与容错控制8.1 故障诊断的基本方法8.2 机电传动系统的故障模型8.3 容错控制策略8.4 故障诊断与容错控制在机电传动控制中的应用第九章:节能控制与环保技术9.1 节能控制的重要性9.2 节能控制策略9.3 环保技术在机电传动控制中的应用9.4 节能与环保技术的未来发展趋势第十章:案例分析与实践10.1 机电传动控制系统设计案例10.2 故障诊断与容错控制案例10.3 节能控制与环保技术应用案例10.4 综合实践项目设计与实施本教案通过系统稳定性与动态响应、性能优化、故障诊断与容错控制、节能控制与环保技术等内容的学习,使学生掌握机电传动控制技术的综合应用。

通过案例分析与实践,培养学生解决实际工程问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Td 动态转矩
Td
TM
TL
GD 2 375
dn dt
转矩平衡方程式: TM TL Td
TM TL Td
系统处于稳态时,电动机输出转矩的大小,仅由电 动机所拖动的负载转矩决定。
2.转矩方向的确定
因为电动机和生产机械以共同的转速旋转,所以,一般
以 n(或 )的转动方向为参考 来确定转矩的正负。
为正。此时,系统的运动方程式为:
为负,TL
2 dn TM TL J 60 dt
当重物下降时,TM 为正,TL 也为正。TM 、TL 、n
的方向如图所示。
2 dn TM TL J 60 dt
TL
TM
J
2 60
dn dt
3.多轴拖动系统的等效折算
TM
TL
GD 2 375
dn dt
负载转矩的折算
电动机的功率、机械 特性以及安装位置可以进 行有针对性的、个性化的 配置,以充分满足生产工 艺的实际需求。
2.电气控制系统的发展 (1)继电器—接触器控制系统
“硬逻辑”
难以实现控制 关系的“随机 应变”
在相对简 单的控制系统 中,仍占据主 导地位
(2)可编程序控制器(PLC)控制系统
微电子和计算机技 术 “软逻辑”
(1)TM的符号与性质
当 TM的实际作用方向与 n 的方向相同时(符号相同), 取与 n 相同的符号,TM 为驱动转矩;
当 TM的实际作用方向与 n 的方向相反时,取与 n 相
反的符号,TM 为制动转矩。
驱动转矩促进运动; 制动转矩阻碍运动。
(2) TL 的符号与性质
GD 2 dn
TM TL 375 dt
n
TM
GDa2
nb j2,η2
GDb2
j1,η1
nf
工作机构
GDf2
Tl
系统飞轮矩的折算 TM
n
GD2
工作机构 TL
• 1). 转矩折算
TM
遵循功率守恒原则:即
Tll TL
n
GDa2
nb j2,η2
GDb2
j1,η1
nf
工作机构
GDf2
Tl
TL
Tll
Tl nl n
Tl j
TM
n
GD2
工作机构 TL
1.2机电传动系统的动力学分析 1.2.1 机电传动系统的运动方程式
机电传动系统是一个由:电动机驱动、通过传动机构带动生产 机械运转的整体。
1.单轴拖动系统运动方程式
TM TL 静态(相对静止状态)或稳态(稳定运转状态)
TM TL 转速或角速度就要发生变化,产生角加速度
TM
TL
J
dω dt
(2)单电机拖动
每一台生产机械,都 只由一台电动机单独拖动
当生产机械的运动部 件较多时,需设置分动箱、 离合器等机构,总体结构 仍较复杂,无法满足生产 工艺的特殊要求
(3)多电机拖动
电动机品种的丰富、价格的降低、机械特性的多样化
指在大型、复杂的生 产机械上,同一台设备的 每一个运动部件都由一台 专门的电动机进行拖动
机电传动系统的运动方程式
2 n
60
J
m 2
G
D
2
GD2
g 2 4g
TM
TL
GD 2 375
dn dt
工程形式的系统运动方程式是研究机电传动
系统的最基本的方程式,它决定着机电传动系统 的动力学特征。
(1)静态
TM TL 静态(相对静止状态)或稳态(稳定运转状态)
(2)动态
TM TL 转速或角速度就要发生变化,产生角加速度
第1章 绪论
学习目标
熟悉机电传动系统的构成 熟悉机电传动系统的负载特性 熟练掌握机电传动系统的运动方程式
1.1 机电传动系统
1.1.1机电传动系统的组成与控制
1. 机电传动系统的组成
电源
作用:利用低压电 器控制电机
完成 具体 的生 产任 务
以电机为原动机驱 动生产机械的系统
2. 机电传动控制
机电传动系统的两个重要组成部分:电气控 制系统和机电传动机构(电力拖动)
负载转矩 TL 可能是常数,也可能是转速的函数。
同一轴上负载转矩与转速之间的函数关系称 为机电传动系统的负载特性。
生产机械的机械特性。
恒转矩型负载特性 离心式通风机型负载特性 直线型负载特性 恒功率型负载特性
1、恒转矩型负载特性反抗转源自的负载特性位能性转矩的负载特性
2、离心式通风机型负载特性
离心式通风型机械特性是按离心力原理工作的,如离
• 2). 飞轮矩折算 n
TM
GDa2
nb j2,η2
根据动能守恒原则:即
GDb2
nf
1
J2
1
GD2
2
n
2
j1,η1
2
2 4g 60 TM
工作机构
GDf2
Tl
n
工作机构
GD2
TL
1
GDl2
2
nl
2
1
GDF2
2
n
2
2 4g 60 2 4g 60
GDF2
GD2f j2
1.2.2 机电传动系统的负载特性
任务:将电能转变为机械能,实现生产机械 的起动、停止以及速度调节,满足各种生产工艺 过程的要求,确保生产过程得以高效、可靠地进 行。
1.1.2机电传动系统的发展历程
1.机电传动机构的发展
成组拖动
单电机拖动
多电机拖动
(1)成组拖动
一台电动机拖动 一根天轴运转, 再由天轴通过带 轮和传动皮带拖 动多个生产机械 工作。
心式鼓风机、水泵等,它们的负载转矩 TL 的大小与转速 n
当控制关系发生变 化时,只需更改控 制程序,不需要对 硬件做太多的调整。
(3)数字控制(CNC)系统
数字控制系统在机 床行业的大量应用, 使工业生产的灵活 性、适应性和自动 化水平大为提高, 也为柔性制造系统 的出现奠定了基础
(4)柔性制造系统和计算机集成制造系统
柔性制造系统(Flexible Manufacturing System,FMS)由信息控制系统、物料储运系统 和数字控制加工设备组成,能够适应加工对象变 换的自动化机械制造系统。
当 TL的实际作用方向与 n 的方向相同时,取与 n 相反
的符号(符号相反),TL 为拖动转矩;
当 TL的实际作用方向与n 的方向相反时,取与 n 相同
的符号(符号相同)T,L 为制动转矩。
当重物上升时:TM为正,TL也为正。 TM、 TL、 n 的方向
如图所示。
TM
TL
J
2 60
dn dt
当重物在上升过程中制动时,TM
柔性制造系统FMS与计算机辅助设计 (Computer Aided Design ,CAD)、计算机辅 助制造(Computer Aided Manufacturing,CAM) 相融合,又促使工业生产向计算机集成制造系统 (Computer/contemporary Integrated Manufacturing Systems,CIMS)迈进。
相关文档
最新文档