利用SPSS进行因素分析
使用SPSS软件进行多因素方差分析
![使用SPSS软件进行多因素方差分析](https://img.taocdn.com/s3/m/11d0f796d0f34693daef5ef7ba0d4a7302766c2b.png)
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
SPSS——单因素方差分析详解
![SPSS——单因素方差分析详解](https://img.taocdn.com/s3/m/e020dc43a7c30c22590102020740be1e650eccd1.png)
SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。
本文将详细介绍单因素方差分析的原理、步骤和结果解读。
一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。
组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。
如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。
二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。
例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。
2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。
在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。
4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。
关键的统计结果包括F值、P值和ETA方。
-方差分析表:用于比较组间方差和组内方差的大小。
方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。
-P值:用于判断F值的显著性。
如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。
-ETA方:代表效应大小程度。
ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。
5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。
SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。
三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。
1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。
使用SPSS进行探索式因素分析的教程
![使用SPSS进行探索式因素分析的教程](https://img.taocdn.com/s3/m/7332228ca45177232f60a2fb.png)
第4章探索式因素分析在社会与行为科学研究中,研究者经常会搜集实证性的量化资料來做验证,而要证明这些资料的可靠性与正确性,则必须依靠测量或调査工具的信度或效度(杨国枢等,2002b)。
•份好的量农应该要能够将欲研究的主题构念(Construct,它是心理学上的•种理论构想或特质,无法直接观测得到)清楚且正确的呈现出来,而且还需具有「效度」,即能真正衡量到我们欲量测的特性,此外还有「信度」,即该虽农所衡量的结果应具有•致性、稳定性,因此为达成「良好之衡量」的目标,必须有以下两个步骤:第•个步骤是针对量衣的题项作项目分析,以判定各项目的区别效果好坏:第二步骤则是建立量农的信度与效度。
量农之项目分析、信度检验已于第2、3章有所说明,本章将探讨量农之效度问题。
4-1效度效度即为正确性,也就是测量工具确实能测出其所欲测量的特质或功能之程度。
•般的研丸中最常使用「内容效度」(Content Validitj r)与「建构效度」(Construct Validity)来检视该份研丸之效度。
所谓「内容效度」,是指该衡量匸具能足够涵盖主题的程度,此程度可从量农内容的代衣性或取样的适切性来加以评估。
若测量内容涵盖所有研究计划所要探讨•的架构及内容,就可说是具有优良的内容效度。
在•般论文中,常使用如下的描述来「交代」内容效度:而所谓「建构效度」系指测量工具的内容,即各问项是否能够测量到理论上的构念或特质的程度。
建构效度包含收敛效度(Convergent Validity)与区别效度(Discriminant Validitj r), 收敛效度主要测试以•个变量(构念)发展的多项问项,最后是否会收敛于-个因素中(同- 构念不同题目相关性很高);而区别效度为判别问项可以与其它构念之问项区别的程度(不同构念不同题目相关性很低)。
衡量收敛效度的统计方式可使用探索式因素分析法<Exploratory factor analysis),简称因素分析。
SPSS中的单因素方差分析
![SPSS中的单因素方差分析](https://img.taocdn.com/s3/m/d4e47dcf8ad63186bceb19e8b8f67c1cfad6ee7d.png)
SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。
二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。
灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。
(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。
(5)在主对话框中,单击“OK”提交进行。
五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。
单因素分析的spss操作
![单因素分析的spss操作](https://img.taocdn.com/s3/m/93045506590216fc700abb68a98271fe910eaf93.png)
单因素分析的spss操作
在SPSS中进行单因素分析的操作步骤如下:
1. 打开SPSS软件并加载数据集。
2. 选择菜单栏中的“分析”(Analyze)选项,并从下拉菜单中选择“比较均值”(Compare Means)。
3. 在弹出的子菜单中选择“独立样本T检验”(Independent-Samples T Test)或“单因素方差分析”(One-Way ANOVA),具体选择哪一种方法根据数据类型来决定。
4. 将需要进行分析的变量从“因素”的文本框中移动到“因素”框中,或将其从“因素”框中移除,具体操作根据需要来决定。
5. 点击“选项”(Options)按钮,根据需要选择不同的选项,如描述统计数据、置信区间、效应大小等。
6. 点击“确定”(OK)按钮,开始进行单因素分析。
7. SPSS将生成分析结果的输出窗口,其中包括各种统计指标,如均值、标准差、频数等,并进行相关的统计检验。
8. 可以利用SPSS提供的图表功能,如直方图、箱线图等,对数据进行可视化分析。
以上是在SPSS中进行单因素分析的一般步骤。
具体操作方法可能因SPSS版本的不同而略有差异,也可以根据数据类型和分析需求来调整具体的参数设置。
SPSS-多因素方差分析
![SPSS-多因素方差分析](https://img.taocdn.com/s3/m/45ef7146daef5ef7ba0d3cf4.png)
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
SPSS操作多因素方差分析
![SPSS操作多因素方差分析](https://img.taocdn.com/s3/m/fde9a246eef9aef8941ea76e58fafab068dc444f.png)
SPSS操作多因素方差分析
一、多因素方差分析简介
多因素方差分析(ANOVA)是一种统计学方法,利用它可以检验两个
或多个样本的总体均值是否相同。
它的基本假设是,多个样本取自同一总
体的正态分布,样本之间的差异是根据其中一种因素的变化而产生的,而
不是随机变化。
多因素方差分析一般用于检验不同变量的数据间的差异性。
二、多因素方差分析SPSS使用步骤
1、打开并登录SPSS:在Windows桌面找到SPSS图标,双击打开,
输入用户名和密码即可进入SPSS主界面。
2、导入数据:在SPSS主界面点击【文件】,再点击【导入数据】,
从计算机中找到需要导入的数据文件,打开,确定即可将数据文件导入到SPSS中。
3、运行多因素方差分析:在SPSS主界面点击【分析】,再点击【多
因素方差分析】,它会弹出一个多因素方差分析窗口,在窗口中配置多因
素方差分析的模型,一般情况下,前三步不需要修改,点击【下一步】;
第四步,需要在【变量】框中选择要分析的变量,点击【下一步】;第五步,需要在【因子】框中添加本次分析的因子,双击所选变量,添加到
【因子】框中,确定添加无误后,点击【下一步】;第六步,设定多因素
方差分析的显著性水平,点击【完成】,结束设置。
多因素方差分析SPSS的具体操作步骤
![多因素方差分析SPSS的具体操作步骤](https://img.taocdn.com/s3/m/3e757310f11dc281e53a580216fc700abb6852bc.png)
多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。
可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。
步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。
这将打开"Univariate"对话框。
步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。
然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。
步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。
在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。
步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。
比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。
设置完相关选项后,单击"OK"按钮进行方差分析。
用SPSS进行单因素方差分析报告和多重比较
![用SPSS进行单因素方差分析报告和多重比较](https://img.taocdn.com/s3/m/6bdc7bcec850ad02df804104.png)
SPSS——单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数3 40 35 35 38 34数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。
多项式的系数需要由读者自己根据研究的需要输入。
(整理)spss因素分析教程.
![(整理)spss因素分析教程.](https://img.taocdn.com/s3/m/01af3659ce84b9d528ea81c758f5f61fb736289b.png)
(整理)spss因素分析教程.⼆、利⽤SPSS对量表进⾏因素分析【例6-9】现要对远程学习者对教育技术资源的了解和使⽤情况进⾏了解,设计⼀个⾥克特量表,如表6-27所⽰。
将该量表发放给20⼈回答,假设回收后的原始数据如表6-28所⽰。
操作步骤:⒈录⼊数据定义变量“A1”、“A2”、“A3”、“A5”、“A6”、“A7”、“A8”、“A9”、“A10”,并按照表输⼊数据,如图6-33所⽰。
⒉因素分析(1)选择“AnalyzeData ReductionFactor…”命令,弹出“Factor Analyze”对话框,将变量“A1”到“A10”选⼊“Variables”框中,如图6-34所⽰。
(2)设置描述性统计量单击图6-34对话框中的“Descriptives…”按钮,弹出“Factor Analyze:Desc riptives”(因素分析:描述性统计量)对话框,如图6-35所⽰。
①“Statistics”(统计量)对话框A “Univariate descriptives”(单变量描述性统计量):显⽰每⼀题项的平均数、标准差。
B “Initial solution”(未转轴之统计量):显⽰因素分析未转轴前之共同性、特征值、变异数百分⽐及累积百分⽐。
②“Correlation Matric”(相关矩阵)选项框A “Coefficients”(系数):显⽰题项的相关矩阵B “Significance levels”(显著⽔准):求出前述相关矩阵地显著⽔准。
C “Determinant”(⾏列式):求出前述相关矩阵地⾏列式值。
D “KMO and Bartlett’s test of sphericity”(KMO与Bartlett的球形检定):显⽰KMO抽样适当性参数与Bartlett’s的球形检定。
E “Inverse”(倒数模式):求出相关矩阵的反矩阵。
F “Reproduced”(重制的):显⽰重制相关矩阵,上三⾓形矩阵代表残差值;⽽主对⾓线及下三⾓形代表相关系数。
SPSS统计分析教程多因素方差分析
![SPSS统计分析教程多因素方差分析](https://img.taocdn.com/s3/m/5da86b18551810a6f424869d.png)
多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。
SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。
固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表数据保存在“”文件中,变量格式如图5-1。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。
然后输入对应的数值,如图5-6所示。
或者打开已存在的数据文件“”。
图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。
图5-7 多因素方差分析窗口3)设置分析变量设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。
设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。
可以选择多个因素变量。
由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。
spss操作--双因素方差分析(无重复)
![spss操作--双因素方差分析(无重复)](https://img.taocdn.com/s3/m/8f61c8ab760bf78a6529647d27284b73f24236c4.png)
F 40.948 25.800
Sig. .000 .001
PA 0.000 0.05, 拒绝原假设,认为因素A对指标有影响 PB 0.001 0.05, 拒绝原假设,认为因素B对指标有影响
1)描述性统计结果
D es c ri p ti v e S ta t i st i cs
Dependent Variable: 含量比
PH 值 1 2 3 4 To ta l
浓度 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l
Me an 3. 50 0 2. 30 0 2. 00 0 2. 60 0 2. 60 0 2. 00 0 1. 90 0 2. 16 7 2. 00 0 1. 50 0 1. 20 0 1. 56 7 1. 40 0 .8 00 .3 00 .8 33 2. 37 5 1. 65 0 1. 35 0 1. 79 2
-1.180
-1.920
Байду номын сангаас
-.747
-1.320
-.147
结论:…..
95% Confidence Interval
Lower Bound Upper Bound
-.153
1.020
.447
1.620
1.180
2.353
-1.020
.153
1.350E-02
1.187
.747
1.920
-1.620
-.447
-1.187 -1.350E-02
.147
1.320
-2.353
2)将“含量比”设置为变量,将“PH值”、 “浓度”设置为因素
SPSS因子分析(因素分析)——实例分析
![SPSS因子分析(因素分析)——实例分析](https://img.taocdn.com/s3/m/ff0fce6459fb770bf78a6529647d27284b7337d0.png)
SPSS因子分析(因素分析)——实例分析SPSS因子分析(因素分析)——实例分析SPSS(Statistical Package for the Social Sciences)是一种广泛应用于数据分析的软件工具,其中的因子分析(Factor Analysis)被广泛用于统计学和社会科学领域的研究。
本文将通过一个实例分析来介绍SPSS因子分析的基本原理和步骤。
1.研究背景在实施因子分析之前,首先需要明确研究背景和目的。
假设我们正在研究消费者购物行为,并希望确定出不同因素对于购物偏好的影响。
2.数据收集和准备在进行因子分析前,需要收集并准备相关数据。
假设我们已经收集到了100位消费者的关于购物行为的调查问卷数据,包括10个关于购物偏好的变量。
在SPSS中,我们可以将这些数据输入到一个数据矩阵中,每一行代表一个消费者,每一列代表一个变量。
3.因子分析设置在SPSS中,通过导航菜单选择适当的分析工具来进行因子分析。
在设置选项中,我们可以选择因子提取方法(如主成分分析、极大似然法等)和旋转方法(如方差最大旋转、斜交旋转等)等。
根据实际情况,我们可以调整这些参数以获得最佳结果。
4.因子提取在因子分析的第一步中,SPSS会计算每个变量的因子载荷矩阵,并根据设定的准则提取出主要因子。
因子载荷表示了每个变量与每个因子之间的关联程度,值越大表示关联程度越高。
通过因子载荷矩阵,我们可以判断每个变量对于哪个因子具有较高的影响。
5.因子旋转因子旋转可用于调整因子载荷矩阵,以使其更易于解释。
旋转后的因子载荷矩阵通常会呈现出更简洁、更有意义的结果。
在SPSS中,我们可以选择合适的旋转方法并进行旋转操作。
6.因子解释和命名在完成因子分析后,我们需要对结果进行解释和命名。
根据因子载荷矩阵和旋转结果,我们可以确定每个因子代表了哪些变量,并为每个因子赋予一个描述性的名称,以便于后续的数据分析和报告撰写。
7.结果解读最后,根据因子分析的结果,我们可以进行一系列的统计推断和解读。
spss 多因素方差分析例子
![spss 多因素方差分析例子](https://img.taocdn.com/s3/m/173a7cfbbb68a98270fefab2.png)
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze—〉General Linear Model —>Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM e rror,即无法分开MM intercept和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze—〉General Linear Model-〉Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21。
熟练使用SPSS进行单因素方差分析
![熟练使用SPSS进行单因素方差分析](https://img.taocdn.com/s3/m/5a6be45053d380eb6294dd88d0d233d4b14e3f15.png)
熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。
它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。
单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。
二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。
利用SPSS进行因素分析
![利用SPSS进行因素分析](https://img.taocdn.com/s3/m/685e182de418964bcf84b9d528ea81c759f52e4d.png)
——在Coefficient Display Format(系数显示格式)栏中选
择Sorted by size(依据因素负荷量排序)项;
——在Coefficient Display Format(系数显示格式)
勾选“Suppress absolute values less than”,其后空
格内的数字不用修改,默认为0.1。
-. 19 4
. 28 7
A6
. 87 4
-. 20 6
. 24 5
A7
. 82 3
. 47 4
-. 12 9
A9
. 81 3
. 40 1
-. 37 7
A 10
. 75 3
. 49 5
-. 35 8
A2
-. 57 4
. 60 5
. 20 6
A3
-. 16 4
. 63 3
. 68 7
Ex traction Method: Principa l Co mponent A na lys is.
5
4
5
4
4
4
3
5
2
2
13
3
5
5
2
2
2
1
3
1
1
14
5
3
4
3
3
3
2
5
2
2
15
4
5
5
3
3
3
2
5
2
2
16
4
4
4
4
3
5
1
4
1
1
17
5
4
4
SPSS因子分析(因素分析)——实例分析
![SPSS因子分析(因素分析)——实例分析](https://img.taocdn.com/s3/m/4904e121192e45361066f522.png)
SPSS因子分析(因素分析)——实例分析提起因子分析那是老生常谈,分析人士大都喜欢讨论主成分与因子分析。
我也凑个热闹,顺便温习温习,时间长了就会很模糊。
一、概念探讨存在相关关系的变量之间,是否存在不能直接观察到的但对可观测变量的变化其支配作用的潜在因子的分析方法就是因子分析,也叫因素分析。
通俗点:原始变量是共性因子的线性组合。
二、简单实例现在有12个地区的5个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这12个地区进行综合评价,请确定出这12 个地区的综合评价指标。
点击下载三、解决方案1、不同地区的不同指标不同,这导致目前我们拥有的5个指标数据很难对这12个地区给一个明确的评价。
所以,有必要确定综合评价指标,便于对比。
因子分析是一种选择,当然还有其他的方法。
5个指标即为我们分析的对象,直接选入。
2、描述统计选项卡。
我们要对比因子提取前后的方差变化,所以选定“初始分析结果”;现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数”;比较重要的还有KMO和球形检验,它告诉我们数据是不是适合做因子分析。
选定。
其他选择自定。
3、抽取选项卡。
提取因子的方法有很多,最常用的就是主成分法。
这里选主成分。
关于特征值,不想解释太多,这和显著性水平一样,都是统计学的一个基本概念。
因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。
4、是否需要旋转?因子分析要求对因子给予命名和解释,对因子旋转与否取决于因子的解释。
如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。
这里直接旋转,便于解释。
至于旋转就是坐标变换,使得因子系数向1和0靠近,对公因子的命名和解释更加容易。
5、要计算因子得分,就必须先写出因子的表达式。
而因子是不能直接观察到的,是潜在的。
但是可以通过可观测到的变量获得。
前面说到,因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、应用SPSS进行量表分析的步骤
问 题 从未 使用 1 很少 使用 2 有时 使用 3 经常 使用 4 总是 使用 5
题 项
A1
A2 A3 A4 A5 A6 A7
电脑
录音磁带 录像带 网上资料 校园网或因特网 电子邮件 电子讨论网
A8
A9
CAI课件
视频会议
A10 视听会议
题目 编号 01 02 03
特征值----是每个变量在某一共同因素之因素负荷量的平 方总和(一直行所有因素负荷量的平方和)。 如F1的特征值 G=(0.896)平方+(0.802)平方 +(0.516)平方+(0.841)平方 +(0.833)平方=3.113
特征值的总和等于实测变量的总数 方差贡献率----指公共因子对实测变量的贡献, 又称变异量 方差贡献率=特征值G/实测变量数p, 如F1的贡献率为3.113/5=62.26%
因子分析案例
公因子 F1 Z1=代数1 0.896 公因子 F2 0.341 共同度 hi 0.919 特殊因子
δi
0.081
Z2=代数2
Z3=几何 Z4=三角
0.802
0.516 0.841
0.496
0.855 0.444
0.889
0.997 0.904
0.111
0.003 0.096
Z56 .474 .401 .495 .605 .633
Extrac ti on Method: Princ ipal Component Anal ysis . a. 3 components extracted.
Extraction Method: Principal Component Analysis.
3.因素陡坡检查,除去坡线平坦部分的因素
图中第三个因素以后较为平坦,故保留3个因素
Scree Plot
7 6
5
4
3
2
Eigenvalue
1 0 1 2 3 4 5 6 7 8 9 10
Component Number
(07)设置因素分析的选项 ——在【 Factor Analysis】对话框中,单击【Options】 按钮,出现 【 Factor Analysis:Options 】(因素分析: 选项)对话框。 ——在Missing Values 栏中选择Exclude cases listwise (完全排除遗漏值) ——在Coefficient Display Format(系数显示格式)栏中选 择Sorted by size(依据因素负荷量排序)项; ——在Coefficient Display Format(系数显示格式) 勾选“Suppress absolute values less than”,其后空 格内的数字不用修改,默认为0.1。 ——如果研究者要呈现所有因素负荷量,就不用选取 “Suppress absolute values less than”选项。在例题中 为 了让研究者明白此项的意义,才勾选了此项,正式的研究中 应呈现题项完整的因素负荷量较为适宜。
A8 1 2 4 4 4 3 4 1 4 5 5
A9 1 1 1 2 1 2 1 1 1 3 2
A10 1 1 1 2 1 1 1 1 1 3 2
04
05 06 07
08
09 10 11 12 13 14 15 16 17 18 19 20
5
3 5 4
4
5 3 5
5
5 4 5
4
2 3 3
4
2 3 3
.695 234.438 45 .000
2.共同性检查
Communalities A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Initial 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Extraction .928 .738 .900 .872 .901 .867 .919 .907 .965 .939
共同度----就是每个变量在每个共同因素之负荷量的平方 总和(一横列中所有因素负荷量的平方和)。从共同性的 大小可以判断这个原始实测变量与共同因素间之关系程度。 如共同度h1=(0.896)平方+(0.341)平方=0.919。
特殊因子----各变量的唯一因素大小就是1减掉该变量共 同度的值。如 δi=1- 0.919 = 0.081
特征值 G 方差贡献率 (变异量)
0.833
3.113 62.26%
0.434
1.479 29.58%
0.882
4.959 91.85%
0.118
0.409
F1 体现逻辑思维和运算能力,F2 体现空间思维和推理能力
因子分析几个基本概念
因子负荷量----是指因素结构中原始实测变量与因素分析 时抽取出共同因素的相关程度。在因素分析中,用两个重 要指标“共同度”和“特殊因子”描述。
4.方差贡献率检验 ——取特征值大于 1 的因素,共有3 个,分别(6.358) (1.547)(1.032); ——变异量分别为(63.58%)(15.467%)(10.32%)
Total Variance Explained Component 1 2 3 4 5 6 7 8 9 10 Total 6.358 1.547 1.032 .408 .291 .156 .110 6.056E-02 3.368E-02 3.222E-03 Initial Eigenvalues % of Variance Cumulative % 63.579 63.579 15.467 79.046 10.320 89.366 4.081 93.447 2.910 96.357 1.564 97.921 1.104 99.025 .606 99.631 .337 99.968 3.222E-02 100.000 Extraction Sums of Squared Loadings Total % of Variance Cumulative % 6.358 63.579 63.579 1.547 15.467 79.046 1.032 10.320 89.366 Rotation Sums of Squared Loadings Total % of Variance Cumulative % 4.389 43.885 43.885 3.137 31.372 75.257 1.411 14.108 89.366
三、对SPSS因素分析结果的解释
1. 2. 3. 4. 5. 6. 取样适当性(KMO)检验 共同性检查 因素陡坡检查 方差贡献率检验 显示未转轴的因素矩阵 分析转轴后的因素矩阵
1. 取样适当性(KMO)检验
—— KMO值越大,表示变量间的共同因素越多,越适合进 行因素分析,要求KMO>0.5
4
2 3 3
3
1 2 2
5
3 5 5
2
1 2 2
2
1 2 2
4
5 5 5 5
4
4 4 4 4
4
4 4 5 4
4
5 2 5 5
3
5 3 5 5
5
5 4 5 5
1
4 1 3 2
4
5 5 5 5
1
4 1 3 2
1
4 1 3 1
(01)建立数据文件
(02)选择分析变量 ——选SPSS [Analyze]菜单中的(Data Reduction)→ (Factor),出现【 Factor Analysis】对话框; ——在【 Factor Analysis】对话框中左边的原始变量中, 选择将进行因素分析的变量选入(Variables)栏。
应用SPSS进行 因素分析
2013-03
一、因素分析的基本原理 二、应用SPSS进行因素分析的步骤 三、对SPSS因素分析结果的解释
一、因素分析的基本原理
因素分析就是将错综复杂的实测变量归结为少数几个因子 的多元统计分析方法。其目的是揭示变量之间的内在关联 性,简化数据维数,便于发现规律或本质。 因素(因子)分析(Factor Analysis)的基本原理是根据 相关性大小把变量分组,使得同组变量之间的相关性较 高,不同组变量之间相关性较低。每组变量代表一个基本 结构,这个结构用公共因子来进行解释。 因素分析的目的之一,即要使因素结构的简单化,希望以最 少的共同因素,能对总变异量作最大的解释,因而抽取得因 素愈少愈好,但抽取因素的累积解释的变异量愈大愈好。 在因素分析的共同因素抽取中,应最先抽取特征值最大的共 同因素,其次是次大者,最后抽取共同因素的特征值最小, 通常会接近0。
(03)设置描述性统计量 ——在【 Factor Analysis】框中选【 Descriptives…】 按钮,出现【 Descriptives 】对话框; ——选择 Initial solution (未转轴的统计量)选项 ——选择KMO 选项 ——点击(Contiue)按钮确定。
(04)设置对因素的抽取选项 ——在【 Factor Analysis】框中点击【Extraction】按钮, 出现【 Factor Analysis:Extraction】对话框, ——在Method 栏中选择(Principal components)选项; ——在Analyze 栏中选择Correlation matrix选项; ——在Display 栏中选择Unrotated factor solution选项; ——在Extract 栏中选择Eigenvalues over 并填上 1 ; ——点击(Contiue)按钮确定,回到【 Factor Analysis】 对话框中。
因子分析数学模型
Z1= a11F1 + a12F2 + … + a1mFm + є1 Z2= a21F1 + a22F2 + … + a2mFm + є2