定积分测试题及答案(可编辑修改word版)
定积分练习题(打印版)
定积分练习题(打印版)一、基础计算题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。
2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
3. 计算定积分 \(\int_{0}^{2} (3x - 2) dx\)。
二、换元积分题1. 计算定积分 \(\int e^{2x} dx\),其中上下限为 \(0\) 到 \(\ln 2\)。
2. 计算定积分 \(\int \frac{1}{\sqrt{1 + x^2}} dx\),其中上下限为 \(0\) 到 \(1\)。
三、分部积分题1. 计算定积分 \(\int x e^x dx\),上下限为 \(0\) 到 \(1\)。
2. 计算定积分 \(\int \sin x \cos x dx\),上下限为 \(0\) 到\(\pi\)。
四、几何应用题1. 利用定积分计算圆 \(x^2 + y^2 = 1\) 在第一象限内围成的面积。
2. 利用定积分计算抛物线 \(y = x^2\) 与直线 \(y = 4\) 所围成的面积。
五、物理应用题1. 假设一物体的加速度 \(a(t) = 2t\),计算从 \(0\) 到 \(1\) 秒内物体的位移。
2. 假设一物体的力 \(F(x) = 3x + 1\),计算从 \(0\) 到 \(2\) 米内物体所做的功。
六、综合题1. 利用定积分计算函数 \(y = \sqrt{x}\) 与 \(x\) 轴,以及直线\(x = 1\) 所围成的面积。
2. 利用定积分计算函数 \(y = \ln x\) 与 \(x\) 轴,以及直线 \(x = e\) 所围成的面积。
七、挑战题1. 计算定积分 \(\int_{0}^{\pi/2} \sin^3 x \cos x dx\)。
2. 计算定积分 \(\int_{0}^{1} \frac{\ln x}{x} dx\)。
答案提示:- 对于基础计算题,可以直接应用定积分的基本公式进行计算。
定积分及其应用练习带详细包括答案.docx
答案:4.
详解:
设A(x
0),则ωx+φ=2,∴x
=2ω-ω.
0,
0
π
0
Байду номын сангаасπ φ
2π
又y=ωcos(ωx+φ)的周期为ω,
ππφπ
∴|AC|=,C-+,0 .
ω2ωωω
依题意曲线段ABC与x轴围成的面积为
πφππφ
S=-∫2ω-ω+ω2ω-ωωcos(ωx+φ)dx=2.
ππ
∵|AC|= ,|yB|=ω,∴S△ABC=.
为().
1
1
1
1
A.4
B.5
C.6
D.7
变式训练一
题面:
函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P
为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
欢迎下载2
—
若在曲线段ABC与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为________.
ω2
π
∴满足条件的概率为4.
变式训练二
题面:
(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自
阴影部分的概率为()
欢迎下载3
—
A.B.C.D.
答案:C.
详解:
根据题意,正方形OABC的面积为1×1=1,
而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,
则正方形OABC中任取一点P,点P取自阴影部分的概率为=;
故选C.
金题精讲
题一
题面:
(识图求积分,二星)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面
(完整版)定积分练习题
一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。
定积分试题及答案大学
定积分试题及答案大学# 定积分试题及答案试题1:计算定积分 \(\int_{0}^{1} x^2 dx\)。
答案:首先,我们需要找到函数 \(f(x) = x^2\) 的原函数。
对于这个函数,原函数是 \(F(x) = \frac{1}{3}x^3\)。
然后,我们计算在区间 \([0, 1]\) 上的定积分:\[\int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1}{3}(1)^3 -\frac{1}{3}(0)^3 = \frac{1}{3} - 0 = \frac{1}{3}\]试题2:求定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
答案:函数 \(f(x) = \frac{1}{x}\) 的原函数是自然对数函数\(F(x) = \ln|x|\)。
计算定积分:\[\int_{1}^{2} \frac{1}{x} dx = F(2) - F(1) = \ln(2) - \ln(1) = \ln(2)\]试题3:计算定积分 \(\int_{0}^{\pi} \sin(x) dx\)。
答案:函数 \(f(x) = \sin(x)\) 的原函数是 \(-\cos(x)\)。
计算定积分:\[\int_{0}^{\pi} \sin(x) dx = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2\]试题4:求定积分 \(\int_{-1}^{1} (x^2 - 1) dx\)。
答案:函数 \(f(x) = x^2 - 1\) 的原函数是 \(F(x) =\frac{1}{3}x^3 - x\)。
计算定积分:\[\int_{-1}^{1} (x^2 - 1) dx = F(1) - F(-1) =\left(\frac{1}{3}(1)^3 - 1\right) - \left(\frac{1}{3}(-1)^3 - (-1)\right) = \frac{1}{3} - 1 + \frac{1}{3} + 1 = \frac{2}{3} \]试题5:计算定积分 \(\int_{0}^{1} e^x dx\)。
定积分应用题附答案(可编辑修改word版)
⎩ y ⎨ ⎩ 2 《定积分的应用》复习题一.填空:1. 曲线 y = ln x , y = ln a , y = ln b (0 < a < b )及y 轴所围成的平面图形的面积为 A =ln be y dy =b-aln a2. 曲线y = x 2和y = x 所围成的平面图形的面积是 1 3二.计算题:1. 求由抛物线 y 2= 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为 y ,解方程组⎧ y 2 = 2x ⎧x 1 = 1/ 2 ⎧ x 2 = 2 ⎨y = -2x + 2 得 ⎩ y 1 = 11 , ⎨ = -2 即抛物线与直线的交点为( ,1)和( 2 , - 2 ).故所求图形在直线 y = 1 和 y 2= - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近 1 1似于高为[(1- y )- y 2 ],底为 dy 的矩形面积,从而得到面积元素22 11dA = [(1- y)-y 2 ]dy22(3)所求图形面积 A =1[(1- 11 y )- y2 ]dy = [y - 1 y 2 – 1 y3 ]1 =9⎰ - 22246-242. 求抛物线 y = - x 2+ 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由 y = - x 2 + 4x – 3 得y ' = -2x + 4 , y '(0) = 4, y '(3) = -2 。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 3 y = - 2x + 6 ; 两切线的交点坐标为 ( ,3 )。
2故 面积 A =⎰⎰2=⎰2⎪ ⎰ ⎰ ⎰ =3 (1+ 2 c os + )d + 2 (1+ cos 2)d = 3392 [(4x - 3) - (x + 4x - 3)] dx +3 [(-2x + 6) - (x + 4x - 3)] dx = 023. 求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱( 0 ≤ t ≤ 2)与横轴所围成的图形的面积。
(完整word版)定积分典型例题20例答案
定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。
定积分及微积分基本定理练习试题包括答案.docx
1.4 定积分与微积分基本定理练习题及答案1.(2011·宁夏银川一中月考) 求曲线y= x2与y= x所围成图形的面积,其中正确的是()A. S=1(x2 - x)dx0B. S=1(x -x2)dxC. S=1(y2 - y)dy D0. S=1(y -y)dy[0,1][ 答案 ]B[ 分析 ]根据定积分的几何意义,确定积分上、下限和被积函数.[ 解读 ]两函数图象的交点坐标是(0,0) , (1,1) ,故积分上限是上, x≥ x2,故函数y=x2 与 y=x 所围成图形的面积S=1(x1,下限是-x2)dx.0,由于在2.(2010 ·山东日照模考)a =2xdx,b=2exdx ,c=2sinxdx,则a、 b、c的大小关系是 ()A. a<c<bB. a<b<cC. c<b<aD. c<a<b[ 答案 ]D1[ 解读] a =2xdx =2x2|02 0= 2 , b =2exdx =ex|02 0= e2- 1>2, c=2sinxdx=-cosx|02 = 1- cos2 ∈(1,2),∴c<a<b.3.(2010 ·山东理, 7) 由曲线 y= x2, y= x3 围成的封闭图形面积为() 1117A. 12B. 4C. 3D. 12[ 答案 ]Ay= x2[ 解读 ]由得交点为 (0,0), (1,1) .y= x3111∴ S=1(x2 - x3)dx =3x3 -4x401=12.[ 点评 ]图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:(2010 ·湖南师大附中 ) 设点 P 在曲线 y= x2 上从原点到A(2,4) 移动,如果把由直线OP,直线 y= x2及直线 x= 2 所围成的面积分别记作S1,S2. 如图所示,当S1=S2 时,点 P 的坐标是 ()A.416B.416 3,95,9C.415D.413 3,75,7[ 答案 ]At3 [ 解读 ]设 P(t , t2)(0≤t ≤ 2) ,则直线 OP:y= tx ,∴ S1= t(tx- x2)dx =6;S2=8t344162(x2 - tx)dx=3- 2t +6,若 S1= S2,则 t =3,∴ P 3,9 .t4.由三条直线 x= 0、 x=2、 y= 0 和曲线 y= x3所围成的图形的面积为 () 418A. 4 B.3C. 5 D.6[ 答案 ]Ax4[ 解读 ]S=2x3dx =4 02= 4.5.(2010 ·湖南省考试院调研)1-1(sinx+1)dx的值为()A. 0 B . 2C. 2+2cos1 D . 2- 2cos1[ 答案 ]B[ 解读 ]1-1(sinx+1)dx=(-cosx+x)|-11=(-cos1+1)-(-cos(-1)-1)=2.6.曲线 y= cosx(0 ≤ x≤2π) 与直线y= 1 所围成的图形面积是()A.2π B .3π3πC. 2 D.π[ 答案 ]A[ 解读 ]如右图,S=∫ 02π(1 - cosx)dx=(x -sinx)|02 π= 2π.[ 点评 ]此题可利用余弦函数的对称性①②③④ 面积相等解决,但若把积分区间改为π6 ,π ,则对称性就无能为力了.7.函数 F(x) =xt(t-4)dt在[-1,5]上()A.有最大值0,无最小值32B.有最大值0 和最小值-332C.有最小值- 3 ,无最大值D.既无最大值也无最小值[ 答案 ]B[ 解读 ] F′(x) = x(x - 4) ,令 F′(x) = 0,得 x1= 0, x2= 4,73225∵F( -1) =-3, F(0) = 0, F(4) =-3, F(5) =-3 .32∴最大值为 0,最小值为-3 .[ 点评 ] 一般地, F(x) = xφ(t)dt的导数 F′(x) =φ (x) .18.已知等差数列 {an} 的前 n 项和 Sn= 2n2+ n,函数 f(x) =x t dt ,若 f(x)<a3,则 x1的取值范围是 ()3A.6,+∞ B. (0 , e21)C. (e - 11, e) D . (0 ,e11)[ 答案 ] D1[ 解读 ]f(x)=x dt = lnt|1x=lnx,a3=S3-S2=21-10=11,由lnx<11得,t10<x<e11.9.(2010 ·福建厦门一中 ) 如图所示,在一个长为π,宽为 2 的矩形 OABC内,曲线y=sinx(0 ≤ x≤ π) 与 x 轴围成如图所示的阴影部分,向矩形OABC内随机投一点( 该点落在矩形OABC内任何一点是等可能的) ,则所投的点落在阴影部分的概率是()123πA. πB. πC. πD. 4[ 答案 ]A—[ 解读 ]由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S = πsinxdx =- cosx|0 π=- (cos π- cos0) = 2 ,再根据几何概型的算法易知所求概率P =S 2=1 .=πS 矩形 OABC 2πx + 2 -2≤ x<010.(2010 ·吉林质检 ) 函数 f(x) = π的图象与 x 轴所围成的图形2cosx 0≤ x ≤ 2面积 S 为 ()31A. 2B . 1 C . 4 D. 2 [ 答案 ] C[ 解读 ]面积 S =∫ π- 2f(x)dx =-2(x + 2)dx +∫π02cosxdx = 2+ 2= 4.2 211.(2010 ·沈阳二十中 ) 设函数 f(x) = x -[x] ,其中 [x] 表示不超过 x 的最大整数, 如 [ -x1.2] =- 2, [1.2] =1, [1]=1. 又函数 g(x) =- 3, f(x) 在区间 (0,2) 上零点的个数记为 m ,f(x) 与 g(x) 的图象交点的个数记为n ,则 ng(x)dx 的值是 ()m54A .- 2B .- 357C .- 4D .- 6[ 答案 ]A[ 解读 ]由题意可得,当 0<x<1 时, [x] = 0, f(x) = x ,当 1≤ x<2 时, [x] = 1,f(x)=x - 1,所以当 x ∈ (0,2) 时,函数 f(x) 有一个零点, 由函数 f(x)与 g(x) 的图象可知两个函xx25数有 4 个交点,所以 m = 1, n = 4,则 ng(x)dx =4 - 3 dx = - 614=- 2.m111.(2010 ·江苏盐城调研 ) 甲、乙两人进行一项游戏比赛, 比赛规则如下: 甲从区间 [0,1]上随机等可能地抽取一个实数记为b ,乙从区间 [0,1] 上随机等可能地抽取一个实数记为c(b 、c 可以相等 ) ,若关于 x 的方程 x2+ 2bx +c = 0 有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )1 2 13A. 3B. 3C. 2D. 4[ 答案 ]A[ 解读 ] 方程 x2+ 2bx +c = 0 有实根的充要条件为= 4b2- 4c ≥ 0,即 b2≥ c ,1b2db01由题意知,每场比赛中甲获胜的概率为p=1×1=3.12.(2010 ·吉林省调研 ) 已知正方形四个顶点分别为O(0,0) ,A(1,0) ,B(1,1) ,C(0,1) ,曲线 y= x2(x ≥ 0) 与 x 轴,直线 x=1 构成区域 M,现将一个质点随机地投入正方形中,则质点落在区域 M内的概率是 ()11A. 2B. 412C. 3D.5[ 答案 ]C[ 解读 ]如图,正方形面积1,区域 M的面积为 S= 1x2dx111=3x3|01 =3,故所求概率 p=3.2.如图,阴影部分面积等于()A. 2 3B. 2-33235C. 3D. 3[ 答案 ]C[ 解读 ]图中阴影部分面积为132.S= 1(3 - x2- 2x)dx = (3x -3x3- x2)|1- 3= 3-33. 24- x2dx = ()A.4π B .2ππC.π D.2[ 答案 ]C[ 解读 ]令 y=4- x2,则 x2+y2= 4(y ≥0) ,由定积分的几何意义知所求积分为图中阴影部分的面积,1∴ S=4×π× 22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线( 假定为直线 ) 行驶.甲车、乙车的速度曲线分别为v 甲和 v 乙 ( 如图所示 ) .那么对于图中给定的t0 和 t1 ,下列判断中一定正确的是 ()A.在 t1 时刻,甲车在乙车前面B.在 t1 时刻,甲车在乙车后面C.在 t0 时刻,两车的位置相同D. t0 时刻后,乙车在甲车前面[ 答案 ]A[ 解读 ]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0 , t1 时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数 v(t)的图象与t 轴以及时间段围成区域的面积.从图象知:在 t0时刻, v 甲的图象与 t轴和 t = 0,t = t0围成区域的面积大于 v 乙的图象与 t 轴和 t = 0, t = t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D 错误;同样,在t1 时刻, v 甲的图象与 t 轴和t = t1 围成区域的面积,仍然大于v 乙的图象与 t 轴和 t =t1围成区域的面积,所以,可以断定:在 t1 时刻,甲车还是在乙车的前面.所以选 A.ππ5.(2012 ·山东日照模拟 ) 向平面区域Ω= {(x ,y)| -4≤ x≤4,0≤ y≤1} 内随机投掷一点,该点落在曲线y= cos2x 下方的概率是 ()π 1A. 4B. 2π2C. 2- 1D. π[ 答案 ]D[ 解读 ]π平面区域Ω 是矩形区域,其面积是2,在这个区6.(sinx- cosx)dx的值是 ()πA. 0 B. 4C. 2D.- 2[ 答案 ]D[ 解读 ](sinx-cosx)dx=(-cosx-sinx)=-2.7.(2010 ·惠州模拟 )2(2 - |1 - x|)dx = ________.[ 答案 ]3[ 解读 ]1+ x 0≤ x≤ 1∵ y=,3- x 1<x ≤ 2∴ 2(2 - |1 - x|)dx =1(1 + x)dx + 2(3 - x)dx0011133=(x +2x2)|10+ (3x -2x2)|21=2+2= 3.8.(2010·芜湖十二中 ) 已知函数 f(x) =3x2 + 2x+ 1,若1-1f(x)dx =2f(a) 成立,则a= ________.1[ 答案 ]- 1 或3[ 解读 ]∵1- 1f(x)dx =1- 1(3x2 + 2x + 1)dx = (x3 + x2 + x)|1 - 1 = 4 ,1-1f(x)dx=2f(a),∴ 6a2+4a+2=4,1∴ a=- 1 或3.π19.已知a=∫2 0(sinx+cosx)dx,则二项式(a x-x)6 的展开式中含x2项的系数是________.[ 答案 ]-192ππππ[ 解读 ]由已知得a=∫2 0(sinx+cosx)dx=(-cosx+sinx)| 2 0=(sin2-cos2)-(sin0 - cos0) = 2,1(2 x- )6 的展开式中第 r + 1 项是 Tr + 1= ( -1)r ×C6r×26-r ×x3-r,令 3- r = 2 得,xr = 1,故其系数为( -1)1 ×C16×25=-192.10.有一条直线与抛物线y= x2 相交于 A、B 两点,线段 AB 与抛物线所围成图形的面积4恒等于3,求线段AB的中点 P 的轨迹方程.[ 解读 ]设直线与抛物线的两个交点分别为A(a, a2) , B(b , b2) ,不妨设a<b,b2- a2则直线 AB 的方程为y- a2=b-a (x - a) ,即y=(a + b)x - ab.a+ b 则直线AB 与抛物线围成图形的面积为S=b[(a +b)x - ab-x2]dx =(2x2-abx -ax313 )|ba=6(b -a)3 ,14∴6(b - a)3 =3,解得 b- a= 2. 设线段 AB的中点坐标为 P(x ,y) ,a+ b其中x=2,将 b-a= 2 代入得x=a+ 1,y= a2+ b2.y= a2+ 2a+ 2.2消去 a 得 y= x2+ 1.∴线段 AB 的中点 P 的轨迹方程为 y= x2+ 1.能力拓展提升11.(2012 ·郑州二测 ) 等比数列 {an} 中,a3= 6,前三项和 S3=34xdx ,则公比 q 的值为()1A. 1 B .-211C. 1 或-2D.- 1 或-2[ 答案 ]C66[ 解读 ]因为 S3=34xdx = 2x2|30= 18,所以q+q2+ 6= 18,化简得 2q2- q-1= 0,1解得 q= 1 或 q=-2,故选 C.12. (20 12·太原模拟 ) 已知 (xlnx) ′= lnx +1,则elnxdx= ()1A. 1 B . e C . e- 1 D . e+ 1[ 答案 ]A[ 解读 ]由(xlnx)′= lnx + 1,联想到 (xlnx-x) ′= (lnx+ 1) -1= lnx ,于是 elnxdx1=(xlnx - x)|e1= (elne- e) -(1 ×ln1 -1) = 1.13.抛物线 y2= 2x与直线 y= 4- x 围成的平面图形的面积为 ________.[ 答案 ]18[ 解读 ]y2= 2x,A(2,2) 、B(8 ,-4) ,选 y 作为积分变量 x 由方程组解得两交点y= 4- x,y2=2、 x= 4-y,2 [(4 - y) -y2y2y3∴ S=2 ]dy = (4y -2-6 )|2- 4= 18.-414.已知函数 f(x)= ex- 1,直线 l1 : x= 1, l2 : y=et - 1(t 为常数,且 0≤ t ≤ 1) .直线l1 , l2 与函数 f(x)的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2 表示.直线 l2 ,y 轴与函数 f(x) 的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S1 表示.当 t 变化时,阴影部分的面积的最小值为________.[ 答案 ]( e- 1)2[ 解读 ]由题意得S1+ S2= t(et - 1- ex + 1)dx +1(ex - 1- et + 1)dx = t(et-0t0ex)dx + 1(ex - et)dx = (xet - ex)|t 0 + (ex - xet)|1 t = (2t- 3)et+ e+ 1,令 g(t) = (2t-t3)et + e+ 1(0 ≤ t ≤ 1) ,则 g′(t) = 2et + (2t -3)et = (2t- 1)et,令 g′(t) = 0,得 t =1 2,11∴当 t ∈ [0 ,2) 时, g ′(t)<0 , g(t) 是减函数,当 t ∈ ( 2,1] 时, g ′(t)>0 , g(t)是增函数,1 1因此 g(t) 的最小值为g( 2) = e + 1- 2e 2= ( e - 1)2. 故阴影部分的面积的最小值为( e -1)2.15.求下列定积分.(1)- 1|x|dx 。
定积分测试题答案
10. 令 ta n
3
t
2
2 5
a rc ta n
t 5
0
3 3
2 5 5
a rc ta n
15 15
试卷答案 第 2 页 (共 3 页)
11. 原 式
1 2
4 0
x d (ta n x )
1 2
x ta n x
4 0
2
1
4 0
sin x cos x
dx
1 4 ln c o s x 2 8 0
8
1 4
ln 2
四、证明 1. ( x )
x x
(2 小题,共 16 分)
( x 2t ) f (t )dt (t
0
u)
( x 2 u ) f ( u )( d u )
4 0
2 5
sin x
5
2 0
2 5
2. 原 式 x ln ( 1 x )
e 1 0
e 1 0
x 1 x
dx e 1
e 1 0
(1
1 1 x
)dx
e 1 x ln ( 1 x ) 0
e 1
1
3. 令 x sin t
2
1
0 1
1 t
2
2t
2
1 t
2
dt
1
1 2
( 1 ln ( 1 t )) 1
2 0
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
定积分期末考试题及答案
定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。
答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。
答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。
答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。
定积分与微积分基本定理检测含答案和解析更多关注高中学习资料库.(DOC)
3.4 定积分与微积分基本定理一、选择题1.与定积分∫3π1-cos x d x 相等的是( ). A.2∫3π0sin x2d xB.2∫3π⎪⎪⎪⎪⎪⎪sin x 2d x C.⎪⎪⎪⎪⎪⎪2∫3π0sin x 2d xD .以上结论都不对解析 ∵1-cos x =2sin 2x2,∴∫3π1-cos x d x = ∫3π02|sin x2|d x =2∫3π|sin x2|d x .答案 B2. 已知f (x )为偶函数,且⎠⎛06f(x)d x =8,则⎠⎛6-6f(x)d x =( )[来源:学.科.网Z.X.X.K]A .0B .4C .8D .16 解析 ⎠⎛6-6f(x)d x =2⎠⎛06f(x)d x =2×8=16.答案 D3.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ). A.1603 m B.803 m C.403m D.203m 解析 v =40-10t 2=0,t =2,⎠⎛02(40-10t 2)d t =⎪⎪⎪⎝⎛⎭⎪⎫40t -103t 320=40×2-103×8=1603(m). 答案 A4.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个 4 s 内经过的路程是( )A .260 mB .258 mC .259 mD .261.2 m[来源:]解析 ⎠⎛48(9.8t +6.5)d t =(4.9t 2+6.5t)⎪⎪ 84=4.9×64+6.5×8-4.9×16-6.5×4=313.6+52-78.4-26=261.2. 答案 D5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ).A.103 B .4 C.163D .6解析 由y =x 及y =x -2可得,x =4,所以由y =x 及y =x -2及y 轴所围成的封闭图形面积为⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x | 40=163.答案 C6.已知a =∑i =1n1n ⎝ ⎛⎭⎪⎫i n 2,n ∈N *,b =⎠⎛01x 2d x ,则a ,b 的大小关系是( ).A .a >bB .a =bC .a <bD .不确定答案 A 7.下列积分中①⎠⎛1e 1x d x ;②⎠⎛2-2x d x ;③⎠⎛024-x 2πd x ; ④∫π20cos 2x 2cos x -sin xd x ,积分值等于1的个数是( ).[来源:Z§xx§]A .1B .2C .3D .4 解析 ①⎪⎪⎪⎠⎛1e1x d x =ln x e1=1,[来源:学|科|网] ②⎪⎪⎪⎠⎛2-2x d x =12x 22-2=0,③⎠⎛024-x 2πd x =1π(14π22)=1,④∫π20cos 2x 2cos x -sin x d x =12∫π20(cos x +sin x )d x=12(sin x -cos)|π20=1. 答案 C 二、填空题8.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.[来源:]解析 由F(x)=kx ,得k =100,F(x)=100x ,W =∫0.060100x d x =0.18(J ). 答案 0.18 J9.曲线y =1x与直线y =x ,x =2所围成的图形的面积为____________.答案32-ln 2 10.若⎠⎛0k (2x -3x 2)d x =0,则k 等于_________.解析 ⎠⎛0k (2x -3x 2)d x =⎠⎛0k 2x d x -⎠⎛0k 3x 2d x =x 2⎪⎪⎪⎪k-x 3k0=k 2-k 3=0, ∴k=0或k =1. 答案 0或111. ⎠⎛12|3-2x |d x =________.解析∵|3-2x |=⎩⎪⎨⎪⎧-2x +3,x ≤32,2x -3,x >32,∴⎠⎛12|3-2x |d x =∫321(3-2x )d x +⎠⎛232(2x -3)d x=|3x -x 2321+(x 2-3x )|232=12. 答案 1212.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.解析 如图所示,因为y ′=-2x +4,y ′|x =1=2,y ′|x =3=-2,两切线方程为y =2(x -1)和y =-2(x -3). 由⎩⎨⎧y =2x -1,y =-2x -3得x =2.所以S =⎠⎛12[2(x -1)-(-x 2+4x -3)]d x +⎠⎛23[-2(x -3)-(-x 2+4x -3)]d x=⎠⎛12(x 2-2x +1)d x +⎠⎛23(x 2-6x +9)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 2+x 21+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-3x 2+9x 32=23. 答案23三、解答题13.如图在区域Ω={(x ,y )|-2≤x ≤2,0≤y ≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.解析 区域Ω的面积为S 1=16. 图中阴影部分的面积S 2=S 1-⎪⎪⎪⎠⎛2-2x 2d x =16-13x 32-2=323. 设落在阴影部分的豆子数为m , 由已知条件m 900=S 2S 1, 即m =900S 2S 1=600.因此落在图中阴影部分的豆子约为600粒.14.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-13x 310=16. 又⎩⎨⎧y =x -x 2,y =kx ,由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以, S 2=∫1-k(x -x 2-kx )d x =⎝⎛⎪⎪⎪⎭⎪⎫1-k 2x 2-13x 31-k0 =16(1-k )3. 又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.15.曲线C :y =2x 3-3x 2-2x +1,点P ⎝ ⎛⎭⎪⎫12,0,求过P 的切线l 与C 围成的图形的面积.解析 设切点坐标为(x 0,y 0)y′=6x2-6x-2,则y′|x=x0=6x20-6x0-2,切线方程为y =(6x 20-6x 0-2)⎝ ⎛⎭⎪⎫x -12,则y 0=(6x 20-6x 0-2)⎝ ⎛⎭⎪⎫x 0-12, 即2x 30-3x 20-2x 0+1=(6x 20-6x 0-2)⎝ ⎛⎭⎪⎫x 0-12. 整理得x 0(4x 20-6x 0+3)=0,解得x 0=0,则切线方程为y =-2x +1. 解方程组⎩⎨⎧y =-2x +1,y =2x 3-3x 2-2x +1,得⎩⎨⎧x =0,y =1或⎩⎨⎧x =32,y =-2.由y =2x 3-3x 2-2x +1与y =-2x +1的图象可知S =∫320[(-2x +1)-(2x 3-3x 2-2x +1)]d x[来源:学*科*网]=∫320(-2x 3+3x 2)d x =2732.16. 已知二次函数f(x)=3x 2-3x ,直线l 1:x =2和l 2:y =3tx(其中t 为常数,且0<t<1),直线l 2与函数f(x)的图象以及直线l 1、l 2与函数f(x)的图象所围成的封闭图形如图K 15-3,设这两个阴影区域的面积之和为S(t).[来源:.Com] (1)求函数S(t)的解析式;(2)定义函数h(x)=S(x),x ∈R .若过点A (1,m )(m ≠4)可作曲线y =h (x )(x ∈R )的三条切线,求实数m 的取值范围.解析 (1)由⎩⎨⎧y =3x 2-3x ,y =3tx得x 2-(t +1)x =0,所以x 1=0,x 2=t +1.所以直线l 2与f(x)的图象的交点的横坐标分别为0,t +1. 因为0<t<1,所以1<t +1<2.所以S(t)=∫t +1[3tx -(3x 2-3x)]d x +⎠⎛2t +1[(3x 2-3x)-3tx]d x = ⎪⎪⎪⎣⎢⎡⎦⎥⎤3t +12x 2-x 3t +10+⎪⎪⎪⎣⎢⎡⎦⎥⎤x 3-3t +12x 22t +1=(t+1)3-6t+2.(2)依据定义,h(x)=(x+1)3-6x+2,x∈R,[来源:]则h′(x)=3(x+1)2-6.因为m≠4,则点A(1,m)不在曲线y=h(x)上.过点A作曲线y=h(x)的切线,设切点为M(x0,y0),[来源:Z&xx&]则3(x 0+1)2-6=x 0+13-6x 0+2-m x 0-1, 化简整理得2x 30-6x 0+m =0,其有三个不等实根.设g (x 0)=2x 30-6x 0+m ,则g ′(x 0)=6x 20-6.由g ′(x 0)>0,得x 0>1或x 0<-1;由g ′(x 0)<0,得-1<x 0<1,所以g (x 0)在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,所以当x 0=-1时,函数g (x 0)取极大值;当x 0=1时,函数g (x 0)取极小值.因此,关于x 0的方程2x 30-6x 0+m =0有三个不等实根的充要条件是⎩⎨⎧ g -1>0,g 1<0,[来源:学_科_网Z_X_X_K] 即⎩⎨⎧ m +4>0,m -4<0,即-4<m <4.故实数m 的取值范围是(-4,4).(注:素材和资料部分来自网络,供参考。
定积分试题及答案大学
定积分试题及答案大学试题一:设函数\( f(x) = 2x - 1 \),求在区间[1, 3]上的定积分,并求出该定积分的几何意义。
解:首先,我们需要找到函数\( f(x) \)的原函数,即不定积分。
对于\( f(x) = 2x - 1 \),其不定积分为:\[ F(x) = \int (2x - 1)dx = x^2 - x + C \]其中\( C \)为积分常数。
接下来,我们计算区间[1, 3]上的定积分:\[ \int_{1}^{3} (2x - 1)dx = F(3) - F(1) = (3^2 - 3) - (1^2 - 1) = 9 - 3 - 1 + 1 = 6 \]几何意义:定积分\( \int_{1}^{3} (2x - 1)dx \)表示的是函数\( y = 2x - 1 \)与x轴在区间[1, 3]之间所围成的曲边梯形的面积,其面积为6平方单位。
试题二:计算定积分\( \int_{0}^{2} \frac{1}{1 + x^2} dx \)。
解:该定积分可以通过反正切函数的积分公式来解决:\[ \int \frac{1}{1 + x^2} dx = \arctan(x) + C \]其中\( C \)为积分常数。
计算定积分:\[ \int_{0}^{2} \frac{1}{1 + x^2} dx = \left[ \arctan(x)\right]_{0}^{2} = \arctan(2) - \arctan(0) \]由于\( \arctan(0) = 0 \),我们有:\[ \int_{0}^{2} \frac{1}{1 + x^2} dx = \arctan(2) \]试题三:设\( y = x^3 \),求在区间[-1, 1]上的定积分,并解释其几何意义。
解:首先,我们计算不定积分:\[ \int x^3 dx = \frac{x^4}{4} + C \]其中\( C \)为积分常数。
(完整版)定积分测试题及答案.doc
定积分测试题及答案班级: 姓名: 分数:一、选择题:(每小题 5 分)1 1-x 2dx ()1.A.0B.1C.D 42(2010 ·山东日照模考 )a = 2xdx ,b = 2e xdx ,c =2sinxdx ,则 a 、b 、c的大小关系是 ()A .a<c<bB .a<b<cC .c<b<aD .c<a<b3.(2010 山·东理, 由曲线y = 2,y =x 3 围成的封闭图形面积为 ()7) x1 11 7 A. 12B.4C.3D.124.由三条直线 x =0、x =2、y =0 和曲线 y = x 3所围成的图形的面积为()418A .4B.3C. 5D .65.(2010 湖·南师大附中 )设点 P 在曲线 y = x 2 上从原点到A(2,4)移动,如果把由直线 OP ,直线 y =x 2 及直线 x =2 所围成的面积分别记作 S 1,S 2.如图所示,当 S 1=S 2 时,点 P 的坐标是 ()4 164 16 4 15 4 13 A.3,9B.5,9C.3,7D.5,76.(2010 ·湖南省考试院调研 )1 -1(sinx +1)dx 的值为 ( )A .0B .2C .2+2cos1D .2-2cos17.曲线 y =cosx(0≤x ≤2π)与直线 y =1 所围成的图形面积是 ()3πA .2πB . 3πC. 2D .π8.函数 F(x)= xt(t -4)dt 在[-1,5]上 ()A .有最大值 0,无最小值B .有最大值 0 和最小值- 32332C .有最小值- 3 ,无最大值D.既无最大值也无最小值S n =2n 2+n ,函数 f(x)= x1 9.已知等差数列 { a n } 的前 n 项和 t dt ,若13,则 x 的取值范围是 ()f(x)<a3-A. 6 ,+∞B .(0,e 21)C .(e 11,e)D .(0,e 11)10.(2010 ·福建厦门一中 )如图所示,在一个长为 π,宽为 2 的矩形 OABC 内,曲线 y =sinx(0≤x ≤π)与 x 轴围成如图所示的阴影部分,向矩形 OABC 内随机投一点 (该点落在矩形 OABC 内任何一点是等可能的 ),则所投的点落在阴影部分的概率是 ()123πA. D.4.·吉林质检 函数x +2 -2≤x<0的图象与 x 轴所围 ) f(x) =π 11 (20102cosx 0≤x ≤2成的图形面积 S 为()31A. 2B .1C .4D.212.(2010 ·吉林省调研 )已知正方形四个顶点分别为 O(0,0),A(1,0), B(1,1),C(0,1),曲线 y =x 2(x ≥0)与 x 轴,直线 x =1 构成区域 M ,现将一个质点随机地投入正方形中,则质点落在区域 M 内的概率是 () 11 1 2A. 2B. 4C.3D.5二、填空题:(每小题 5 分)13.sinxdx= ______________14.物体在力 F(x)=3x+4 的作用下,沿着与 F 相同的方向,从 x=0 处运动到 x=4 处,力 F 所做的功为 ______________21x )dx15. (x______________116. 1e x )dx(e x ______________17.(2010 芜·湖十二中 )已知函数 f(x)=3x 2 1+2x +1,若 -1 f(x)dx =2f(a)成立,则 a =________.18.(2010 ·安徽合肥质检 )抛物线 y2=ax(a>0)与直线 x=1 围成的封闭4图形的面积为3,若直线 l 与抛物线相切且平行于直线2x-y+6=0,则 l 的方程为 ______.19.(2010 ·福建福州市 )已知函数 f(x)=- x3+ax2+bx(a,b∈R)的图象如图所示,它与 x 轴在原点处相切,且 x 轴与函数图象所围成区域 (图1中阴影部分 )的面积为12,则 a 的值为 ________.20.如图所示,在区间 [0,1] 上给定曲线 y=x2,试在此区间内确定 t 的值,使图中阴影部分的面积 S1+S2最小为 ________.答案1.D 2D 3A 4A 5A 6B 7A 8B 9D 10A 11C 12 C 13.2 14.40 15 23 + ln 2 16.e- 1e 17.-1 或31 18.16x-8y+1=0 19.-1 20. 41。
(完整版)定积分测试题及答案
定积分测试题及答案班级: 姓名: 分数:一、选择题:(每小题5分)1.0=⎰( )A.0B.1C.π D 4π2(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b3.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112 B.14 C.13 D.7124.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( )A .4 B.43 C.185D .65.(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,1376.(2010·湖南省考试院调研)1-1⎰ (sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos17.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( )A .2πB .3π C.3π2D .π8.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1t d t ,若f (x )<a 3,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11)10.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π411.(2010·吉林质检)函数f (x )=⎩⎨⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( )A.32 B .1C .4D.1212.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题:(每小题5分) 13. 0π⎰sin x d x =______________14.物体在力F(x)=3x+4的作用下,沿着与F 相同的方向,从x=0处运动到x=4处,力F 所做的功为______________15.211()x x dx +=⎰______________16.10()x x e e dx -+=⎰______________17.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若1-1⎰f (x )d x =2f (a )成立,则a =________.18.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.19.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.20.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小为________.答案1.D 2D 3A 4A 5A 6B 7A 8B 9D 10 A 11C 12 C13.2 14.40 1532+ln 2 16.e-1e 17.-1或13 18.16x-8y+1=019.-1 20.14。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)
一、选择题1.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78542.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数4.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-6.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 7.定积分()1e2xx dx -⎰的值为( )A .e 2-B .e 1-C .eD .e 1+8.函数()325f x x x x =+-的单调递增区间为( )A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭9.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .2310.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3B .23-C .π23-D .π33-11.1204x dx -=⎰( )A .4B .1C .4πD .332π+12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.232319x x dx -⎫-=⎪⎪⎭⎰____________________.14.已知曲线与直线所围图形的面积______.15.424(16)x x dx --+=⎰__________.16.已知曲线y x =,2y x =-,与x 轴所围成的图形的面积为S ,则S =__________.17.定积分()102xx e dx +=⎰__________.18.已知()12111,a x dx -=+-⎰则932a x x π⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭展开式中的各项系数和为________19.若,则的值是__________.20.定积分120124x x dx π⎫--⎪⎭⎰的值______. 三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数()ln 3mf x x x x=++. (1)求函数()f x 的单调区间;(2)若对任意的[]0,2m ∈,不等式()()1f x k x ≤+,对[]1,x e ∈恒成立,求实数k 的取值范围.23.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 24.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.25.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-.①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 26.计算由直线4,y x =-曲线2y x =以及x 轴所围图形的面积S 。
§定积分的应用习题与答案(可编辑修改word版)
第六章定积分的应用(A)1、求由下列各曲线所围成的图形的面积1)y = Lx2与F+),2=8 (两部分都要计算)22)y = L与直线y = x及x = 2 X3)y = e x , y = e^x与直线x = 14)=2a cos5)x = «cos31 9 y = usin' t1、求由摆线x = d(/-sin/), y = 6/(l-cosr)的一拱(0<r<2 )与横轴所围成的图形的而积2、求对数螺线=(疋(- < < )及射线=所困成的图形的而积1/103求由曲线v = sinx和它在% =—处的切线以及直线A-=所用成的图形的而积和它绕2 x轴旋转而成的旋转体的体积4.由y = x3 , x = 2, y = 0所用成的图形.分别绕x轴及y轴旋转,计算所得两旋转体的体积5、计算底而是半径为R的圆,而垂直于底而上一条固左直径的所有截面都是等边三角形的立体体积6、计算曲线y = £(3 -0上对应于1 <A <3的一段弧的长度7、计算星形线x = a cos31, y = a sin31的全长8、由实验知道,弹簧在拉伸过程中,需要的力F(单位:N)与伸长量S(单位:cm)成正比,即:F = kS(k是比例常数).如果把弹簧内原长拉伸6cm,计算所作的功9、一物体按规律x = cP作直线运动,介质的阻力与速度的平方成正比,计算物体由x = 0 移到x= «时,克服介质阻力所作的功1 0、设一锥形储水池,深15m, 口径20m,盛满水,将水吸尽,问要作多少功?1 1、有一等腰梯形闸门,它的两条底边各长10cm和6cm.高为20cm,较长的底边与水而相齐,计算闸门的一侧所受的水压力1 2、设有一长度为(,线密度为U的均匀的直棒,在与棒的一端垂直距离为U单位处有一质量为m的质点M,试求这细棒对质点M的引力(B)31.设由抛物线r = 2/zv(/;>0)与直线x + y< P所围成的平而图形为D21)求D的而积S ;2)将D绕y轴旋转一周所得旋转体的体积2、求由抛物线y-x2及尸=兀所困成图形的而积,并求该图形绕x轴旋转所成旋转体的体3、求由y = sin x , y =5,归,“尹御成的图形的面积,并求该图形绕X轴旋转所成旋转体的体积4、求抛物线y1 = 2px及英在点处的法线所囤成的图形的而积V2 )5、求曲线$ = /-2^ + 4在点旳(0,4)处的切线MT与曲线y2 =2(x- 1)所围成图形的而积6、求由抛物线于=4似与过焦点的弦所羽成的图形而积的最小值7、求由下列曲线所带I成图形的公共部分的面积1)= 3 cos , = 1 + cos2) =a sin = "(cos + sin ), a>08、由曲线x2+(y-5)2=16所困成图形绕x轴旋转所成旋转体的体积9、求圆心在(0,»半径为a , (b>a> 0)的圆,绕x轴旋转而成的环状体的体积10、计算半立方抛物线y2=5(x-l)3被抛物线>'2 =二截得的一段弧的长度3 3166/10(01>用积分方法证明半径为R 的球的髙为H 的球缺的的体积为 v= ”⑴s = S1 + S2取最大值和最小值 3、求曲线y =(0<x<4)上的一条切线,使此切线与直线x = 0,人・=4以及曲线 y =仮所用成的平面图形的而积最小 4.半径为r 的球沉入水中,球的上部与水而相切,球的密度与水相同,现将球从水中取出, 需作多少功?第六章定积分应用习题答案(A)4 43 111) 2 +6 - 2)_一 In 23) 0 + _- 23 32e4) a 182、3,3、,十) 4、—一 1, — 5、 128644)2 4 7 56、 37、 2,/3--38^ 6a9、 0.18H10(其中k 为比例常数)11. () 57697.5 kJ 12.皿)7GimiC伏取y 轴经过细直棒―叫,侖戶一 2^分别讨论函数y = sinx 0 <x<在取何值时,阴影部分的而积s, S 的和1 22、卩p I -p-y■3" I 2“孤显 v=jY ( z y-(x 2)2k=i 3 <A 丿 10A =『(cos A -sin x)dx +f (sin x-cos x)dx = 2、伍 - 2 4H = ])4 ((cos x)~ - (sin x)2 +『gsin x)~ - (cos x)2 )t/x44、 抛物线在点J处的法线方程为:x + y=3p ,以下解法同第一题A=l6p 2U )2 T 5、 MT : y = 4 — 2x,切线MT 与曲线y 2 = 2(x- 1)的交点坐标为 J \(3-2)U 丿昇 4- y y 2 ) 9 A=( \ --------- _一_ 11心=_丄2( 2 2 ) 46、 提示:设过焦点3,0)的弦的倾角为则弦所在直线的方程为y = tan (x 一 «) 由y = tan (x- a) , y 2 = 4ax 得两交点纵坐标为=4a 2 esc =4/(esc因为0< v 当=一时(esc )3取得最小值为12所以当=—时过焦点的弦与抛物线y 2 =4ax 所围成的图形而积/ A Q 2 A ~ = a 2(esc 『最小 〔2丿32) V = 3、272 —p'15+ 4a 】(cfg )2 esc - ° i/L (csc )'3)_ 匕2 (esc )3 = er (esc $)=>22、A o223 2 X10、 提示:y =3(x-l) , y =3.所求弧长$ = 2『 Jl + (y)认由 y 2 =~ (x-1)' 得);=° 一"3,>'条—i )2u 》c_i ) 于是(f $ 丿 ju-i)3 2(01、 证明:此处球缺可看作由如图阴影(图x 2 + f = R 2的一部分)绕y 轴旋转而成 所以V=匸〃 x ~dy=匸〃(&)')◎ = R'总〃 _ y|t//= R 2[R-(R-H )[--\R y -(R-H^]=H 2(R-~ '3 I 3 >2、 解:§ = [(sin t - sin x)clx S“ =『(sin x - sin t\lx7、 1) A = 2 1( 為 I+cos-1弋 I 3cos3?y2) A = [ — a sinJ ()2(—L a sin ff一 1------a 2 4+ cos9、 解法同题8)-(5-^16-x 2S0 ) = J (sin i - sin 心/x + f (sin x - sin t\lx = 2cos/ + ”2r - 'sin/ -1' (z ) = 2/- cos/ = 0 ・冯註点/ =s‘a)<o3、解:设(myo)为曲线y =低(03<4)上任一点,易得曲线于该点处的切线方程为:yo得其与X = 0, X = 4的交点分别为a 2于是由此切线与直线x = 0, x = 4以及曲线y =低所圉的平而图形面积为:问题即求S = 2、/7 + ” 1*0 5X 5 4)的最小值J3令S =「亍+ 2x 0得唯一驻点X = 2 且为唯一极小值 所以当x = 2时,S 最小 即所求切线即为:),=_二+返2运 24、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[x.x + dx ]段薄片在提升过程中在水中行程为r —x,而在水上的行程为2r — (r-x)=r+x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水而0<r<maxmin-1V2・・一1, s16 T上提升时,做功微元为dW=g(宀疋)(厂+讪VV =『dW = g f (r2 - X2+ x]dx = ~r^T T 311/10。
定积分练习题(含答案)
sin 2 x 2 sin x cos x = 4 = 2 lim x → 0 sin 2 x sin x
9
10.设 10.设 F ( x ) =
∫
x 0
1 1 1 x dt + ∫ dt ,则 ( 则 2 0 1+ t2 1+ t
).
2 ( C ) F ( x ) ≡ arctan x ( D ) F ( x ) ≡ 2 arctan x
∫
s t 0
f ( tx )dx 与(
(B ) s,t
)有关 有关. 有关 (C ) x , t (D) s
( A ) s,t , x
答案 : D
因为 I = t ( 令 t x= u) ∫ f (tx )dx = t ∫ s = ∫ f ( u)du s 所以, 所以,积分 I = t ∫ t f ( tx )dx 只与 s 有 关 0
10
11.若 11.若
∫
k 0
3 e dx = ,则 k = ( 则 2
2x
).
(A) 1
(B ) 2
( C ) ln 2
1 ln 2 (D) 2
答案: 答案 C .
因为
∫
k 0
1 2x e dx = e 2
2x
k 0
1 2k 3 = (e 1) = 2 2
则 k = ln 2
11
12.积分 12.积分 I = t
则 f ( x ) 有极小值 f (1) =
∫
1 0
( t 1)e t dt = 2 e
7
x x2 8.设 是连续函数, 8.设 f ( x ) 是连续函数 a ≠ 0 , F ( x ) = ∫ a f (t )dt , xa ). 则 lim F ( x ) = (
定积分期末考试题及答案
定积分期末考试题及答案一、单项选择题(每题2分,共10分)1. 定积分的基本性质中,以下哪个说法是错误的?A. ∫[a,b] f(x) dx = ∫[a,c] f(x) dx + ∫[c,b] f(x) dxB. ∫[a,b] f(x) dx = -∫[b,a] f(x) dxC. ∫[a,b] f(x) dx = ∫[a,b] f(-x) dxD. ∫[a,b] f(x) dx = ∫[a,b] f(a+b-x) dx答案:C2. 以下哪个函数的定积分在区间[0,1]上的值等于0?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = cos(x)D. f(x) = x答案:C3. 计算定积分∫[0,π] sin(x) dx的结果是多少?A. 2B. 0C. -2D. π答案:B4. 以下哪个函数是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:D5. 计算定积分∫[0,1] x^2 dx的结果是多少?A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题3分,共15分)1. 定积分∫[0,1] x dx的值为_________。
答案:1/22. 函数f(x) = 2x在区间[1,3]上的定积分为_________。
答案:43. 函数f(x) = 1/x在区间[1,e]上的定积分为_________。
答案:14. 函数f(x) = x^3在区间[-1,1]上的定积分为_________。
答案:05. 函数f(x) = x^2 - 2x + 1在区间[0,2]上的定积分为_________。
答案:2三、计算题(每题10分,共20分)1. 计算定积分∫[0,2] (x^2 - 2x + 1) dx,并给出结果。
答案:∫[0,2] (x^2 - 2x + 1) dx = [1/3x^3 - x^2 + x] | [0,2]= (8/3 - 4 + 2) - (0) = 2/32. 计算定积分∫[-1,1] (x^3 + 3x^2 - 2x) dx,并给出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
D
,
3 9
,
5 9
,
3 7
,
5 7
4
定积分测试题及答案
班级:姓名:分数:
一、选择题:(每小题5 分)
1. ⎰
1-x2dx =()
A.0
B.1
C.
2 2(2010·ft东日照模考)a=∫0的大小关系是( )
2
x d x,b=∫0
2
e x d x,c=∫0sin x d x,则a、b、c
A.a<c<b B.a<b<c C.c<b<a D.c<a<b
3.(2010·ft东理,7)由曲线y=x2,y=x3 围成的封闭图形面积为( )
A.
1 1
2 B.
1
4
C.
1
3
D.
7
12
4.由三条直线x=0、x=2、y=0 和曲线y=x3 所围成的图形的面积为( )
A.4 4 18 D.6
B. C.
3 5
5.(2010·湖南师大附中)设点P 在曲线y=x2 上从原点到A(2,4)移动,如果把由直线OP,直线y=x2 及直线x=2 所围成的面积分别记作S1,S2.如图所示,当S1=S2时,点P 的坐标是( )
A.(4 16
B.(4 16
C.(4 15
D.(4 13
))))
1
6
6.(2010·湖南省考试院调研)
-1
(sin x +1)d x 的值为(
)
A .0
B .2
C .2+2cos1
D .2-2cos1
7. 曲线 y =cos x (0≤x ≤2π)与直线 y =1 所围成的图形面积是(
)
A .2π
B .3π
C.3π 2
D .π
x
8.函数 F (x )=
∫0
t (t -4)d t 在[-1,5]上(
)
A .有最大值 0,无最小值
B .有最大值 0 和最小值-32
3 32
C .有最小值- ,无最大值
D .既无最大值也无最小值
3
x
9.已知等差数列{a }的前 n 项和 S =2n 2+n ,函数 f (x )=
1 ,若
n n
f (x )<a 3,则 x 的取值范围是(
)
d t
1
t
A.
(
3
)
B .(0,e 21)
C .(e -11,e )
D .(0,e 11)
10.(2010·福建厦门一中)如图所示,在一个长为π,宽为2 的矩形OABC 内,曲线 y =sin x (0≤x ≤π)与 x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形 OABC 内任何一点是等可能的), 则所投的点落在阴影部分的概率是( )
,+∞ ∫
⎰ ⎰ A.1 π
B.2 π
C.3 π
D.π 4
11.(2010·吉林质检)函数 f (x )=Error!的图象与 x 轴所围成的图形面积 S
为( ) A.3
2
B .1
C .4
D.1 2
12.(2010·吉林省调研)已知正方形四个顶点分别为 O (0,0),A (1,0), B (1,1),C (0,1),曲线 y =x 2(x ≥0)与 x 轴,直线 x =1 构 成区域 M ,现将一个质点随机地投入正方形中,则质点落在区域 M 内的概率是(
) A.1
2
B.1 4
C.1 3
D.2 5
二、填空题:(每小题 5 分)
13. ⎰0 sin x d x =
14.物体在力 F(x)=3x+4 的作用下,沿着与 F 相同的方向,从 x=0 处运动到 x=4 处,力 F 所做的功为
15. 2
(x + 1 )dx =
⎰
1 x
16. 1
(e x + e -x )dx =
17.(2010·芜湖十二中)已知函数 f (x )=3x 2+2x +1,若 1
-1
f (x )d x =2f (a )
成立,则 a =
.
2 e
3
4
18.(2010·安徽合肥质检)抛物线 y 2=ax (a >0)与直线 x =1 围成的封闭 4
图形的面积为 ,若直线 l 与抛物线相切且平行于直线 2x -y +6=0,
3 则 l 的方程为
.
19.(2010·福建福州市)已知函数 f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与 x 轴在原点处相切,且 x 轴与函数图象所围成区域
(图中阴影部分)
1
a 的值为 .
的面积为 ,则
12
20.如图所示,在区间[0,1]上给定曲线 y =x 2,试在此区间内确定 t 的值,使图中阴影部分的面积 S 1+S 2 最小为
.
答案
1.D 2D 3A 4A 5A 6B 7A 8B 9D 10 A 11C
12 C
13.2 14.40
15 3 +ln 2
16.e- 1 17.-1 或 1
18.16x-8y+1=0
19.-1
20. 1。