【专题】必修3 专题3.1.1 随机事件的概率及概率的意义-高一数学人教版(解析版)

合集下载

高一数学人教A版必修3课件:3.1.1 随机事件的概率

高一数学人教A版必修3课件:3.1.1 随机事件的概率

目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
随机事件的频率与概率 【例3】 某射击运动员进行飞碟射击训练,七次训练的成绩记录 如下:
100 射击次数 n 击中飞碟数 nA 81
120 150 100 95 120 81
目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
反思利用频率估计概率的步骤: (1)依次计算各个频率值;(2)观察各个频率值的稳定值即为概率 的估计值,有时也可用各个频率的中位数来作为概率的估计值.
目标导航 题型一 题型二 题型三
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.事件 (1)确定事件:在条件S下,一定会发生的事件,叫做相对于条件S的 必然事件,简称必然事件;在条件S下,一定不会发生的事件,叫做相 对于条件S的不可能事件,简称不可能事件.必然事件与不可能事件 统称为相对于条件S的确定事件,简称确定事件. (2)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对 于条件S的随机事件,简称随机事件. (3)事件:确定事件和随机事件统称为事件,一般用大写字母 A,B,C……表示. (4)分类:
目标导航 题型一 题型二 题型三
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
反思1.把握住随机试验的实质,要明确一次试验就是将试验的条 件实现一次. 2.准确理解随机试验的条件、结果等有关定义,并能使用它们判 断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一 般采用列举法.根据日常生活经验,按一定次序列举,才能保证所列 结果没有重复,也没有遗漏.

(推荐)高中数学必修三课件:311312随机事件的概率与概率的意义

(推荐)高中数学必修三课件:311312随机事件的概率与概率的意义
n
随机事件及其概率
某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽
发芽的频率m 接近于常数0.9,在它附近摆
动。
n
在相同的条件S下重复n次试验,观察某一 事件A是否出现,称n 次试验中事件A出现的次 数nA为事件A出现的频数,称事件A出现的比例 fn(A)=nA/n为事件A出现的频率。
36124
0.5011
随机事件及其概率
又如:某批乒乓球产品质量检查结果表:
抽取球数 n
优等品数 m
优等品频率 m n
50 100 200 500 1000 45 92 194 470 954 0.9 0.92 0.97 0.94 0.954
2000 1902 0.951
当抽查的球数很多时,抽到优等品的频 率m 接近于常数0.95,在它附近摆动。
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做 7 遍, 观察正面出现的次数及频率.
试验 序号
1 2 3 4 5 6 7
n5
n50 n500
nH
f
nH
f
nH f
2
0.4

22 0.44 251 0.502
3
0.6 在 251处波0.5动0 较大249 0.498
1
0.2
212 0.42 256 0.512
抛掷次数
( n)
正面向上次数
(频数m)
频率(m ) n
发2现04:8 当抛掷硬1币061的次数很多0.5时181,
出现正40面40的频率值是204稳8 定的,接0.近506于9
常数01.250,00 在它左右6摆019动. 0.5016

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
我们看到,当试验次数很多时,出现正面的 频率值在0.5附近摆动.
上述试验表明,随机事件A在每次试验中是否 发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率呈现出一定 的规律性,这个规律性是如何体现出来的?
有些事情的发生是偶然的,有些事情的发生是必然的.
但是偶然与必然之间往往有某种内在联系.
例如,北京地区一年四季的变化有着确定的、必 然的规律,但北京地区一年里哪一天最热,哪一天最 冷,哪一天降雨量最大,那一天降雪量最大等,又是 不确定的、偶然的.
基本概念
1、随机事件: 在条件S下可能发生也可能 不发生的事件,叫做相对于 条件S的随机事件,简称随 机事件.
这些事件会发生吗?是什么事件?
不可能发生,不可能发生,不可能事件
确定事件
考察下列事件: (1)某人射击一次命中目标; (2)任意选择一个电视频道,它正在播放
新闻; (3)抛掷一个骰子出现的点数为奇数.
这些事件一定会发生吗?他们是什么事件?
可能发生也可能不发生,随机事件.
对于随机事件,知道它发生的可能性大小是 非常重要的.
2、必然事件: 在条件S下一定会发生的事 件,叫做相对于条件S的必 然事件,简称必然事件.
3、不可能事件: 在条件S下一定不会发生的事 件,叫做相对于条件S的不可 能事件,简称不可能事件.
4、确定事件: 必然事件与不可能事件统称为 相对于条件S的确定事件,简称 确定事件.

人教版数学高一课件 3.1 随机事件的概率- 概率的意义

人教版数学高一课件 3.1 随机事件的概率- 概率的意义
(2)为不可能事件,(4)为必然事件,(1)(3)(5)为随机事件.
事件的分类
反思与感悟
事件类型
定义
在一定条件下,必然会发 必然事件
生的事件
在一定条件下,肯定不会 不可能事件
发生的事件
在一定条件下,可能发生 随机事件
也可能不发生的事件
举例 在山顶上,抛一块石头,石 头下落
在常温常压下,铁熔化
掷一枚硬币,出现正面向上
知识点三 概率的意义
思考1
一个保险推销员对人们说:“人有可能得病,也有可能 不得病,因此,得病与不得病的概率各占50%.”他的说 法正确吗? 答案
不正确.在大多数时候,人是不得病的.得病与不得病的概 率不相等.
思考2
在天气预报中,预报“明天降水概率为78%”是指“明 天该地区有78%的地区降水,其他22%的地区不降水”吗?
梳理
1.频数与频率
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中 事件A出现的次数nA 为事件A出现的频数,称事件A出现的比例fn(A)=nnA 为事件A出现的频率.
2.概率 (1)含义:概率是度量随机事件发生的 可能的性量大.小 (2)与频率联系:对于给定的随机事件A,由于事件A发生的 频率fn(A) 随着 试验次数的增加稳定于概率P(A),因此可以用 频率fn(A) 来估计 概率P(A) .
12345
5.某种油菜籽在相同条件下的发芽试验结果如下表. 每批粒数 2 5 10 70 130 700 1 500 2 000 3 000 发芽的粒数 2 4 9 60 116 637 1 370 1 786 2 709 发芽的频率 1 0.8 0.9 0.857 0.892 0.910 0.913 0.893 0.903

高中人教A版数学必修3精品课件 3.1.1 随机事件的概率

高中人教A版数学必修3精品课件 3.1.1 随机事件的概率

实验
探寻“抛掷一枚硬币,正面向上”这 个随机事件发生的可能性大小.
实验操作: 每人各取一枚同样的硬币,做10次抛掷硬币试验。
统计“正面向上”出现的次数,并计算“正面向上”出 现的频率。
计算机模拟实验
历史上的一些实验
历史上曾有人作过抛掷硬币的大量重复试验, 请同学们来看这样一组数据:
抛掷次数(n)
正面向上次数(频数m) 频率( Nhomakorabeam n
)
2048
1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
0.5005
30000
14984
0.4996
72088
36124
0.5011
掷硬币试验
从这次试验,你可以得到一 些什么启示?
概率的定义
对于给定的随机事件A,随着试验次 数的增加,事件A发生的频率 m 总是逐渐稳
概率约是0.8 (3)这位运动员进球的概率是0.8,那么他投10次篮一定 能投中8次吗?
不一定. 投10次篮相当于做10次试验,每次试验的 结果都是随机的, 所以投10次篮的结果也是随机的.
小结
通过这节课的学习,你的收获是什么?
作业
测评卷 P35
n
定于区间[0,1]中的某个常数,我们就把这个常 数叫做事件A的概率,记作P(A).
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 m 作为事
n
件A发生的概率的近似值,
即 P( A)
m n ,(其中P(A)为事件A发生的概率)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件..(共15张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件..(共15张PPT)
(5)“掷一枚硬币,出现正面”可能发生也可能不发生
(6)“木柴燃烧,产生能量”
一定会发生
事件的分类
试一试:列举一些你生活中了解到的这三类 事件.
必然事件:在条件S下,一定会发生的事件,叫 做相对于 条件S的 必然事件.
不可能事件:在条件S下,一定不会发 生的事件 叫 做相对于 条件S的不可能事件.
能力提升
思考:某中学高一有12个班,要从中选2个班代 表学校参加某项活动.由于某种原因,一班必须参 加,另外再从二到十二班中选1个班.有人提议用 如下的方法:掷两个骰子得到的点数和是几,就选 几班,你认为这种方法公平吗?为什么?
(1,1) (1,2) (1,3)(1,4) (1,5) (1,6) (2,1) (2,2) (2,3)(2,4) (2,5) (2,6) (3,1) (3,2) (3,3)(3,4) (3,5) (3,6) (4,1) (4,2) (4,3)(4,4) (4,5) (4,6) (5,1) (5,2) (5,3)(5,4) (5,5) (5,6) (6,1) (6,2) (6,3)(6,4)(6,5) (6,6)
姓名
试验次数
Байду номын сангаас
正面朝上的次数 正面朝上的比例
试验
小组讨论
概念形成
概率的定义:
对于给定的随机事件A,如果随着试验 次数的增加,事件A发生的频率 fn(A) 稳定 在某个常数上,我们把这个常数记作P( A) , 并称为事件A的概率。
讨论:频率和概率有什么区别与联系?
频率与概率的关系
区别: 频率是变化的,而概率是确定的 联系:
随机事件:在条件S下,可能发生也可能不发生的 事 件,叫做 相对于条件S的随机事件.

高中数学 人教A版必修3 第三章 3.1.1-2 随机事件的概率+概率的意义 课件

高中数学 人教A版必修3 第三章  3.1.1-2  随机事件的概率+概率的意义 课件

1.在 1,2,3,…,10 这十个数字中,任取三个不同的数 字,那么“这三个数字的和大于 5”这一事件是( )
A.必然事件 B.不可能事件 C.随机事件 D.以上选项均有可能
解析 从十个数字中任取三个不同的数字,那么这三 个数字的和的最小值为 1+2+3=6,所以事件“这三个数 字的和大于 5”一定会发生,所以由必然事件的定义可以得 知该事件是必然事件.故选 A.
件,叫做相对于条件 S 的不可能事件,简称不可能事件.
□ _0_3__必__然__事__件__与__不__可___能__事__件___统称为相对于条件 S 的
确定事件,简称确定事件.
□ 3.随机事件:在条件 S 下__0_4__可__能__发__生__也__可__能__不__发__生___
的事件,叫做相对于条件 S 的随机事件,简称随机事件.
(2)射击一次,就是一次试验,共有 2 次试验.试验的 结果有“两次中靶”“第一次中靶,第二次未中靶”“第一 次未中靶,第二次中靶”“两次都未中靶”,共 4 种.
探究 3 频率与概率的关系
例 3 某公司在过去几年内使用某种型号的灯管 1000
支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,
拓展提升 估算法求概率
(1)在实际问题中,常用事件发生的频率作为概率的估 计值.
(2)在用频率估计概率时,要注意试验次数 n 不能太小, 只有当 n 很大时,频率才会呈现出规律性,即在某个常数附 近摆动,且这个常数就是概率.
【跟踪训练 3】 有人对甲、乙两名网球运动员训练中 一发成功次数做了统计,结果如下表:
1.事件的概念及分类 要判断事件是哪种事件,首先要看清条件,条件决定 事件的种类,随着条件的改变,其结果也会不同,因此概念 中“在条件 S 下”不能去掉,其次要根据事件的结果来确定 其类型,关键是看在给定的条件下是一定发生,还是不一定 发生,还是一定不发生.

高中数学 人教A版必修3 3.1.1、2 随机事件的概率、概率的意义 课件

高中数学 人教A版必修3 3.1.1、2 随机事件的概率、概率的意义 课件

【解析】(1)如表所示
抽取球数目 50 100 200 500 1 000 2 000 优等品数目 45 92 194 470 954 1 902 优等品频率 0.9 0.92 0.97 0.94 0.954 0.951
(2)根据频率与概率的关系,可以认为从这批产品中任取 一个乒乓球,质量检测为优等品的概率约是0.95.
【跟踪训练】
1.在20支同型号钢笔中,有3支钢笔是次品,从中任意抽
取4支钢笔,则以下事件是必然事件的是 ( )
A.4支均为正品
B.3支为正品,1支为次品
C.3支为次品,1支为正品 D.至少有1支为正品
【解析】选D.因为仅有3支钢笔是次品,故抽样的结果 有以下四种情况:4支全是正品,有1支次品,有2支次品, 有3支次品.
(2)由(1)知,事件“正面向上的次数比反面向上的次数 多”的所有结果为111,110,101,011.
【补偿训练】1.下列事件是随机事件的个数是 ( )
①异种电荷互相排斥;②明天天晴;③自由下落的物体做
匀速直线运动;④函数y=logax(a>0,且a≠1)在定义域上 是增函数.
A.0
B.1
C.2
(1)估计从袋中任意摸出一个球,恰好是红球的概率. (2)请你估计袋中红球的个数.
【解题指南】(1)先计算摸球的总的次数,再求摸到红球 的频率,最后求概率. (2)根据频率估计概率,求得红球的个数.
【解析】(1)因为20×400=8 000, 所以摸到红球的频率为: 6 0=000.75,
8 000
2.概率为1的事件是否一定发生?概率为0的事件是否一 定不发生?为什么?
提示:任何事件发生的概率都是区间[0,1]内的一个确 定的数,用来度量该事件发生的可能性.小概率(接近于 0)事件不是不发生,而是很少发生,大概率(接近于1)事 件不是一定发生,而是经常发生,因此概率为1的事件不 是一定发生,同样概率为0的事件不是一定不发生.

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

人教版高中数学必修三课件:3.1.1随机事件的概率

人教版高中数学必修三课件:3.1.1随机事件的概率

【答案】 必然事件:(3) (1)(4)(5)(6)
不可能事件:(2)
随机事件:
题型二 随机试验及结果 例 2 指出下列试验的结果. (1)某人射击一次命中的环数; (2)从集合A={a,b,c,d}中任取两个元素构成的A的子 集; (3)从装有红、白、黑三种颜色的小球各1个的袋子中任取2 个小球; (4)从1,3,6,10四个数中任取两个数(不重复)作差.
【解析】 由题意知: (1)(2)中事件可能发生, 也可能不发生, 所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子 朝上面的数字最大是 6,两次朝上面的数字之和最大是 12,不可 能大于 12,所以(4)中事件不可能发生,是不可能事件. 【答案】 必然事件:(3) 不可能事件:(4) 随机事件:(1)(2)
答:这种说法不对,本周五下雨是一种随机事件.
3.某医院治疗一种疾病的治愈率为10%,那么,前9个病人 都没有治愈,第10个人就一定能治愈吗?
答:如果把治疗一个病人作为一次试验,治愈率是10%,指随 着试验次数的增加,即治疗的病人数的增加,大约有10%的人能够 治愈,对于一次实验来说,其结果是随机的,因此前9个病人没有 治愈是可能的,对第10个人来说,其结果仍然是随机的,即有可能 治愈,也可能没有治愈.
要点3
概率
(1)定义:对于给定的随机事件A,如果随着试验次数的增 加,事件A发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称为事件A的概率. (2)范围:[0,1]. (3)意义:概率从数量上反映了随机事件发生的可能性的大 小.
要点4
频率与概率之间的区别与联系
(1)频率是概率的近似值,随着试验次数的增加,频率会越 来越接近于概率,在实际问题中,通常事件发生的概率未知, 常用频率作为它的估计值. (2)频率本身是随机的,是一个变量,在试验前不能确定, 做同样次数的重复试验得到的事件发生的频率会不同.比如, 全班每个人都做了10次掷硬币的试验,但得到正面朝上的频率 可以是不同的.

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件.(共29张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件.(共29张PPT)
0.506 0.501 0.5005 0.499 0.501
频率m/n
1
德 . 摩根 蒲 丰 皮尔逊 皮尔逊
维尼 维尼
ቤተ መጻሕፍቲ ባይዱ0.5
2048 4040 12000
24000 30000
抛掷次数n
72088
电脑模拟抛硬币
概率
分析探讨 形成概念
概率
在上面抛硬币 的试验中,正面 朝上的频率是一 个变化的量,但 当试验次数比较 大时,出现正面 朝上的频率都在 0.5附近摆动
❖2、过程与方法目标:
通过数学试验,观察、发现随机事件的统计 规律性,了解通过大量重复试验,用频率估计概 率的方法。
❖3、情感态度与价值观目标:
通过发现随机事件的发生既有随机性,有存 在着统计规律性的过程,体会偶然性和必然性的 对立统一。
重难点分析
概率
重点:概率的意义
难点:通过观察数据图表,总结出在大量重 复试验的情况下,随机事件发生呈现出的 规律性。 重、难点突破:给学生亲自动手操作的机会, 使学生在试验过程中形成对随机事件发生 的随机性以及随机性中表现出的规律性的 直接感知。
3.抛一枚硬币出现正面向上的概率为0.5, 所以抛12000次时,出现正面向上的次数 可能为6000 。
新知演练 深化概念
函数
活动:让学生分组讨论交流,比一比哪一组 的例子最多、最贴切!
[设计意图]学生已经接受了概率概念,区分了频率和概率,
学生自然会问:研究随机事件的概率有何意义?此时教师给出 具体例子(天气预报、保险业、博彩业)组织学生讨论概率的 意义,能加深学生对概念的理解.
作为课堂的延伸,你课后还想作些什么探究?
设计意图:把孤立的知识点变成知识体系.

人教版高中数学必修3第三章概率-《3.1.1随机事件的概率》教案

人教版高中数学必修3第三章概率-《3.1.1随机事件的概率》教案

3.1.1 随机事件的概率整体设计教学分析概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施.三维目标1.通过在抛硬币、抛骰子的试验中获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n (A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.重点难点教学重点:1.理解随机事件发生的不确定性和频率的稳定性.2.正确理解概率的意义.教学难点:1.对概率含义的正确理解.2.理解频率与概率的关系.课时安排1课时教学过程导入新课思路1日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.思路21名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.推进新课新知探究提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念.具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:思考试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下,填入下表.思考与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示.思考这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性. 思考如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么? 引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示. (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n a 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同. 概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关. 应用示例思路1例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件. (1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b,那么a-b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”; (10)“在常温下,焊锡熔化”.分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.点评:紧扣各类事件的定义,结合实际来判断.例2 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A 出现的频数n a 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89. 点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之. 变式训练一个地区从某年起几年之内的新生儿数及其中男婴数如下:(1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少? 答案:(1)0.520 0.517 0.517 0.517 (2)由表中的已知数据及公式f n (A )=nn A即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.思路2例1 做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出; (2)做60次试验,每种结果出现的频数、频率各是多少?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点. (2)根据实验结果列表后求出频数、频率,表略.例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 知能训练1.指出下列事件是必然事件、不可能事件、还是随机事件. (1)某地1月1日刮西北风; (2)当x 是实数时,x 2≥0;(3)手电简的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%.答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件. 2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率. 点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法. 拓展提升1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A.必然事件B.随机事件C.不可能事件D.无法确定 答案:B提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件. 2.下列说法正确的是( )A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对 答案:C提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格;(2)该油菜子发芽的概率约是多少?解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897.4.某篮球运动员,在同一条件下进行投篮练习,结果如下表所示.(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.课堂小结本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.作业完成课本本节练习.。

3.1.1随机事件的概率((高中数学人教A版必修三)ppt课件

3.1.1随机事件的概率((高中数学人教A版必修三)ppt课件

掷硬币试验
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做 7 遍, 观察正面出现的次数及频率.
试验 序号
1 2 3 4 5 6 7
n5
n 50
n 500
nH
f
nH
f
nH f
2
0.4
2在2 1 处波 0.4动4 较大251 0.502
3
0.6 25 2 0.50 249 0.498
1
试验 序号
1 2 3 4 5 6 7
n5
n 50
n 500
nH
f
nH
f
nH f
2
0.4
2在2 1 处波 0.4动4 较大251 0.502
3
0.6 25 2 0.50 249 0.498
1
随0.2n的增2大1 , 频率0.4f2 呈现2出56稳定0.5性12
5 在11.0处波动25较小 0.50 247 0.494
21
事件A的概率:一般地,在大量重复进行同
一试验时,事件A发生的频率 fn ( A)总是接 近于某个常数,在它附近摆动。这个常数叫
做事件A的概率,记作P(A)。 注:事件A的概率:
(1)频率
fn (
A)
nA n
总在P(A)附近摆动,当n越
大时,摆动幅度越小。
(2)0≤P(A)≤1 不可能事件的概率为0, 必然事件为1,随机事件的概率大于0而小于1。
实验者
试验次数(n)
出现正面的 次数(m)
出现正面的 频率(m/n)
棣莫佛 蒲丰 费勒 皮尔逊 皮尔逊
2048 4040 10000 12000 24000
1061 2048 4979 6019 12012

高中数学人教A版必修三《随机事件的概率及概率的意义》PPT课件

高中数学人教A版必修三《随机事件的概率及概率的意义》PPT课件

(1)“取出的是黄球”是什么事件?它的概率是多少? (2)“取出的是白球”是什么事件?它的概率是多少?
不可能事件 0 随机事件 4/9
(3)“取出的是白球或是红球”是什么事件?它的概率是多少?必然事件 1
高中数学人教A版必修三《随机事件的 概率及 概率的 意义》 PPT课 件
高中数学人教A版必修三《随机事件的 概率及 概率的 意义》 PPT课 件
实 际 上 , 连 续 出 现 1 0 次 正 面 向能 (上性 2)的最小大概题”率所可做为以的0作判.为5断1决0.≈策这0的种.准判0 0则断0,问9例题7如的6 对方6 。第法 尽 管 概 率 比 较小,但发生的可能性是有的称。为对“于极第大似1然1次法”来说,出现正面向上的概率认 为0.5. (2)由(1)知,对于均匀硬币来说,连续出现10次正面向上的概率很小,几 乎不可能发生,就硬币是否均匀作出判断,根据极大似然法,我们更倾向 于“这枚硬币时不均匀”的判断,
随机试验: 一个试验如果满足下列条件下: (1)试验可以在相同条件下重复进行; (2)试验的所有结果是明确的,但不止一个; (3)每次试验总是出现这些结果中的一个,但在一次试验之前不能 确定这次试验会出现哪一个结果。 则称这样的试验是一个随机试验,简称试验。
抛硬币的这个试验中, 试验可以在相同条件下重复进行;每掷一次,就是进行了一次试验,试
(2)“木柴燃烧,产生能量”
一必定然发事生件
(3)“在常温下,石头风化” 不不可可能能事发件生
(4)“某人射击一次,中靶”可随能机发事生件也可能不发生 (5)“掷一枚硬币,出现正面”可随能机发事生件也可能不发生
(6)“在标准大气压下且温度低于0℃时,雪融化” 不可能事发件生
高中数学人教A版必修三《随机事件的 概率及 概率的 意义》 PPT课 件

高一数学必修3概率的意义

高一数学必修3概率的意义
茎的高度
显性 黄色 6022
圆形 5474
长茎 787
隐性 绿色 2001
皱皮 1850
短茎 277

你能从这些数据中发现什么规律吗?
整理ppt
17
孟德尔的豌豆实验表明,外表完全相同
的豌豆会长出不同的后代,并且每次试 验的显性与隐性之比都接近3︰1,这 种现象是偶然的,还是必然的?我们希 望用概率思想作出合理解释.
“两次正面朝上”的频率约为0.25,
“两次反面朝上” 的频率约为0.25,
“一次正面朝上,一次反面朝上”
的频率约为0.5. 整理ppt
6
思考4:围棋盒里放有同样大小的9枚白 棋子和1枚黑棋子,每次从中随机摸出1 枚棋子后再放回,一共摸10次,你认为 一定有一次会摸到黑子吗?说明你的理 由.
不一定.摸10次棋子相当于做10次重 复试验,因为每次试验的结果都是随 机的,所以摸10次棋子的结果也是 随机的.可能有两次或两次以上摸到 黑子,也可能没有一次摸到黑子,摸 到黑子的概率为1-整0理pp.t910≈0.6513. 7
整理ppt
18
思考7:在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特
征因子组成,下一代是从父母辈中各随
机地选取一个特征组成自己的两个特征.
(2)用符号AA代表纯黄色豌豆的两个特
征,符号BB代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获
的豌豆特征为:AB.把第一代杂交豌豆再
种下时,第二年收获的豌豆特征为: AA,
如果我们面临的是从多个可选答案
中挑选正确答案的决策任务,那么“使 得样本出现的可能性最大”可以作为决 策的准则,这种判断问题的方法称为极 大似然法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章概率
3.1.1、3.1.2 随机事件的概率及概率的意义
一、选择题
1.气象台预报“本市明天降雨概率是70%”,以下理解正确的是
A.本市明天将有70%的地区降雨
B.本市明天将有70%的时间降雨
C.明天出行不带雨具肯定淋雨
D.明天出行不带雨具淋雨的可能性很大
【答案】D
【解析】气象台预报“本市明天降雨概率是70%”,则本市明天降雨的可能性比较大.因此,明天出行不带雨具淋雨的可能性很大.故选D.
2.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则
A.m>n B.m<n C.m=n D.m是n的近似值
【答案】D
【解析】用随机模拟方法求得的事件的概率是估计值,是不精确的,所以m是n的近似值,故选D.3.从6个男生,2个女生中任选3人,则下列事件中必然事件是
A.3个都是男生B.至少有1个男生
C.3个都是女生D.至少有1个女生
【答案】D
【解析】由于女生只有2人,而现在选择3人,故至少要有1个男生参选.
4.下列现象是随机现象的个数为
①某路在单位时间内发生交通事故的次数;
②冰水混合物的温度是0°C;
③三角形的内角和为180°;
④一个射击运动员每次射击的命中环数;
⑤n边形的内角和为(n–2)•180°.
A.2个B.3个C.4个D.5个
【答案】A
【解析】①某路中单位时间内发生交通事故的次数不定,是随机事件;②冰水混合物的温度是0°C,是必然事件;③三角形的内角和为180°,是必然事件;④一个射击运动员每次射击的命中环数,是随机事件;⑤n边形的内角和为(n–2)•180°,是必然事件;所以①④是随机事件.故选A.
5.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是
A.取到的球的个数B.取到红球的个数
C.至少取到一个红球D.至少取到一个红球的概率
【答案】B
6.下面四个事件:
①明天天晴;
②常温下,锡条能够熔化;
③自由落下的物体作匀加速直线运动;
④函数y=a x(a>0,且a≠1)在定义域上为增函数.
其中随机事件的个数为
A.0 B.1 C.2 D.3
【答案】C
【解析】①月明天天晴,是随机事件;②常温下,锡条能够熔化,是不可能事件;③自由落下的物体作匀加速直线运动,是必然事件;④函数y=a x(a>0,且a≠1)在定义域上为增函数,是随机事件;所以
①④是随机事件.故选C.
7.下列事件中,不可能发生的事件是
A.三角形的内角和为180°
B.三角形中大边对的角也较大
C.锐角三角形中两个锐角的和小于90°
D.三角形中任意两边之和大于第三边
【答案】C
【解析】由题意可得,选项A、B、D中的事件为必然事件,再根据锐角三角形中任意两个角的和必定
大于90°,可得选项C中的事件为不可能事件,故选C.
8.下列试验能构成事件的是
A.掷一次硬币B.射击一次
C.标准大气压下,水烧至100°C D.摸彩票中头奖
【答案】D
【解析】由题意知本题要判断哪一个是一个事件,事件是在一定条件下所出现的某种结果根据事件可以分为必然事件、随机事件和不可能事件,A,B,C三个选项不能划分为三种事件中的任意一个,故选D.9.随机事件A发生的概率的范围是
A.P(A)>0 B.P(A)<1
C.0<P(A)<1 D.0≤P(A)≤1
【答案】D
【解析】随机事件A发生的概率的范围0≤P(A)≤1,例如在任意实数中任取一个数,恰好为0,是随机事件,概率为0;在圆上任取一点,不是圆心,是随机事件,概率为1,故选D.
10.某人将一枚均匀的骰子连抛了10次,其中2点朝上出现了6次,若用A表示“两点朝上”这一事件,则事件A的
A.概率为3
5
B.频率为
3
5
C.频率为6 D.概率接近于0.6
【答案】B
【解析】C选项明显错误,应该是频数为6;D选项也错误,应该是“频率接近于概率”,而不是“概率接近于频率”.试验的次数是确定的,即10次,因此仅凭10次试验是不能确定事件A发生的概率大小
的.由频率的定义,知事件A发生的频率为3
5

二、填空题
11.我们把在条件S下,一定会发生的事件,叫做相对于条件S的____________事件.【答案】必然
【解析】我们把在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,故答案为:必然.12.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S下的____________事件.【答案】随机
【解析】定义:有些事情我们事先无法肯定它会不会发生,这些事情称为随机事件.由于事件A在条件S下,可能发生也可能不发生,故事件A是相对于条件S下的随机事件.故答案为:随机.
13.在条件S 下,一定不会发生的事件,叫做相对于条件S 的____________事件.
【答案】不可能
【解析】定义:在一定条件下,一定不发生的事件,称为不可能事件.由于事件A 在条件S 下一定不会发生,故事件A 是相对于条件S 下的不可能事件.故答案为:不可能. 14.张明与张华两人做游戏,下列游戏中不公平的是____________(填序号).
①抛掷一枚均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则张华获胜 ②同时抛掷两枚硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则张华获胜
③从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则张华获胜 ④张明、张华两人各写一个数字6或8,如果两人写的数字相同张明获胜,否则张华获胜. 【答案】②
15.下列说法正确的有____________.(填序号)
(1)频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能性的大小. (2)做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m
n
就是事件A 的概率.
(3)频率是不能脱离具体的试验次数的试验值,而概率是确定性的不依赖于试验次数的理论值. (4)在大量实验中频率是概率的近似值,概率是频率的稳定值. 【答案】(1),(3),(4)
【解析】由频率、概率的意义及二者的关系可知(1),(3),(4)正确. 16.叙述随机事件的频率与概率的关系时有如下说法:
①频率就是概率;
②频率是客观存在的,与实验次数无关; ③频率是随机的,在试验前不能确定;
④随着实验次数的增加,频率一般会越来越接近概率. 其中正确命题的序号为____________.
【答案】③④
三、解答题
17.有一个转盘游戏,转盘被平均分成10份(如图),转动转盘,当转盘停止后,指针指向每个数字的机会相等,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
A.猜“是奇数”或“是偶数”;
B.猜“是4的整数倍”或“不是4的整数倍”;
C.猜“是大于4的数”或“不是大于4的数”.
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?
(2)为了保证游戏的公平性,你认为应选哪种猜数方案,并且怎样猜?为什么?
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.
【解析】(1)可以选择B,猜“不是4的整数倍”;
或选择C,猜“是大于4的数”.
“不是4的整数倍”的概率为
8
10
=0.8,“是大于4的数”的概率是
6
10
=0.6,
它们都超过了0.5,故乙获胜的可能性较大.
(2)为了保证游戏的公平性,应当选择方案A.
因为方案A中“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.
(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性.
18.指出下列试验的条件和结果:
(1)某人射击一次,命中整数环;
(2)从装有大小相同但颜色不同的,,,a b c d 这4个球的袋中,任取1个球; (3)从装有大小相同但颜色不同的,,,a b c d 这4个球的袋中,任取2个球.
【解析】(1)条件为射击一次,结果为命中整数环0,1,2,3,4,5,6,7,8,9,10,共11种. (2)条件为从袋中任取1个球,结果为,,,a b c d ,共四种. (3)条件为从袋中任取2个球,
若记(),a b 表示一次试验中取出的球是a 和b ,
则试验的分部结果为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d ,共6种.
【解题策略】准确理解随机试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一般采用列举法,必须明确事件发生的条件,根据日常生活经验,按一定次序列举,才能保证所列结果没有重复,也没有遗漏.。

相关文档
最新文档