反渗透和纳滤膜结构和使用注意事项

合集下载

使用纳滤膜的注意事项介绍

使用纳滤膜的注意事项介绍

使用纳滤膜的注意事项介绍
纳滤膜介于反渗透膜和超滤膜之间,脱盐率在90%以下。

反渗透膜几乎对所有溶质都有较高的脱盐率,而纳滤膜只对某些溶质有较高的脱盐率。

纳滤膜主要去除直径约为1纳米的溶质颗粒,截留分子量为100~1000。

下面介绍一下使用纳滤膜的注意事项有哪些:
1、规范系统启停操作和停运保护措施
当系统启动和停止时,流量和压力都会发生波动。

过大或过快的流量和压力波动可能会导致系统出现极限压降现象,导致水锤作用,从而导致膜元件破裂。

因此,在启动或停止操作时,必须缓慢增加或减少压力和流量。

2、保持预处理效果的稳定
在预处理阶段去除原水中的大部分污染物。

良好的预处理效果可有效降低纳滤系统受到污染的概率。

3、对膜元件进行离线化学清洗
当膜系统经过多次在线化学清洗后不能恢复其性能或膜系统受到严重污染时,需要对膜元件进行离线化学清洗。

膜元件重污染是指系统运行初期污染后的单级压差大于系统运行初期单级压差值的2倍,纳滤系统产水量下降30%以上,或单个纳滤膜元件质量超出正常值3kg以上。

4、定期对膜元件进行在线化学清洗
通过合理的预处理系统和良好的运行管理,只能降低膜元件的污染程度,而不可能完全消除膜污染。

因此,纳滤膜系统在运行一段时间后,可能会受到各种污染物的污染,尤其是污水处理厂使用的纳滤膜系统一般污染比较频繁,如果产水量下降15%左右,进水和浓水之间的系统压降升高到初始值的1.5倍,产水水质有明显下降,就需要对膜元件进行在线化学清洗。

以上就是本期的全部内容,希望对大家有所帮助!。

纳滤膜水处理设备的主要部件说明

纳滤膜水处理设备的主要部件说明

纳滤膜水处理设备的主要部件说明纳滤膜水处理设备是陶氏纳滤膜为主要组件,主要是以略宽松的结构,类似于陶氏8040反渗透膜水处理设备.纳滤膜被膜可以进行电吸附,高F离子的电性等可以删除,与纳滤孔径、大分子不能通过,自由水分子的一部分氯化钠,一部分钙镁离子更小。

包含多水处理器的优势,避免二次污染,可以构建一个健康的饮水方式。

陶氏纳滤膜可在低压(相对反渗透)下,对自来水进行软化和适度脱盐,而且还可脱除各种有、无机物质,(尤其是致癌物质),微生物和溶解有机物,可称之为"多面手",因而日益受到青睐。

陶氏纳滤膜在饮用水制备中的作用(1)、以地表水为水源的自来水,经纳滤机后,可除去水中、色度、异味、三氯甲烷前体物(加氯消毒时的副产物,为致癌物质),农药,化肥和总有机炭,(2)、以地下水为水源的自来水,经纳滤机后,可除去水中硬度成份,硫化物,硫酸盐,硝酸盐,氟化物,硼化物,砷化物等有害物质。

(3)、自来水深度处理,经纳滤机后,可除去水中盐份,细菌、病毒和热源。

陶氏纳滤膜元件水处理设备的主要应用范围(1)、咸水除盐沿海地区的自来水往往带有咸味。

如:上海市南汇区就是如此。

其盐分不高,约几百~2千mg/l,但常饮此水易患高血压,冠心病,此水泡茶不香,烹调无味。

需进行深度处理。

(2)、井水脱硬许多地区的自来水,以深井水为水源,故水的硬度较高。

烧开水时壶面、壶低常有白,灰等色结垢或沉淀。

人们常饮此水易得心脏病,脑血管合肾结石等疾病。

好茶叶品不出美味,变得淡而苦涩。

有时井水还出现有毒金属汞、镉、砷等,自来水厂工艺亦无法解决,需进行深度处理。

(3)、除微生物在河水中有许多病菌、隐球菌属孢子,氯气消毒不能完全杀死。

在美国为此曾发生事故造成40万人感染痢疾病,所以美国以此事故为契机,开始采用过滤陶氏膜技术。

(4)、提高水质我国自来水厂的水源,常常受工业废水,生活污水和农药、化肥污染,水厂出水水质不能保证,需进行深度处理。

反渗透操作维护手册+反渗透ro和纳滤nf膜元件使用注意事项

反渗透操作维护手册+反渗透ro和纳滤nf膜元件使用注意事项

反渗透装置操作维护手册1、反渗透原理膜透过操作方式:反渗透技术是近二十多年来新兴的膜分离高新技术,它利用反渗透原理,采用具有高度选择透过性的反渗透膜,将给水的一部分沿与膜垂直的方向通过膜成脱盐水,水中的盐类和胶体物质将在膜表面浓缩,剩余一部分给水沿与膜平行的方向将浓缩的物质带走,在运行过程中自清洗。

此法可使水中的无机盐和硬度离子以及有机物、细菌等去除率达到97-98%,且具备操作简单、能耗低、无污染等优点,现已被广泛应用于医药、电子、食品、化工等行业。

反渗透系统是整个水站的核心工艺,其主要功能是对经过预处理的水进行脱盐。

本系统包括高压泵、反渗透装置、反渗透清洗装置。

反渗透和高压泵放置在反渗透膜组机架上,是一体化成套设备。

成套设备本体上有各种手动阀门并留有各种仪表接口,便于用户现场维护和实现水站运行自动化。

经过预处理的水经高压泵加压后进入反渗透装置,由反渗透膜分离HO和可2溶性离子、有机物、细菌病毒及极细小颗粒。

97%以上的可溶性离子、有机物、细菌病毒及极细小颗粒随小部分浓水排入下水沟。

本系统的核心设备---反渗透装置(简称RO装置),其能否正常运行,很大程度上决定了整个生产装置能否正常运行。

因此必须悉心管理、认真操作。

高压泵采用多级立式离心泵。

过流件材质为不锈钢,该泵为反渗透装置配套泵,具有绝缘等级高,运行效率高的特点。

膜元件选用代表当今国际最高水准的美国DOW公司提供的芳香聚酰胺复合膜,该组件由三层薄膜复合,表面层为芳香聚酰胺材质,并由一层微孔聚砜层支撑,可承受高压力,对机械张力及化学侵蚀具有较好抵抗性,该组件具有较大的膜面积,超低的工作压力,对NaCl、CaCl2、MgCl2具有99.5%的脱盐率。

BW30-400系列低压复合膜元件具有脱盐率高、产水量大、操作压低、抗压密性好、耐生物分解力强等诸多优点。

但对进水有严格要求(见表1),必须严格按规定的指标执行。

2、反渗透装置的安装2.1 反渗透装置的安装必须按下列条件执行2.2.1装置运到现场后,应放置于室内,周围环境温度最低不得低于5℃,最高不得高于38℃。

反渗透、纳滤

反渗透、纳滤
• 它有两个显著特征:一个是其截留分子量介于RO和UF之间,为 200~2 000,因而推测NF的表面分离层可能有1nm左右的微孔 结构,即具有纳米级孔径;另一个是NF膜对无机盐有一定的截 留率,因为它的表面分离层由聚电解质所构成(大多是复合型 膜),对离子有静电相互作用。受膜与离子间Donnan效应的影 响,NF膜对不同价态的离子截留能力不同。 对于阴离子,截留率为NO3-<Cl-<OH-<SO42-<CO32对于阳离子,截留率为H+<Na+<Ca2+<Mg2+
影响反渗透和纳滤膜性能的因素
• 产水通量和脱除率是反渗透和纳滤过程中的 关键参数,针对特定系统条件,水通量和脱 除率是膜的本征特性,而膜系统的水通量和 脱除率则主要受压力、温度、回收率、进水 含盐量等影响。
• 回收率: 指膜系统中给水转化成为产水或透过液的百分率。 膜系统的设计是基于预设的进水水质而定的,设置在浓水管道 上的浓水阀可以调节并设定回收率。回收率常常希望最大化以 便获得最大的产水量,但是应该以膜系统内不会因盐类等杂质 的过饱和发生沉淀为它的极限值。 • 脱盐率: 通过反渗透膜从系统进水中除去总可溶性的杂质浓 度的百分率,或通过纳滤膜脱除特定组份如二价离子或有机物 的百分数。 • 透盐率: 脱盐率的相反值,它是进水中溶解性的杂质成份透 过膜的百分率。 • 渗透液: 经过膜系统产生的净化产水。 • 流 量: 流量是指进入膜元件的进水流率,常以每小时立 方米(m3/h)或每分钟加仑表示(gpm)。浓水流量是指离开 膜元件系统的未透过膜的那部分的“进水”流量。这部分浓水 含有从原水水源带入的可溶性的组份,常以每小时立方米(m3 /h)或每分钟加仑表示(gpm)。 • 通 量: 以单位膜面积透过液的流率,通常以每小时每平 方米升(l/m2h)或每天每平方英尺加仑表示(gfd)。 • 稀溶液: 净化后的水溶液,为反渗透或纳滤系统的产水。 • 浓溶液: 未透过膜的那部分溶液,如反渗透或纳滤系统的浓 缩水。

反渗透工作原理及操作注意事项

反渗透工作原理及操作注意事项

反渗透工作原理及操作注意事项一、反渗透的工作原理:反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯和浓缩,其中最普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病毒、有机物及胶体等杂质去除,以便获得高质量的纯净水。

渗透渗透平衡反渗透由此可知,反渗透脱盐的依据是①半透膜的选择透过性,即有选择地让水透过而不允许盐透过;②盐水室的外加压力大于盐水室与淡水室的渗透压力,提供了水从盐水室向淡水室移动的推动力。

二、反渗透自动运行操作(二级反渗透的运行操作与一级大体一致这里对一级反渗透自动运行操作做主要讲解)①自动运行前的准备1。

1将各控制箱上的加还原剂计量泵、加酸计量泵和加阻垢剂计量泵及对应需运行的增压泵、高压泵、快冲泵选择开关转至自动位置上;1.2将R/O就地盘上就地盘上所需运行机组的阀门运行方式选择开关转至自动位置上;1。

3检查高压泵、增压泵、快冲洗泵的进、出口手动阀门、保安过滤器进出口手动阀门、R/O产水手动阀门打开,浓水调节阀打开,RO化学清洗阀门关闭;1。

4各手动阀门的开度均保持手动启动时的状态;1.5检查控制部序中参数设置无误。

注:严禁在关闭一级反渗透装置产水侧爆破膜隔离阀的情况下运行反渗透装置;除化学清洗外任何情况下都要保证一级反渗透装置的产水阀处于打开的状态。

②反渗透启动2。

1弹出反渗透控制画面,需投用增压泵、高压泵、快冲泵、加药泵开关转换至自动位置;2。

2点击反渗透控制画面上的启动按钮,启动反渗透系统;2.3对照反渗透部序表,检查反渗透开机部序是否正确;2。

4正常启动后,调节高压泵出口手动阀及反渗透浓水调节阀,调整产水流量浓水流量至规定值。

2.5做好开车记录。

反渗透的停机3。

1点击控制画面上停止按钮,停止反渗透系统;3.2 停机时,确认高压泵、一级反渗透增压泵,阻垢剂计量泵、还原剂计量泵和加酸计量泵连锁停止,同时关电动慢开阀,制水阶段结束,进入停机冲洗阶段,连锁冲洗完毕后,确认快冲洗进水门关闭,快冲洗泵停运,产水排放阀、浓水排放阀关闭;3。

陶氏反渗透和纳滤膜元件产品与技术手册

陶氏反渗透和纳滤膜元件产品与技术手册

陶氏反渗透和纳滤膜元件产品与技术手册标题:深度探讨陶氏反渗透和纳滤膜元件产品与技术手册一、引言陶氏反渗透和纳滤膜元件产品与技术手册是当今水处理技术领域备受瞩目的重要文献之一。

我们将在本文中深入剖析该手册的内容,从而全面理解其中蕴含的知识和技术。

二、产品介绍1. 反渗透膜元件我们将从反渗透膜元件的原理、结构和应用展开讨论。

反渗透膜元件作为水处理领域的核心产品,其高效的物质分离功能和广泛的应用前景备受瞩目。

在手册中,对反渗透膜元件的技术参数、使用注意事项和维护保养进行了详细的介绍,使读者能够全面了解其在实际应用中的优势和特点。

2. 纳滤膜元件我们将重点讨论纳滤膜元件在水处理领域的应用。

纳滤膜元件因其精细的过滤孔径和高效的截留能力而备受关注,其应用涵盖了污水处理、饮用水净化和工业废水处理等多个领域。

手册中详细介绍了纳滤膜元件的种类、性能参数和工艺流程,为读者提供了全面的学习和参考资料。

三、技术手册分析在技术手册的详细分析中,我们将重点关注以下几个方面:技术参数的解读、实际应用技术和维护保养指南。

技术参数是评价膜元件品质的重要指标,我们将详细解读其中的关键参数,并探讨如何根据这些参数选择合适的膜元件产品。

实际应用技术是技术手册的核心内容之一,我们将深入挖掘其中的实际案例和技术要点,以帮助读者了解膜元件在实际工程中的应用方法和技术要求。

维护保养指南是保证膜元件长期稳定运行的重要保障,我们将重点关注手册中对于膜元件日常维护和保养的建议,帮助读者树立正确的维护理念。

四、总结与展望通过本文的探讨和总结,相信读者已经对陶氏反渗透和纳滤膜元件产品与技术手册有了更深入的了解。

在未来,随着水处理技术的不断发展和创新,膜元件产品必将迎来更广阔的应用前景和市场机遇。

我们期待更多的科研人员和工程师能够通过技术手册的学习和实践,为推动我国水处理技术的发展贡献自己的一份力量。

个人观点和理解:对于陶氏反渗透和纳滤膜元件产品与技术手册,我个人认为其内容具有极高的实用价值。

纳滤、反渗透操作手册

纳滤、反渗透操作手册

湖南XX环保科技有限公司废水站操作手册5 纳滤、反渗透系统操作手册5.1 纳滤反渗透系统简介本工程膜深度系统设计为纳滤和反渗透。

纳滤系统处理量为1400m3/d,三套;反渗透系统处理量为1190m3/d,三套。

纳滤系统和反渗透系统均由产水系统、清洗系统、循环系统、电气控制系统等所组成。

纳滤膜组件采用卷式纳滤膜,由陶氏公司生产,型号为NF270-400,膜长度为1.016m,单支膜面积37.2m2。

反渗透膜组件采用卷式膜,由海德能公司生产,型号为BW30-400,膜长度为1.016m,单支膜面积37.2m2。

系统控制可实现自动、手动控制方式。

在自动控制方式下,系统当中的所有设备动作均由PLC完成;在手动控制方式下,操作人员需在PLC控制面板下完成手动控制。

图1纳滤系统PID图2图2 反渗透系统PID图35.2 膜系统运行前准备5.2.1 单体设备试车(1)各动力设备通电试运行A.原水泵、清洗泵、高压泵、循环泵进行点动。

B.接通各水泵的电源,观察各水泵的运行情况,如叶轮转运方向、噪声、转速等参数,确保水泵运行正常。

(2)各自动开关、在线仪表的试车A.自动开关,如气动阀门的开关是否正常,是否出现卡死现象B.液位开关能否工作正常,低液位是否能自动停泵,停泵次序是否正常等。

5.2.2 试压试漏实验(1)纳滤膜系统试压试漏的目的:为查明设备的强度和严密度。

(2)试压前的准备工作:A. 设备管道及附件安装并检查合格。

B. 试压试漏现场环境打扫干净。

C. 参加试压试漏人员经过技术培训合格。

D. 准备好试压用水,水压泵和气压泵等设备及试压记录(3)本方案中的纳滤膜系统的试压试漏采用两种方式,气体试压试漏和清水试压试漏。

先进行气体试压试漏,再进行清水试压试漏。

(4)高压气体的试压试漏步骤:A. 在应试设备的压力表管上装好校验好的压力表。

B. 检查设备法兰、抱箍等连接件部位是否紧密。

C. 关闭进出端口的所有阀门。

D. 开启空压机系统(约0.7Mpa),观察压力表的变化情况。

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径纳滤膜和反渗透膜是两种常用的膜分离技术,它们在水处理、生物医药、食品加工等领域被广泛应用。

本文将从孔径、工作原理和应用领域等方面介绍纳滤膜和反渗透膜的特点和应用。

一、纳滤膜孔径纳滤膜是一种具有特定孔径的薄膜,能够根据溶质的分子大小和电荷选择性地分离溶液中的物质。

纳滤膜的孔径通常在1纳米到100纳米之间,可以将溶液中的大分子、胶体和悬浮物截留在膜外,而让水和小分子通过。

纳滤膜的孔径大小对其分离性能有重要影响。

孔径越小,纳滤膜的截留能力越强,可以截留更小的溶质。

常见的纳滤膜孔径有超滤膜(孔径范围为1-100纳米)和微滤膜(孔径范围为0.1-10微米)等。

二、反渗透膜孔径反渗透膜是一种通过压力驱动使溶质逆向渗透的薄膜,其孔径通常在0.1纳米到1纳米之间。

反渗透膜具有高选择性,可以有效去除水中的溶解性离子、有机物、微生物等。

反渗透膜的孔径比纳滤膜更小,因此其分离效果更好。

在反渗透过程中,水分子可以通过膜孔径,而溶质则被截留在膜外。

这使得反渗透膜在海水淡化、饮用水处理、工业废水处理等方面具有广泛应用。

三、纳滤膜和反渗透膜的工作原理纳滤膜的分离机制主要包括筛分、拦截和吸附三种方式。

当液体通过纳滤膜时,溶质分子受到膜孔径的限制,分子尺寸较大的物质被截留在膜外,分子尺寸较小的物质则通过膜孔径进入滤液。

反渗透膜的分离机制主要是通过半透膜的渗透作用实现的。

当给予反渗透膜一定的压力时,溶液中的水分子会逆向通过膜孔径流向低浓度的一侧,而溶质则被截留在膜外,从而实现对溶质的分离。

四、纳滤膜和反渗透膜的应用领域纳滤膜和反渗透膜在水处理领域具有广泛的应用。

纳滤膜可以用于海水淡化、饮用水处理、工业废水处理等。

例如,海水淡化中使用反渗透膜可以将海水中的盐分和杂质去除,得到高纯净的淡水。

饮用水处理中的纳滤膜可以去除水中的微生物、胶体等有害物质。

工业废水处理中的纳滤膜可以回收和净化水资源。

纳滤膜和反渗透膜还在生物医药、食品加工等领域得到了广泛应用。

纳滤和反渗透膜技术

纳滤和反渗透膜技术

精品整理
纳滤和反渗透膜技术
食用菌多糖的高效提取、分离和纯化技术,也成了食用菌领域的研究热点。

已经在环保、化工、石化、食品、制药等行业得到广泛的应用。

对以压力为推动力的液态膜分离技术(纳滤、反渗透)在食用菌多糖浓缩中的应用进行介绍。

反渗透是利用反渗透膜选择性的只能透过溶剂(通常是水) 而截留离子物质的性质,以膜两侧静压力为推动力,克服溶剂的渗透压,使溶剂透过反渗透膜而实现对液体混合物进行分离的膜过程。

纳滤是介于超滤与反渗透之间的一种新型的分子级分离技术,可用来分离无机盐和相对分子质量介于200~2000的低相对分子质量有机物。

纳滤和反渗透技术在食用菌多糖的领域的应用主要集中在多糖提取液的直接浓缩或超滤透过液的浓缩中。

作为浓缩脱水过程,与传统的冷凝、重结晶、蒸馏、提取等工艺相比,纳滤和反渗透技术具有快捷、高效、节能等特性。

反渗透技术由于其高截留性能,在浓缩过程中几乎可以截留提取液中的所有组分,纳滤技术集浓缩与透析为一体,可同时实现有效成分的浓缩和除盐,可使溶质的损失达到小,使整个生产过程在低污染、低能耗、高效率下运行,显著提高生产效益,具有很高的工业应用价值。

反渗透和纳滤应用说明

反渗透和纳滤应用说明

反渗透和纳滤应用说明1 如何确定系统回收率工业用大型反渗透装置由于膜元件的数量多、给水流程长,实际系统回收率一般均在75 %以上,有时甚至可以达到90 %。

对于小型反渗透装置也要求较高的系统回收率,以免造成水资源的浪费。

应该主要根据以下两点来确定系统的回收率:⑴根据膜元件串联的长度;⑵根据是否有浓水循环以及循环流量的大小。

在系统没有浓水循环时,一般按照以下规定:决定膜元件和系统回收率。

2 膜元件标准测试压力与实际使用压力膜元件标准测试压力为膜元件生产厂家在标准测试条件下所使用的压力,以美国海德能公司CPA系列产品为例,其标准测试压力为1.55 MPa。

膜元件使用压力为膜元件实际工作时所需要的压力,很多设计人员或使用人员以为膜元件的标准压力即为膜元件的使用压力,从而造成有时系统产水量很大,用户认为膜元件生产厂家的产品质量很好,不知道此时由于系统平均水通量过高,超出了前面所介绍的设计产水量的要求,为反渗透系统长期安全运行埋下了祸根。

有时系统产水量很小,认为膜元件生产厂家的质量不好,向膜元件生产厂家索赔。

实际上膜元件的标准压力与膜元件的使用压力有着本质的不同,膜元件标准压力是膜元件生产厂家为了检验其膜元件质量而人为设定的压力,而实际使用压力则受到温度、平均水通量选取值、进水含盐量、系统回收率、膜元件种类等各种因素的影响,膜元件的使用压力应根据各种因素的不同而不同。

最简单的办法就是通过膜元件生产厂家提供的计算软件进行实际计算。

3 如何计算系统脱盐率系统脱盐率是反渗透系统对盐的整体脱除率,它受到温度、离子种类、回收率、膜种类以及其他各种设计因素的影响,因而不同的反渗透系统的脱盐率是不一样的,其计算公式为:系统脱盐率= (总的给水含盐量-总的产水含盐量)/ 总的给水含盐量× 100 %有时出于方便的原因,也可以用下列公式来近似估算系统脱盐率:系统脱盐率= (总的给水电导率- 总的产水电导率)/ 总的给水电导率× 100 %以此近似估算得到的系统脱盐率往往低于实际系统脱盐率,因而经常在反渗透系统验收时引起争议。

反渗透RO和纳滤NF膜元件使用注意事项

反渗透RO和纳滤NF膜元件使用注意事项

1. 反渗透RO和纳滤NF膜元件使用注意事项1.1 透过液(也称淡化水或产品水)管路阀门的操作要求在膜系统运行期间,任何时候都不允许关闭透过液管路上的阀门。

其中包括系统的预启动、常规操作、冲洗及化学清洗,尤其是系统停机过程(包括突然断电等非正常停机过程)。

在上述运行过程中,关闭透过液管路上的阀门,将会在膜系统内透过液侧产生背压,导致膜元件不可恢复的损坏,尤其是造成末端膜元件的膜片之间的粘接处出现破裂,引起系统透盐率的增加。

注:系统经清洗后停用期间,可以关闭透过液管线上的阀门,以隔绝空气保持系统的清洁和抑制细菌的生长繁殖。

在系统重新启动前,应将透过液淡水和浓缩液浓水管路上的阀门充分打开。

相关内容参阅《膜元件的启动、运行、维护及清洗导则》。

1.2 通过浓水阀门调节系统回收率在系统启动之前,浓水阀门应该保持完全开启,系统启动后可逐步缓慢关闭浓水阀门,使系统达到设定的回收率。

浓水阀门关闭时严禁启动设备。

注:系统回收率的设定应遵循海德能公司RO/IMS系统设计软件的设计结果。

1.3 进水中余氯的限制任何时候进水中的余氯含量不得超过0.05ppm,进水中有过高的余氯存在将会导致聚酰胺膜元件不可恢复的氧化损坏。

在使用膜系统之前,请咨询系统的供应商,以获得相关的去除余氯的方法。

注:当进水中存在过渡金属时,如Fe、Mn等,余氯对膜的氧化作用将会加剧,因此,进水中有过渡金属存在时,确保进水中不含余氯。

1.4 O型圈和浓水密封圈的润滑任何时候不允许使用石油类如化学溶剂凡士林润滑油及润滑脂等的润滑剂用于润滑O型圈连接管接头、密封圈及浓水密封圈。

允许使用的润滑剂为硅基胶水或丙三醇甘油。

2. 复合聚酰胺反渗透膜的污染及清洗方法本技术服务公告介绍聚酰胺反渗透膜的常见污染及其清洗方法,本节内容适用于4、6、8、8.5英寸直径的反渗透膜元件。

2.1 反渗透膜元件的污染与清洗在正常运行一段时间后,反渗透膜元件会受到给水中可能存在的悬浮物或难溶盐的污染,这些污染中最常见的是碳酸钙沉淀、硫酸钙沉淀、金属(铁、锰、铜、镍、铝等)氧化物沉淀、硅沉积物、无机或有机沉积混合物、NOM天然有机物质、合成有机物(如:阻垢剂/分散剂,阳离子聚合电解质)、微生物(藻类、霉菌、真菌)等污染。

正渗透、反渗透、超滤、纳滤知识总结

正渗透、反渗透、超滤、纳滤知识总结

正渗透、反渗透、超滤、纳滤知识总结一、反渗透膜、超滤膜、纳滤膜对比1、反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。

反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。

2、超滤膜:能截留0.002-0.1微米之间的大分子物质和蛋白质。

超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。

超滤膜的运行压力一般1-7ba r。

3、纳滤膜:能截留纳米级(0.001微米)的物质。

纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800M W左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。

纳滤膜的运行压力一般 3.5-30b a r。

二、反渗透膜与超滤膜的优劣对比反渗透膜的孔径只有超滤膜的1/100比例大小,因此反渗透水处理设备能够有效去除水质当中的重金属、农药、三氯甲烷等化学污染物,超滤净水器对此则是无能为力的。

而超滤净水器能去除的颗粒污染物及细菌,反渗透全能去除。

(一)反渗透和超滤,核心部件都是膜元件。

主要区别一共有两点:1、出水水质和卫生部门的检测标准有所不同,给大家举一个例子来说明,出水细菌指标,超滤按照“一般水质处理器”,菌落总数为100个/毫升;而反渗透水处理设备则为20个/毫升,要求较为严格,当然反渗透水处理设备出水水质也要比超滤好很多。

2、反渗透水处理设备是分质供水,纯水供应饮用,浓水用来洗涤;而超滤一般都是用作洗涤用水;当自来水水质较为优质时也可以用作饮用水超纯水设备。

(二)超滤的优点与缺点:优点:一般不用泵、不耗电,无电气安全问题;接头少、水压低,故障率及漏水概率相对较低;结构简单、价格便宜;其缺点是:去除水中化学污染物效果差;对供水特发事件效果较差;出水口感稍差;不能降低水的硬度,如自来水硬度高,煮水容器可能会结垢。

膜(微滤、超滤、纳滤、反渗透)概述及其应用

膜(微滤、超滤、纳滤、反渗透)概述及其应用

膜(微滤、超滤、纳滤、反渗透)概述及其应用膜技术简介为了满足工业生产和饮用水方面的要求,各种膜的技术应运而生。

它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。

膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。

有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。

微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。

微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。

无机膜材料有陶瓷和金属等。

鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。

对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。

可作为一般料液的澄清、保安过滤、空气除菌。

超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000um分子量之间。

超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。

以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。

对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。

反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。

除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。

一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。

2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。

由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。

3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。

反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。

二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。

我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。

1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。

它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。

物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。

(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。

纳滤膜和反渗透膜材质

纳滤膜和反渗透膜材质

纳滤膜和反渗透膜材质引言:水处理领域中,纳滤膜和反渗透膜是常用的膜材料。

纳滤膜和反渗透膜具有不同的特点和应用范围。

本文将介绍纳滤膜和反渗透膜的材质以及它们在水处理中的应用。

一、纳滤膜材质纳滤膜是一种孔径较小的膜,可以过滤掉溶液中的大分子物质,如胶体、蛋白质和颗粒物等。

纳滤膜的材质多种多样,常见的有聚酯、聚醚、聚丙烯、聚氨酯等。

1. 聚酯纳滤膜聚酯纳滤膜具有较好的化学稳定性和机械性能,适用于中性和弱碱性的溶液处理。

它的孔径通常在1-100纳米之间,可以有效地过滤掉大分子物质,但对离子和小分子溶质的截留效果较差。

2. 聚醚纳滤膜聚醚纳滤膜对溶液中的离子和小分子溶质具有较好的截留效果,适用于酸性和碱性溶液的处理。

该膜材料的孔径范围在0.1-10纳米之间,能够有效地去除溶液中的溶质,但对胶体和颗粒物的过滤效果较差。

3. 聚丙烯纳滤膜聚丙烯纳滤膜是一种常用的纳滤膜材料,具有较好的热稳定性和耐化学腐蚀性。

它的孔径范围在1-100纳米之间,适用于中性和碱性溶液的处理。

聚丙烯纳滤膜能够有效地去除溶液中的溶质和颗粒物。

4. 聚氨酯纳滤膜聚氨酯纳滤膜具有较好的物理强度和耐腐蚀性,适用于中性和碱性溶液的处理。

它的孔径范围在1-100纳米之间,可以有效地去除溶液中的溶质和颗粒物。

二、反渗透膜材质反渗透膜是一种具有较高截留率的膜,可以有效地去除水中的溶质和离子,得到高纯水。

反渗透膜的材质主要有聚醚砜、聚醚胺、聚丙烯酸酯等。

1. 聚醚砜反渗透膜聚醚砜反渗透膜具有较高的截留率和较好的耐化学腐蚀性,适用于处理各种类型的水。

它的孔径范围在0.1-1纳米之间,可以有效地去除水中的溶质和离子,得到高纯水。

2. 聚醚胺反渗透膜聚醚胺反渗透膜对溶质和离子具有较好的截留效果,适用于处理各种类型的水。

它的孔径范围在0.1-1纳米之间,能够有效地去除水中的溶质和离子,得到高纯水。

3. 聚丙烯酸酯反渗透膜聚丙烯酸酯反渗透膜具有较好的物理强度和耐腐蚀性,适用于处理各种类型的水。

反渗透RO纳滤超滤基础知识

反渗透RO纳滤超滤基础知识

反渗透(RO、纳滤、超滤基础知识
1分离膜与膜过程
膜分离
膜分离技术的基础是分离膜。

分离膜是具有选择透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。

这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。

当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。

按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。

表-1主要的膜分离过程。

反渗透和纳滤膜元件结构和使用注意事项

反渗透和纳滤膜元件结构和使用注意事项

技术服务公告 2018. 03 TSB105.12反渗透和纳滤膜元件结构和使用注意事项膜元件膜元件结构结构结构详细详细详细卷式RO 和NF 的结构如图1。

图1 卷式膜元件结构最常见的膜元件是8寸膜元件:8英寸直径,40英寸长度。

尺寸图请见表1。

表1 8寸膜元件尺寸A, inches (mm) B, inches (mm) C, inches (mm) 40.0 (1016)7.89 (200)1.125 (28.6)因为制造中有通用范围,膜元件长度会略有误差。

压力容器的尺寸应该考虑“增加/减少”范围。

膜元件长度的具体范围,请联系美国海德能公司技术部门。

不同产品的膜元件重量见下表2。

每支膜元件的重量会有所不同,因为使用的材料密度不同。

LD 技术膜元件采用34mil 宽进水隔网,因此重量比采用标准隔网的MAX 膜元件重量轻。

SWRO 膜元件的产水隔网更致密,因此SWRO 膜元件比同类型BWRO 更重一些。

进水隔网产水隔网膜片中心管另外,重量不是准确数值,典型情况是正负偏差1kg。

主要是因为里面有水。

沥干膜需要较长时间,因此重量可能会偏差超过1kg。

重量经常用来做为判断膜元件污染物量的参考值。

我们不能只比较沥干的膜元件与下表中数值,而是应该比较有污染并沥干的膜元件与干净的过水后再沥干的膜元件差值。

如果没有干净的膜供对比,我们建议采用下表值+1kg做参考值。

膜元件种类 重量(kg)8040 BWRO -LD 12.58040 BWRO-MAX 13.58040 SWRO-LD 13.58040 SWRO-MAX 14.5请注意我们还出售很多其它种类产品,关于这些膜元件的具体情况,请联系美国海德能技术部门。

运行和使用注意事项运行和使用注意事项聚酰胺膜元件进水中的游离氯或其它氧化剂聚酰胺膜元件进水中的游离氯或其它氧化剂在任何时候,进水中不能含有游离氯或其它氧化剂。

即使很低的余氯或其它氧化剂浓度也会造成膜元件不可修复的氧化损坏。

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用解析反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。

反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。

除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。

一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。

2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。

由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。

3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。

反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。

二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。

我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。

1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。

它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。

物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。

(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膜片中心管产水隔网进水隔网反渗透和纳滤膜元件结构和使用注意事项膜元件结构详细卷式 RO 和 NF 的结构如图 1。

图 1 卷式膜元件结构最常见的膜元件是 8 寸膜元件:8 英寸直径,40 英寸长度。

尺寸图请见表 1。

表 1 8 寸膜元件尺寸A, inches (mm) B, inches (mm) C, inches (mm)40.0 (1016) 7.89 (200) 1.125 (28.6)因为制造中有通用范围,膜元件长度会略有误差。

压力容器的尺寸应该考虑“+/-”范围。

膜元件长度的具体范围,请联系美国海德能公司技术部门。

不同产品的膜元件重量见下表 2。

每支膜元件的重量会有所不同,因为使用的材料密度不同。

LD 技术膜元件采用 34mil 宽进水隔网,因此重量比采用标准隔网的MAX 膜元件重量轻。

SWRO 膜元件的产水隔网更致密,因此 SWRO 膜元件比同类型 BWRO 更重一些。

另外,重量不是准确数值,典型情况是正负偏差 1kg。

主要是因为里面有水。

沥干膜需要较长时间,因此重量可能会偏差超过 1kg。

重量经常用来做为判断膜元件污染物量的参考值。

我们不能只比较沥干的膜元件与下表中数值,而是应该比较有污染并沥干的膜元件与干净的过请注意我们还出售很多其它种类产品,关于这些膜元件的具体情况,请联系美国海德能技术部门。

运行和使用注意事项聚酰胺膜元件进水中的游离氯或其它氧化剂在任何时候,进水中不能含有游离氯或其它氧化剂。

即使很低的余氯或其它氧化剂浓度也会造成膜元件不可修复的氧化损坏。

因此,运行人员必须确保没有任何氧化剂进入 RO 系统。

为避免膜元件被氧化,美国海德能公司建议在 RO/NF 系统的进水处安装有ORP 表计,以便于随时监测氧化性物质的浓度。

除了是废水回用的项目中采用不高于 5ppm 氯胺之外,ORP 的读数应一直低于 300mV 以确保系统安全运行。

如果 ORP 高于 300mV,运行人员应该接到报警信号,并采取相应措施,例如投加 SBS(亚硫酸氢钠)或增加 SBS 的投加浓度。

如果 ORP 超过 350mV,系统应立即停机,直到 ORP 降至300mV 以下后才能重新运行。

请向系统集成商咨询其它去除膜系统进水中游离氯的方法。

有研究表明过量投加 SBS 能导致聚酰胺膜氧化。

Sommariva et al. 曾报告某厂使用 SBS 来还原氧化物质时聚酰胺膜元件发生了氧化(Sommariva,C.,et al.(2012). IDA J.脱盐与水回用 4(2),40-44)。

他们得出过量投加 SBS 会导致膜元件快速氧化且脱盐率降低的结论。

特别地,他们发现除了过量的 SBS 之外,还有高 pH 值和过渡金属的存在。

因此,用户应注意投加足够SBS 来防止膜元件氧化,但不能过量投加 SBS。

注意:过渡金属如铁、锰等,将加剧游离氯对膜元件的氧化。

因此进水中含有过渡金属时,应确保进水中没有游离氯存在。

O 型圈和浓水密封圈的润滑在任何时候,不允许使用石油类或菜油基的润滑剂用于润滑产水中心管 O 型圈、适配器 O型圈和浓水密封圈。

可以用的润滑剂为甘油、硅基二硫化钼化或其它不含烃基的硅基润滑剂。

有些膜元件中心管和连接器使用塑料材料,受化学物质影响会膨胀、软化、裂纹、破裂,从而导致膜元件损坏。

产水背压防止膜元件在任何时候都不能受到背压,即产水侧静压不能超过进水侧静压。

关机时膜元件也不能有背压。

膜系统处于任何状态时,包括正常运行、清洗、启动前冲洗、停机前冲洗等,膜元件产水管路的阀门不能关闭。

在上述状态下关闭产水管路阀门,会对膜系统中靠近阀门部位的膜元件造成不可修复的损坏,导致系统脱盐率的明显下降。

注意:当系统经冲洗后停用期间,产水阀门在系统停机状态下可以关闭,以隔绝空气。

在系统重新启动运行前,产水阀门和浓水阀门必须完全开启。

请参见技术服务公告 TSB118。

浓水阀门调节系统回收率在系统启动时,浓水阀门必须在全开位置。

系统启动后,可调节浓水阀门达到设定的系统回收率。

严禁浓水阀处于关闭状态时启动设备。

注意:系统回收率的设定应遵循美国海德能设计软件 IMSDesign 的设计结果。

进水中颗粒物在任何时候,进水中不能有可以聚积在膜表面并且造成膜表面机械损伤的颗粒物。

这些有害颗粒物来自于启动前管路清洗不彻底;进水管路中泵、管道、阀门、传感器的金属腐蚀;预处理运行不佳;5µm 保安过滤器的旁路等。

研究表明这些颗粒物会在膜片与进水隔网上堵塞。

进水隔网的摆动会把颗粒物推向膜并刮擦膜表面(图 2)。

这样常常会带来机械损伤,进水会漏到膜产水侧。

这些颗粒物尺寸在 6-100µm,其导致的磨损示例如图 3。

这种损伤常见的表现是产水量仅少量上升,但脱盐率大幅下降;这是因为含盐量高的进水漏到产水侧。

用户应遵循美国海德能建议的调试相关技术文件或咨询美国海德能技术运行人员。

图 2 颗粒物损伤RO 膜示意图图 3 被颗粒物擦伤的膜表面系统加压速度RO 系统加压必须控制速度。

如果系统加压速度过快,会造成膜元件机械损伤,包括玻璃钢外表面的破裂,和高速加压形成的轴向压力造成的膜压缩变形;甚至会因为膜元件内部与膜元件外壳的瞬时压差,造成玻璃钢外壳的爆裂。

为确保膜元件不受损害,美国海德能公司建议 RO 系统加压速度不超过每秒 10psi(0.69bar)。

系统降压除非紧急情况,不能直接停止高压泵来停止 RO 系统。

在停止高压泵之前,应该先降低压力:•如果系统有变频器,先把变频器数值降低到最小频率,然后停止高压泵。

•如果系统没有变频品,把高压泵出水调到几乎接近关闭状态,然后停止高压泵。

如果系统有能量回收装置(如ERI PX 或DWEER),应降低能量回收的压力,直到进水压力接近于进水渗透压,然后停止高压泵。

这么做是因为能量回收系统有与类似流量通过高压出口(RO 进水)和高压入口(RO 浓水)。

当压力低于渗透压,系统将不能降压,即使高压泵已关闭。

这种情况下的系统降压,要通过让能量回收装置的增压泵运行较长时间(压力下降很慢),或用排气阀降压。

适配器和内插式连接管位置所有压力容器都容许一定的长度偏差,以适用膜元件长度的偏差。

压力容器的长度在运行时膨胀也会略有变化。

因此,安装膜元件时应确保充分插入到膜中心管中,且采用垫片来填充膜壳和膜元件的长度间隙。

如果还有间隙,会造成端板适配器 O 形圈和连接管的过早磨损,使膜元件与端板连接不当,或造成产水中心管的损坏。

压力容器膨胀可能发生在运行中,一些部件可能受到压缩,因此系统投运后几周或几个月后需要再次检查压力容器和膜元件之间的间隙。

最后一个 O 形圈和中心管沉孔底边的距离推荐值为 19mm(图 4),不能超过 25mm。

在高温和高压运行时,此数值非常重要,因为中心管壁受到额外的压力会导致中心管的过早磨损。

加入垫片来填充间隙可以确保实现上面的数值(参见TSB109)。

一般 O 形圈在摩擦后会在中心管表面留下印记,因此可以通过看中心管上的黑色印记的位置来判断适配器的插入位置(图5)。

O 形圈适配器中心管内孔中心管壁黑色印记表明内插式连接管或适配器上O 形圈的位置中心管沉孔图 4 适配器与中心管连接正确位置图 5 O 形圈位置在中心管有黑色印记高温、高压下的安全运行膜元件是由塑料制成的,在某些高温高压条件下运行会发生塑料蠕变。

在高温且高压条件下,反渗透膜中的聚砜多孔支撑层(见图 6a )可能会受到压缩,减小此层的孔隙,使透水率下降,最终导致复合膜产水能力下降,在常温 25℃时要达到预定产水量所需的压力上升。

高温还能使膜更致密,导致产水量下降、脱盐率上升。

对于膜元件结构,高温和高压结合会造成产水隔网塌陷,膜压到产水隔网通道(见图 6b )。

这些影响会导致膜元件产水侧阻力增大,压降上升,使膜元件在标准测试条件下要达到额定产水量时需要更高压力。

美国海德能公司建议客户按照图 7 的温度—压力极限来运行系统。

此图表给出了在各个温度下的最高运行压力。

膜元件的最高运行温度为 45℃,但是有最高压力限制。

如果 RO 膜要在 40℃以上的温度下运行,请先向美国海德能公司的相应技术人员咨询安全运行的方法。

重要注意:RO 膜在超出这些限制值运行时可能会导致产水中心管破裂和机械破损(见图8)。

这种情况下,会突然有一股进水流入膜产水侧。

如果高压泵不马上停止,膜元件产水侧可能会遭受到高压。

应避免这类严重安全问题。

如果需要在高温且高压条件下运行,请联系美国海德能技术人员咨询强度更高的产水中心管。

图6 (a)放大的典型聚酰胺复合膜结构(b)水通道可见的产水隔网附视图最高进水压力VS 温度曲线图图7a ABS/GF 中心管海水膜元件的最高运行压力(PSI) 与温度(℉) 关系图最高进水压力VS 温度曲线图图7b ABS/GF 中心管海水膜元件的最高运行压力(bar)与温度(℃)关系图图8 产水中心管破裂和机械损坏照片自 2018 年 3 月起,海水淡化膜元件开始使用 PPO 中心管,替代以前美国海德能公司常用的 ABS+GF 中心管。

ABS+GF 中心管用于膜元件卷制已很多年,其强度高、化学品耐受性好、不会折出污染产水的化学物质。

此次改动是为了满足在更高温度和压力下处理高含盐水的应用增需求。

以前,我们严格限制 RO 系统的运行条件,如上面图 7 所示。

改成 PPO 中心管之后,SWRO 产品的应用温度/压力限制可以提高,使系统运行更具灵活性(图 9)。

PPO 中心管的压力极限ABS+GF 中心管的压力极限图9 不同材料中心管最高耐压和温度关系对比图新的PPO 中心管与以前的ABS/GF 中心管尺寸完全一样,并可以实现互换。

在更高温度下的强度很高之外,PPO 不会析出化学物质,与高盐水相兼容。

然而,PPO 材料对于石油产品和菜油更敏感,因此这些物质在任何情况下都不能用于中心管的润滑剂,具体请见上面相关内容和TSB122 中的说明。

* BWRO 采用ABS 中心管,运行压力不能超过4.14MPa。

相关文档
最新文档