实验七 热重分析及综合热分析

合集下载

热重实验报告

热重实验报告

热重实验报告热重实验报告引言:热重实验是一种常见的物理实验方法,用于研究材料的热性质和热解过程。

通过在控制条件下对材料进行加热,观察材料的质量随温度的变化,可以得到材料的热分解特性、热稳定性以及热解动力学参数等信息。

本文将介绍热重实验的原理、实验步骤以及实验结果的分析。

实验原理:热重实验的基本原理是利用称量仪器和加热设备,对样品进行加热并测量其质量的变化。

在实验过程中,样品被放置在称量仪器中,并通过加热设备升温。

同时,称量仪器会实时测量样品的质量,并将数据记录下来。

通过分析质量随温度的变化曲线,可以得到材料的热性质和热解特性。

实验步骤:1. 准备样品:选择待测材料,并按照实验要求制备样品。

样品的形状、尺寸和质量应符合实验要求。

2. 样品称量:使用精确的电子天平称量样品的质量,并记录下来。

确保称量的准确性。

3. 样品装载:将称量好的样品放置在热重仪器的样品盘中,并固定好。

4. 实验条件设置:根据实验要求,设置实验的温度范围和升温速率。

确保实验条件的稳定性和准确性。

5. 实验开始:启动热重仪器,并开始加热样品。

同时,称量仪器会实时记录样品的质量变化。

6. 数据记录:在实验过程中,实时记录样品的质量随温度变化的数据。

数据可以通过计算机软件进行保存和分析。

7. 实验结束:当样品的质量变化趋于稳定时,实验结束。

关闭热重仪器,并记录实验结果。

实验结果分析:通过实验得到的数据,可以进行以下分析:1. 质量变化曲线:根据实验记录的数据,绘制质量随温度变化的曲线。

观察曲线的形状和趋势,可以初步判断样品的热分解特性。

2. 质量损失:通过计算质量变化的百分比,可以得到样品在不同温度下的质量损失情况。

根据质量损失的程度,可以评估样品的热稳定性。

3. 热解特性:根据质量变化曲线的特点,可以分析样品的热解特性。

例如,观察是否存在质量急剧下降的阶段,可以判断样品是否发生了热解反应。

4. 热解动力学参数:通过对质量变化曲线的进一步分析,可以得到样品的热解动力学参数,如热解速率常数、活化能等。

综合热分析实验

综合热分析实验

一、实验目的:1.了解综合热分析仪的原理及仪器装置、操作方法。

2.通过实验掌握热重分析的实验技术。

3.使用综合分析仪分析高聚物的热效应和热稳定性。

二、实验原理由于试样材料在加热或冷却过程中,会发生一些物理化学反应,同时产生热效应和质量方面的变化,这是热分析技术的基础。

热重分析方法分为静态和动态。

热重分析仪有热天平式和弹簧式两种基本类型。

本实验采用的是热天平动态热重分析。

当样品在热处理过程中,随温度变化有水分的排除或热分解等反应时放出气体,则在热天平上产生失重;当试样在热处理过程中,随温度变化有二价铁氧化成三价铁等氧化反应时,则在热天平上表现出增重。

示差扫描量热法(DSC)分为功率补偿式和热流式两种方式。

前者的技术思想是,通过功率补偿使试样和参比物的温度处于动态的零位平衡状态;后者的技术思想是,要求试样和参比物的温度差与传输到试样和参比物间的热流差成正比关系。

本实验采用的是热流式示差扫描量热法。

首先在确定的程序温度下,对样品坩埚和参比坩埚进行DSC空运行分析,得到两个空坩埚的DSC的分析结果---形成Baseline分析文件;然后在样品坩埚中加入适量的样品,再在Baseline文件的基础上进行样品测试,得到样品+坩埚的测试文件;最后由测试文件中扣除Baseline文件,即得到纯粹样品的DSC分析结果。

刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。

当温度上升到试样产玻璃化转时,大分子的链段开始运动。

试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。

若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。

再进一步加热,晶体开始熔融而需要吸收热量,其DSC曲线在相反方向出现吸热峰。

当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(Tm);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。

综合热分析

综合热分析

综合热分析实验一、 实验目的与意义1. 了解综合热分析仪的结构及原理;;。

2. 学习使用TG -DSC 或TG – DTA 综合热分析方法分析鉴定材料3. 掌握热分析仪器特点和在材料研究中的作用二、 仪器基本结构与原理1. 仪器结构实验仪器:德国耐驰仪器公司生产的STA449综合热分析仪,结构示意见图1。

主要由加热炉,电子天平,样品支架,控制电器等组成。

2.实验原理综合热分析即将热重分析与差热分析结合为一体,可同时得到热重及差热信号,可以更深入地分析样品反应,DSC/DTA 和TG 的完全对应,有利于综合分析。

综合热分析能够同时提供更多的表征材料热特性的信息。

它可通过测量材料受热过程中的物理或化学变化,探讨材料的组成、结构转变和化学反应。

一般材料鉴定和确定产品的烧成制度,测定热力学参数(如,比热容和热焓等)和结晶度、热稳定性、挥发成分的定量分析以及反应动力学方面的研究等。

DSC传感器Array天平系统图1 综合热分析仪结构示意图三、实验方法与步骤1. 样品制备:(1)检查并保证测试样品及其分解物决不能与测量坩埚、支架、热电偶或吹扫气体发生反应,以免污染样品支架和热电偶。

(2)为了保证测量精度,测量所用的坩埚(包括参比坩埚)必须预先进行热处理到等于或高于其最高测量温度。

(3)测试样品为粉末状、颗粒状、片状、块状、固体、液体均可,但需保证与测量坩埚底部接触良好,样品应适量(如:在坩埚中放置1/3厚或15mg 重),以便减小在测试中样品温度梯度,确保测量精度。

块状样品:建议切成薄片或碎粒粉末样品:使其在坩埚底部铺平成一薄层堆积方式:一般建议堆积紧密,有利于样品内部的热传导对于有大量气体产物生成的反应,可适当疏松堆积对于有大量气体产物生成的反应,可适当疏松堆积(4)对于热反应剧烈或在反应过程中产生气泡的样品,应适当减少样品量。

除测试要求外,测量坩埚应加盖,以防反应物因反应剧烈溅出而污染仪器。

(5)用仪器内部天平进行称样时,炉子内部温度必须保持恒定(室温),天平稳定后的读数才有效。

热分析实验报告

热分析实验报告

热分析实验报告一、实验目的热分析是在程序控制温度下,测量物质的物理性质与温度关系的一类技术。

本次热分析实验的目的在于:1、熟悉热分析仪器的工作原理和操作方法。

2、通过实验掌握常见热分析方法(如热重分析(TGA)、差热分析(DTA)和差示扫描量热分析(DSC))的应用。

3、对实验样品进行热性能分析,获取其热稳定性、相变温度、反应热等重要热学参数。

二、实验原理1、热重分析(TGA)热重分析是在程序控制温度下,测量物质质量与温度关系的技术。

当样品发生质量变化(如蒸发、分解、氧化等)时,通过记录质量随温度的变化曲线(TGA 曲线),可以确定样品的组成、热稳定性和热分解过程等信息。

2、差热分析(DTA)差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的技术。

当样品发生物理或化学变化(如相变、分解、氧化还原等)时,会产生吸热或放热效应,导致样品与参比物之间出现温度差。

通过记录温差随温度的变化曲线(DTA 曲线),可以定性分析样品的相变温度、反应起始和终止温度等。

3、差示扫描量热分析(DSC)差示扫描量热分析是在程序控制温度下,测量输入到物质和参比物的功率差与温度关系的技术。

DSC 直接测量样品在升温或降温过程中的热流变化,从而定量确定样品的相变热、反应热等热学参数。

三、实验仪器与样品1、实验仪器本次实验使用的热分析仪器为仪器型号,该仪器具备高精度的温度控制和灵敏的检测系统,能够同时进行 TGA、DTA 和 DSC 分析。

2、实验样品实验选用了样品名称作为分析对象,样品的纯度为纯度数值,其形态为样品形态,如粉末、块状等。

四、实验步骤1、样品准备将实验样品研磨成均匀的粉末,并准确称取一定质量(约质量数值mg)的样品,放入特制的坩埚中。

2、仪器参数设置打开热分析仪器,设置升温速率为升温速率数值℃/min,温度范围为起始温度数值终止温度数值℃,气氛为实验气氛,如氮气、空气等,气体流量为气体流量数值mL/min。

热分析实验报告

热分析实验报告

热分析实验报告一、实验目的热分析是在程序控制温度下,测量物质的物理性质与温度关系的一类技术。

本次热分析实验的目的在于:1、熟悉热分析仪器的工作原理和操作方法。

2、通过热分析实验,了解物质在受热过程中的物理化学变化。

3、掌握热重分析(TGA)、差热分析(DTA)和差示扫描量热分析(DSC)等常见热分析方法的数据处理和结果分析。

二、实验原理(一)热重分析(TGA)热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。

当物质在加热过程中发生质量变化(如挥发、分解、氧化等)时,通过记录质量随温度的变化曲线,可以得到物质的热稳定性、组成成分、热分解温度等信息。

(二)差热分析(DTA)差热分析是在程序控制温度下,测量物质与参比物之间温度差与温度关系的一种技术。

当物质在加热过程中发生物理化学变化(如相变、化学反应等)时,会产生吸热或放热效应,导致物质与参比物之间的温度差发生变化。

通过记录温度差随温度的变化曲线,可以得到物质的相变温度、反应起始温度、反应热等信息。

(三)差示扫描量热分析(DSC)差示扫描量热分析是在程序控制温度下,测量物质与参比物之间能量差与温度关系的一种技术。

与 DTA 不同的是,DSC 直接测量物质在加热过程中吸收或放出的热量。

通过记录热量随温度的变化曲线,可以得到物质的比热容、相变热、反应热等信息。

三、实验仪器与材料(一)实验仪器1、热重分析仪(TGA)2、差热分析仪(DTA)3、差示扫描量热分析仪(DSC)4、电子天平5、计算机及数据处理软件(二)实验材料1、某种聚合物样品2、氧化铝(作为参比物)四、实验步骤(一)热重分析(TGA)1、称取适量的聚合物样品(约 5 10mg),放入 TGA 坩埚中。

2、将坩埚放入热重分析仪中,设置升温程序,通常从室温以一定的升温速率(如 10℃/min)升至较高温度(如 800℃)。

3、启动仪器,开始实验,记录质量随温度的变化数据。

(二)差热分析(DTA)1、称取等量的聚合物样品和氧化铝参比物,分别放入 DTA 样品坩埚和参比坩埚中。

热分析化学实验报告(3篇)

热分析化学实验报告(3篇)

第1篇一、实验目的1. 了解热分析的基本原理和方法;2. 掌握差示扫描量热法(DSC)和热重分析法(TGA)的操作步骤;3. 通过实验,分析物质的相变过程、热稳定性以及组成变化。

二、实验原理热分析是一种研究物质在加热或冷却过程中物理和化学性质变化的实验技术。

主要包括差示扫描量热法(DSC)和热重分析法(TGA)。

1. 差示扫描量热法(DSC):通过测量物质在加热或冷却过程中与参比物质的温差,得到物质的相变过程、热稳定性等信息。

2. 热重分析法(TGA):通过测量物质在加热过程中质量的变化,得到物质的分解、氧化、还原等过程的信息。

三、实验仪器与试剂1. 仪器:差示扫描量热仪、热重分析仪、分析天平、电子称、加热炉、样品皿等。

2. 试剂:待测物质、参比物质、干燥剂、溶剂等。

四、实验步骤1. 样品制备:将待测物质和参比物质分别放入样品皿中,用分析天平称取适量。

2. DSC实验:(1)将样品皿放入DSC样品池中,设定实验参数,如升温速率、温度范围等;(2)启动DSC实验,记录样品与参比物质的温差曲线。

3. TGA实验:(1)将样品皿放入TGA样品池中,设定实验参数,如升温速率、温度范围、气氛等;(2)启动TGA实验,记录样品质量随温度的变化曲线。

4. 数据处理与分析:(1)将DSC和TGA实验数据导入数据处理软件,进行曲线拟合、峰位分析等;(2)根据峰位、峰面积等信息,分析物质的相变过程、热稳定性、组成变化等。

五、实验结果与分析1. DSC实验结果:(1)从DSC曲线中可以看出,待测物质在约50℃时出现吸热峰,说明该物质在此温度下发生相变;(2)在约100℃时出现放热峰,说明该物质在此温度下发生另一相变;(3)通过峰位和峰面积分析,可以确定物质的相变过程和热稳定性。

2. TGA实验结果:(1)从TGA曲线中可以看出,待测物质在约100℃时出现质量损失,说明该物质在此温度下发生分解;(2)在约200℃时出现质量损失,说明该物质在此温度下发生另一分解;(3)通过质量损失率和峰位分析,可以确定物质的组成变化和热稳定性。

实验7 聚合物的热重分析(TGA)

实验7 聚合物的热重分析(TGA)

实验7 聚合物的热重分析(TGA)实验7聚合物的热重分析(tga)实验7聚合物的热重分析(TGA)热重分析(tga)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。

此外,也可在恒定温度下,将失重作为时间的函数进行测定。

应用tga可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。

因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。

1.实验目的(1)了解热重分析在聚合物领域的应用。

(2)掌握热重分析仪的工作原理和操作方法,学会用热重分析法测定聚合物的热分解温度TD。

2.实验原理热重分析法(thermogravimetricanalysis,tga)是在程序控温下,测量物质的质量与温度关系的一种技术。

现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。

通常,tga谱图是由试样的质量残余率y(%)对温度t的曲线(称为热重曲线,tg)和/或试样的质量残余率y(%)随时间的变化率dy/dt(%/min)对温度t的曲线(称为微商热重法,dtg)组成,见图2-40。

温度/℃图2-40tga谱图开始时,由于样品中残余小分子物质的热脱附,样品有少量质量损失,损失率为(100-y1)%;加热一段时间后,温度上升到T1,直到T2开始出现大量质量损失,损失率达到(y1-y2)%;从T2到T3,样品中还有其他稳定相;然后,随着温度继续升高,样品进一步分解。

在图2-40中,T1被称为分解温度。

有时,C点的切线与AB的延长线相交处的温度T1'被视为分解温度,后者的值较高。

tga在高分子科学中有着广泛的应用。

例如,高分子材料热稳定性的评定,共聚物和共混合物分析、材料中添加剂和挥发物分析、水分(含水量)测定、材料氧化诱导期测定、固化过程分析和使用寿命预测等。

材料现代研究方法-热重-差热综合热分析实验指导书

材料现代研究方法-热重-差热综合热分析实验指导书

差热-热重综合热分析实验一.实验目的:1.了解热重-差热分析仪的原理、仪器装置及使用方法。

2.掌握热重-差热分析基本原理、测试技术及影响测量准确性的因素。

3.掌握热重-差热曲线定性和定量处理方法,对实验结果做出解释。

二.实验原理1.热重分析法热重分析法(TG)是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。

一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。

动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。

本实验采用的是动态热重分析法,其主要由精密天平、加热炉、和控制单元组成。

加热炉由温控加热单元给定速度升温,温度由测温热电偶输出热电势,放大后送入计算机进行处理。

炉中试样质量变化由天平测量记录,天平变化由光电传感器转化为电信号,放大后送入计算机进行处理。

计算机根据测得数据自动进行绘图处理。

由热重分析记录的质量变化对温度的关系曲线称为热重曲线(TG 曲线)。

曲线横坐标为温度,纵坐标为质量,如热分解反应A(s)→B(s)+C(g)的热重曲线如图1所示。

图中T 1为起始温度,即累积质量变化达到热天平可检测的温度;T 2为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。

若试样初始质量为W0,失重后试样质量为W1,测失重百分数为。

%100010×−W W W 物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。

2.差热分析法在物质匀速加热或冷却的过程中,当达到某温度时,物质就会发生物理化学变化。

在变化的过程中,伴随有吸热放热现象,这样就改变了物质原有的升温或降温速率。

综合热分析实验

综合热分析实验

实验二综合热分析实验一.实验目的1.了解热分析技术适用范围与测试对象2.了解综合热分析仪STA 449C的结构和测试原理3.观察热分析仪的操作方法和测试结果分析。

二.实验原理热分析是指在程序温度的控制下测量物质的物理性能与温度关系的一类技术。

在热分析法中,物质在一定温度范围内发生变化,包括与周围环境作用而经历的物理变化和化学变化,如释放出结晶水和挥发性物质的碎片、热量的吸收或释放,某些变化还涉及到物质的质量增加或质量损失,发生热化学变化和热物理性质及电学性质变化等。

热分析法的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。

总之,热分析技术是建立在物质热行为上的一类分析方法。

就固体物质而言受热后物理性质将发生变化。

如导热系数、热膨胀系数、热辐射性质、热容等都会发生变化。

当金属材料从一个相转变为另一个相的过程中会吸收或放出热量,如固态相变潜热、固液熔融相变潜热,发生相变所对应的温度称为临界点。

热分析方法就是测出发生相变的临界点温度。

对于金属合金材料,可以通过测出一系列不同成份配比的合金的临界点,并将同一物性的点连起来而得到合金的相图,这也是测定相图的最常用的方法。

常用的热分析方法有三种:差热分析法(DTA)、差示扫描量热分析法(DSC)和热重分析法(TG)。

1.差热分析法(DTA)差热分析是在温度程序的控制下,测量物质的温度与参比物的温度差和温度关系的一种技术。

其原理是:在相同的加热条件下对试样加热或冷却,若试样中不发生任何热效应,试样的温度和参比物的温度相等,两者温差为零。

若试样发生吸热效应,试样的温度将滞后于参比物的温度,此时两者的温差不为零,并在DTA曲线上出现一个吸热峰;若试样发生放热效应,试样的温度将超前于参比物的温度,此时两者的温差也不为零,并在DTA曲线上出现一个放热峰。

根据记录的曲线,就可以测出反应开始的起始温度,反应峰所对应的温度(峰位置),峰的面积就和产生的热效应值对应。

热重分析实验 ppt课件

热重分析实验 ppt课件
脱水进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量
占试样总质量的18.5%,相当于每mol草酸钙分解出1molCO,因此这一步
的热分解应按热分解反应进行。在600℃和800℃之间失重并出现第四个
平台,其失重量占试样总质量的30%,正好相当于每mol草酸钙分解出
1molCO2,因此这一步的热分解应按热分解反应进行。可见借助热重曲线
24
热重分析实验
可推断反应机理及产物。
SDT Q600 综合热分析仪
-结构与原理
图为典型的DSC-TGA的同步测量曲线,
在加热过程中,同时测量出样品的热流、重
量、温差等不同信号的变化。详细显示了
氮气条件下草酸钙的热分解过程。完整的
热重和热重微分信号定量的记录了失水过
程和高温分解过程。DSC信号跟踪记录出
样品测杯和参照测杯)。
6.通过TA/DSC控制器输入实验和过程信息,其中包
括样品信息和仪器信息。
7.关闭炉子。
8.开始实验。
热重分析实验
29
SDT Q600 综合热分析仪
-结构与原理
9.停止实验
如果由于某种原因,需要终止实验,可随时通过按
下触摸屏上的STOP键或通过仪器控制软件选择
停止来中止实验。另一种能停止实验的功能是拒
横坐标,自左至右表示温度(或时间)增加。
热重分析实验
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式?
• 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……”

热重分析实验报告

热重分析实验报告

热重分析实验报告实验目的:本实验旨在通过热重分析技术,对样品在不同温度下的质量变化进行研究,从而探究样品的热稳定性和热分解特性。

实验原理:热重分析是一种通过加热样品并测量其质量变化来研究样品热性质的分析技术。

在实验中,样品被置于称量瓶中,然后加热至一定温度范围内,通过记录样品质量随温度的变化,可以得到样品的热重曲线。

根据热重曲线的变化特征,可以分析出样品的热分解温度、热分解速率等信息。

实验步骤:1. 准备样品,将待测样品粉碎并干燥,以保证实验结果的准确性。

2. 装样,将干燥后的样品粉末放入称量瓶中,并记录样品质量。

3. 实验参数设置,设置热重分析仪的加热速率、加热范围等参数。

4. 开始实验,启动热重分析仪,开始对样品进行加热,记录样品质量随温度的变化。

5. 数据分析,根据实验得到的热重曲线,分析样品的热分解温度、热分解速率等参数。

实验结果与分析:通过实验得到的热重曲线,可以清晰地观察到样品在不同温度下的质量变化情况。

根据曲线的变化特征,可以确定样品的热分解温度为XXX摄氏度,热分解速率为XXX。

这些参数可以为进一步研究样品的热性质提供重要参考。

结论:本实验通过热重分析技术,成功研究了样品在不同温度下的质量变化情况,得到了样品的热分解温度和热分解速率等重要参数。

这些参数对于进一步了解样品的热性质具有重要意义。

实验中还发现了一些问题,需要进一步深入研究和分析。

同时,实验过程中也存在一些不足之处,需要进一步改进和完善。

综合来看,本实验取得了一定的成果,对于后续的研究工作具有一定的参考价值。

总结:热重分析技术是一种重要的研究样品热性质的分析方法,通过本实验的开展,对于深入了解样品的热稳定性和热分解特性具有重要意义。

希望通过今后的努力,可以进一步完善实验方法,提高实验数据的准确性和可靠性,为相关领域的研究工作提供更多有益的信息。

第7章 热重分析法

第7章 热重分析法

Temperature / °C
将该样品在真空下进行测试,由于增塑剂沸点的降低,挥发温度与橡胶 分解温度拉开距离,得到了更准确的增塑剂质量百分比:13.10%。
复杂气流控制下的热重分析(TG)
通过改变测试气氛(真空-氮气-空气), 有助于深入剖析材料成分。
7.3.5 研究聚合物的降解反应动力学
动力学基本原理
10
5
0
20
Kinetic Analysis of Vulcameter Data
A 1>B
150.0 °C 160.0 °C 170.0 °C 180.0 °C
40
60
80
100
120
Time/min
可采用动力学软件分析恒温下的扭矩测量数据
反应类型: A B
反应物 A 的浓度
Arrhenf(a)
exp EA RT
前置因子
f(x) – 反应类型
动力学软件 Kinetics 反应机理
简单反应(单步) A
B
A
B
C
复杂反应(多步)
A
B
A
2
C
B B
A
B
C
D
A
B
连串反应, f 竞争反应, c 平行反应, p
DTG % / min
Sample:
NR/SBR
Sample mass: 20.64 mg
Crucible:
Pt open
Heating rate: 20 K/min
Atmosphere: VACUUM
天然橡胶 NR mass loss: - 36.97 %
丁苯橡胶 SBR mass loss: - 10.33 %

实验七_热重分析仪(TGA法)测定草酸钙的热分解曲线

实验七_热重分析仪(TGA法)测定草酸钙的热分解曲线

实验七:热重分析仪(TGA法)测定草酸钙的热分解曲线(理工楼114)一、实验目的:1. 熟悉热重分析仪的基本结构和工作原理2. 了解热重法分析物质成分的原理二、实验原理:当物质受热分解时,不同物质的分解温度和失重量也有所不同。

如一水合草酸钙受热分解在约220-400℃时以草酸钙形式存在,在约520-780℃时以碳酸钙形式存在,在830℃以上以氧化钙形式存在。

而二水合草酸镁在150℃即分解,在520-780℃时已以氧化镁形式存在。

利用物质的这一特性,可以通过检测某一特定温度下的物质失重量来分析物质的成分。

以钙镁草酸盐混合物为例,对其进行热重分析,可从热重曲线推出钙、镁离子的含量。

设x,y分别为混合液中钙和镁的质量,m和n分别为试样在600℃(MgO+CaCO3)和900℃(MgO+CaO)时由热重曲线测得的质量,则有:x•MCaCO3/MCa + y•MMgO/MMg = m (1)x•MCaO/MCa + y•MMgO/MMg = n (2)式中MCaCO3,MMgO,MCaO分别为CaCO3,MgO,CaO的化学式量,MCa,MMg分别为Ca和Mg的原子量,通过测量m,n即可算出钙、镁的含量。

三、样品:草酸钙标准品不经过处理,直接使用。

四、仪器与试剂1.TA Instrument 公司TGA Q50热重分析仪。

2.已制备好的样品3.金属铂盘,镊子,小勺五、实验步骤(下述内容随堂修改)1. 通气根据实验需要在通气口通入保护气体,将气瓶出口压力调节到一定压力(?Mpa).2.开机依次打开专用变压器开关,TGA-50开关,工作站开关,同时开启计算机及打印机开关。

3.调节气体流量将仪器左侧流量控制钮旋至25ml/min至50ml/min。

4.天平调零按TGA-50控制面板键,炉子下降,将样品托板拨至炉子瓷体端口(注意为避免操作失误导致杂物掉入加热炉中,在打开炉子操作时,一定要将样品托板拨至热电偶下),用镊子取一只空坩埚小心放入白金样品吊篮内,移开样品托板,按键升起炉子,待天平稳定后,调节控制面板上平衡钮及归零键,仪器自动扣除坩埚自重。

综合热分析

综合热分析

综合热分析仪,小坩埚,粉磨级,筛网 四. 实验步骤 (一) 样品的制备
将制备好的玻璃块放入粉磨机粉磨一定时间后取出,通过筛网,得到粒径小于 50 目的 玻璃粉末。 (二) 样品的测定 1. 检查冷却水系统安全。 2. 打开炉体盖,检查炉体内部无异物。 3. 打开电源总开关,打开综合热分析仪开关,启动电脑,插上电子狗,打开电脑桌面身上
“ZH 综合热分析仪分析系统”。 4. 将两个干净的空坩埚分别置于炉体内两个支架上,点击软件页面上“清零”,TG 示数为
“0”。 5. 将炉体内左边支架上的坩埚取出,装入待测试样后,在放入炉内左边支架上。、 6. 打开程序的“应用参数”界面→填写“样品名”、“样品重量”→测试方式为“人工干预
测试”→点击“删除温度程序”→点击“添加温度程序”,设置起始温度、终止温度、 升温速率→点击“下传温度程序” →回到程序的“曲线”界面,点击右侧的“升温” →马上点击“开始测量”。 7. 在达到测试目标温度时,点击“停止测试”→点击“停止温度控制”。 8. 点击“文件”→点击“另存为 EXCEL 文件”,使用 U 盘拷贝数据。 9. 仪器降温至 40℃以下,取出样品→关闭仪器→关闭电脑→关闭总电源→登记所做实验样 品内容、数量、仪器运行情况是否正常,签名。 五.实验结果与分析 根据实验所得到的数据绘制温度、DSC 对于时间的曲线,如图 1 所示,可见,程序控制的度 较好,因此实验数据具有可靠性。
六.思考与讨论 1. DTA 和 DSC 的原理和区别?
差热分析(DTA)是在程序控制温度下,测量样品与参比物之间的温度差与温度关系的 一种热分析方法。差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品 和参比物的功率差与温度关系的一种热分析方法,两种方法的物理含义不同,DTA 仅可 以测试相变温度等温度特征点,DSC 不仅可以控制相变温度点,而且可以测相变时的热 量变化。DTA 曲线上的放热峰和吸热峰无确定的物理含义,而 DSC 曲线上的放热峰和吸 热峰分别放出热量和吸收热量。 2. DSC 的影响因素有哪些? 它的影响因素主要分为实验条件的影响和试样性质的影响,实验条件包括升温速率和所 通的气氛,试样性质包括试样量、试样粒度和试样的厚度。

热重分析实验报告文档

热重分析实验报告文档

实验者:年级:学号:实验名称:热重分析实验实验目的:①通过实验,了解热重分析仪的基本原理。

②通过实验,学会热重曲线的分析。

实验原理:热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。

热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。

最常用的测量的原理有两种,即变位法和零位法。

所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。

零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。

由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。

实验仪器:TG-209F1 镊子试样等。

实验步骤:①打开热重分析仪及电脑;②取下空坩埚,取2~5mg试样置空坩埚内,轻轻振动,使之均匀平铺于坩埚内。

③设置电脑中的程序,升温速度为10℃/min,气流速度20ml/min,开始实验。

④实验完毕,打印TG曲线图,降温,关闭电脑及热重分析仪。

实验结果及分析:实验结论:热重分析的特点是使样品处于程序控温下,观察样品的质量随温度变化的函数,从而得出物质在一定温度区间内的反应特性以及热稳定等信息。

升温速率越大,测试测得的温度滞后现象越严重,起始失重温度和终止温度测定值变得越高,分解温度范围也会变得更宽。

对于对分解失重不太敏感的样品的TG测试,如果升温速率太快,样品来不及作出充分响应,失重台阶就会测不准或测不出。

实验受浮力、实验盘、挥发物的冷凝、升温速率、气氛、试样质量等因素的影响。

一、浏览器缓存不够,导致加载缓慢或者加载失败。

二、系统更新后留下的临时文件太大,硬盘空间不足,导致qq魔法卡片打不开。

三、显卡出问题了,打开其他的游戏看看是否能够打开,从而排除显卡的问题。

四、qq魔法卡片可能正在维护,所以没事的时候留意下官方的公告,以免升级的时候没有的玩。

综合热分析实验报告

综合热分析实验报告

一、实验目的1. 理解和掌握热分析的基本原理和方法。

2. 通过实验,学会使用热分析仪器,如热重分析仪(TG)、差热分析仪(DSC)等。

3. 通过对样品的热性质进行分析,探究样品的热稳定性、组成、结构等特征。

二、实验原理热分析是一种研究物质在温度变化过程中物理、化学性质变化的技术。

主要方法包括热重分析(TG)、差热分析(DSC)、热膨胀法、热机械法等。

本实验主要采用热重分析和差热分析。

1. 热重分析(TG):在程序控制温度下,测量物质的质量与温度或时间的关系。

通过TG曲线,可以了解物质的热稳定性、分解温度、相变温度等。

2. 差热分析(DSC):测量物质在程序控制温度下,与参照物之间的热量变化。

通过DSC曲线,可以了解物质的相变温度、热容、热稳定性等。

三、实验器材1. 热重分析仪(TG)2. 差热分析仪(DSC)3. 电子天平4. 真空泵5. 针筒6. 样品皿7. 玻璃棒8. 铝箔9. 纸张四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。

2. 热重分析(TG)- 将样品放入样品皿中,用电子天平称量质量。

- 将样品皿放入TG分析仪中,设置程序控制温度和升温速率。

- 启动仪器,记录样品质量随温度变化的数据。

3. 差热分析(DSC)- 将样品放入样品皿中,用电子天平称量质量。

- 将样品皿放入DSC分析仪中,设置程序控制温度和升温速率。

- 启动仪器,记录样品与参照物之间的热量变化数据。

4. 数据处理:对TG和DSC数据进行处理,绘制曲线,分析样品的热性质。

五、实验结果与分析1. 热重分析(TG)- 通过TG曲线,可以观察到样品在加热过程中质量的变化。

根据质量变化,可以确定样品的分解温度、相变温度等。

2. 差热分析(DSC)- 通过DSC曲线,可以观察到样品在加热过程中与参照物之间的热量变化。

根据热量变化,可以确定样品的相变温度、热容等。

六、实验结论1. 通过本实验,掌握了热分析的基本原理和方法。

实验七 热重分析及综合热分析

实验七 热重分析及综合热分析

实验七热重分析及综合热分析一、实验目的与任务1. 了解热重分析的仪器装置及实验技术。

2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。

3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。

二、热重分析的仪器结构与分析方法热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。

热重分析通常有静态法和动态法两种类型。

静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。

该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。

动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。

该法简便,易于与其他热分析法组合在一起,实际中采用较多。

热重分析仪的基本结构由精密天平、加热炉及温控单元组成。

图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。

自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。

图16 PRT-1型热天平结构原理图由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。

曲线的纵坐标为质量,横坐标为温度。

例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。

图17 固体热分解反应的热重曲线图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。

T f 为终止温度,即累计质量变化达到最大值时的温度。

热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。

若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。

许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七热重分析及综合热分析一、实验目的与任务1. 了解热重分析的仪器装置及实验技术。

2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。

3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。

二、热重分析的仪器结构与分析方法热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。

热重分析通常有静态法和动态法两种类型。

静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。

该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。

动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。

该法简便,易于与其他热分析法组合在一起,实际中采用较多。

热重分析仪的基本结构由精密天平、加热炉及温控单元组成。

图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。

自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。

图16 PRT-1型热天平结构原理图由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。

曲线的纵坐标为质量,横坐标为温度。

例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。

图17 固体热分解反应的热重曲线图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。

T f 为终止温度,即累计质量变化达到最大值时的温度。

热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。

若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。

许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。

例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图18,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。

在100℃和200℃之间失重并开始出现第二个平台。

这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按O H O CaC O H ·O CaC 242℃200℃100242 ~ +−−−−→−进行。

在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按CO CaCO O CaC 3℃500 ℃40042~ +−−−−→−进行。

在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按2℃800 ℃60042CO CaO O CaC ~ +−−−−→−进行。

可见借助热重曲线可推断反应机理及产物。

图18 CaC2O4·H2O的热重曲线三、实验方法热重测量的实验方法主要包括试样准备、仪器校正、实验条件选择和样品测试等工作。

1. 试样准备试样的用量与粒度对热重曲线有较大的影响。

因为试样的吸热或放热反应会引起试样温度发生偏差,试样用量越大,偏差越大。

试样用量大,逸出气体的扩散受到阻碍,热传递也受到影响,使热分解过程中TG曲线上的平台不明显。

因此,在热重分析中,试样用量应在仪器灵敏度范围内尽量小。

试样的粒度同样对热传递气体扩散有较大影响。

粒度不同会使气体产物的扩散过程有较大变化,这种变化会导致反应速率和TG曲线形状的改变,如粒度小,反应速率加快,TG 曲线上反应区间变窄。

粒度太大总是得不到好的TG曲线的。

总之,试样用量与粒度对热重曲线有着类似的影响,实验时应选择适当。

一般粉末试样应过200-300目筛,用量在10mg左右为宜。

2. 仪器校正(1)基线校正热天平与普通天平不同,它是在升温过程中连续测量和记录试样的质量变化,属于动态测量技术。

即使在室温下漂移很小的高准确天平,在升温过程中由于浮力对流挥发物的凝聚等都可使TG曲线基线漂移,大大降低热重测量的准确度。

因此,在样品热重测量之前应空P。

载升温校正基线,记录空载时每一温度间隔的质量数值空(2)温度校正在热重分析仪中,由于热电偶不与试样接触,显然试样真实温度与测量温度之间是有差别的。

另外,由于升温和反应的热效应往往使试样周围的温度分布紊乱,而引起较大的温度测量误差。

为了消除由于使用不同热重分析仪而引起的热重曲线上的特征分解温度的差别,需要对热重分析仪进行温度校正。

Kettch推荐了一些适合热重分析仪校核温度的标准物质,如表9。

表9 热重分析仪温度校正用标准物质(1)升温速率升温速率大,所产生的热滞后现象严重,往往导致热重曲线上起始温度T i和终止温度T f偏高。

在热重分析中,中间产物的检测是与升温速度密切相关的。

升温速度快不利于中间产物的捡出,TG曲线上的拐点及平台很不明显。

升温速度慢些可得到相对明晰的实验结果。

总之,升温速度对热分解温度和中间产物的检出都有较大的影响。

在热重分析中宜采用低速升温,如2.5 ℃/min、5 ℃/min,一般不超过10 ℃/min。

(2)走纸速度在热重分析中,记录纸的走纸速度对热重曲线的形状有着显著影响。

如图19所示,两个连续的热分解过程,慢速走纸分辨不明显,快速走纸两个反应明显分开。

一般来说,快速走纸使TG曲线斜率增大、平台加宽、分辨率提高。

但过快的走纸速度会使失重速率的差异变小。

因此,走纸速度应和升温速度适当配合,通常升温速率为0.5 ~ 0.6 ℃/min时,走纸速度为15 ~ 30 cm/h。

图19 走纸速度对TG曲线形状的影响(3)气氛试样周围的气氛对试样热反应本身有较大的影响,试样的分解产物可能与气流反应,也可能被气流带走,这些都可能使热反应过程发生变化。

因而气氛的性质、纯度、流速对TG曲线的形状有较大的影响。

为了获得重现性好的TG曲线,通常采用动态惰性气氛,即向试样室通入不与试样及产物发生反应的气体,如N2、Ar等气体。

4. 热重分析的样品测试步骤(1)调整天平的空称零位;(2)将坩埚在天平上称量,记下质量数值P1,然后将待测试样放入已称坩埚中称量,P;并记下试样的初始质量始(3)将称好的样品坩埚放入加热炉中吊盘内;(4)调整炉温,选择好升温速率(若为自动记录,应同时选择好走纸速度,开启记录仪);(5)开启冷却水,通入惰性气体;(6)启动电炉电源,使电源按给定速度升温;P(若为自动(7)观察测温表,每隔一定时间开启天平一次,读取并记录质量数值测记录,则定时观察TG曲线,并标记质量和温度值);(8)测试完毕,切断电源,待炉温降至100℃时切断冷却水。

5. TG曲线绘制在一温度下样品的真实质量可按下式计算P=空-Q+P)(1P测式中Q——样品质量;P——天平读数;测P——空载漂移量空P1——坩埚质量。

根据每一温度测得的样品质量,以样品质量为纵坐标,以温度为横坐标,绘制TG曲线。

若热重分析仪配有记录仪,TG曲线由记录仪自动记录。

四、综合热分析1. 综合热分析的种类与实验方法DTA、DSC、TG等各种单功能的热分析仪若相互组装在一起,就可以变成多功能的综合热分析仪,如DTA-TG、DSC-TG、DTA-TMA(热机械分析)、DTA-TG-DTG(微商热重分析)组合在一起。

综合热分析仪的优点是在完全相同的实验条件下,即在同一次实验中可以获得多种信息,比如进行DTA-TG-DTG综合热分析可以一次同时获得差热曲线、热重曲线和微商热重曲线。

根据在相同的实验条件下得到的关于试样热变化的多种信息,就可以比较顺利地得出符合实际的判断。

综合热分析的实验方法与DTA、DSC、TG的实验方法基本类同,试样要求、基线检验方法、温度校准及实验条件选择原则均可参阅上述三个实验。

在样品测试前选择好测量方式和相应量程,调整好记录零点,就可在给定的升温速度下测定样品,得出综合热曲线。

2. 综合热曲线的分析方法综合热曲线实际上是各单功能热曲线测绘在同一张记录纸上,因此,各单功能标准热曲线可以作为综合热曲线中各个曲线的标准。

利用综合热曲线进行矿物鉴定或解释峰谷产生的原因时,可查阅有关的图谱。

图20示出了某种粘土的综合热曲线,它包括加热曲线、差热曲线、热重曲线和收缩曲线。

根据综合热分析可知,该粘土的主要谱形与高岭石(Al2O3·2SiO2·2H2O)相符,故其矿物组成以高岭石为主。

差热曲线两个显著的吸热峰,第一个吸热峰从200℃以下开始发生至260℃达峰值,热重曲线上对应着这一过程质量损失3.7%,而收缩曲线表明这一过程体积变化不大,所以这一吸热峰对应的是高岭石失去吸附水、层间水的过程。

第二吸热峰从540℃开始至640℃达顶峰,这一过程质量损失达1.31%,而体积收缩1.4%,这一过程的强烈的吸热效应相当于高岭石晶格中OH-根脱出或结晶水排除,致使晶格破坏,偏高岭石(Al2O3·2SiO2)分解成无定形的Al2O3与SiO2。

当温度升高到1000℃左右,无定形的Al2O3结晶成-Al2O3和部分微晶莫来石,使差热谱上出现强烈的放热效应,此时质量无显著变化,体积却显著收缩,从3.19%达8.67%。

加热到1240℃又出现一放热峰,同时体积从9.68%迅速收缩到14.4%,这显然又是一个结晶想的出现,据研究系非晶质SiO2与γ-Al2O3化合成莫来石(Al2O3·2SiO2)结晶所致。

图20 粘土的综合热曲线1-加热曲线;2-差热曲线;3-热重曲线;4-收缩曲线在综合热分析技术中,DTA-TG组合是最普通最常用的一种,DSC-TG组合也常用。

根据试样物理或化学过程中所产生的质量与能量的变化情况,DTA(DSC)和TG所对应的过程可作出大致的判断,如表10所示。

表中“+”表示有,“-”表示无,在进行综合热曲线分析时可作为参考。

表10 DTA(DSC)和TG对反应过程的判断1. 选择DTA、DSC实验中测试的同种矿物,用静态法或动态法测绘TG曲线。

采用动态法时,应保持与DTA、DSC实验相同的升温速率和走纸速度。

2. 选择DTA、DSC实验相同测试条件和同种矿物,在综合热分析仪上测绘DTA-TG 或DSC-TG综合热曲线,解释曲线上能量和质量变化的原因,并与单功能DTA、DSC、TG曲线对照峰谷形状、温度及特点。

相关文档
最新文档